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Abstract. This research is based on the concept of safety airbag to desigresaedf system for the
autonomous underwater vehicle (AUV) using micro inertial sensing module. To reduce the possibility of
losing the underwater vehicle and the difficulty of seagghind rescuing, when the AUV sedfscue system
(ASRS) detects that the AUV is crashing or encountering a serious collision, it can pump carbon dioxide into
the airbag immediately to make the vehicle surface. ASRS consistsDfDREGensing module, sensing
attitude algorithm and apumping mechanism. The attitude sensing modules are -axigmicroinertial

sensor and a barometer. The sensing attitude algorithm is designed to estimate failure attitude of AUV
properly using sensor calibration and extendedlman filter (SCEKF), feature extraction and
backpropagation network (BPN) classify. SCEKF is proposed to be used subsequently to calibrate and fuse
the data from the micfimertial sensors. Feature extraction and BPN training algorithms for claswifiaei

used to determine the activity malfunction of AUV. When the accident of AUV occurred, the ASRS wiill
immediately be initiated; the airbag is soon filled, and the AUV will surface due to the buoyancy. In the
future, ASRS will be developed successfidiysolve the problems such as the high losing rate and the high
difficulty of the rescuing mission of AUV.

Keywords: autonomous underwater vehicle; extended Kalman filtering; BPN classifier; AUV airbag

1. Introduction

Significant research is beingonducted on the development of autonomy for underwater
robotic vehicles, which are widely employed in many fields of application such as oceanographic,
marine archaeology (Roman and Mather 2010), military organizatiorshafé oil industry, and
cable tacking and inspection (Asakaved al 2002). The advent of underwater robotic vehicles
has significantly reduced the dangers in deep sea exploration. Two kinds of robotic vehicles used
in marine research are remotely operated vehicles (ROVs) and autanhamaerwater vehicles
(AUVs). The main difference between the two is that ROVs are connected to the ship by
communication cables whereas AUVs operate independently from the ship. AUVs operate without
an umbilical, therefore AUVs are able to conduct adgisibver a larger range. In our study, ASRS
has the potential of predicting vehicular catastrophic and averting it, thereby minimizing loss of
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the AUV.

In recent years, the micedectremechanical systems(MEMS) has nearly become a vital
technology for modrn society because of its small volume, low power consumption, low cost and
ease to integrate into systems or modify (Zhou and Mason 2002). MEMS technology creates
entirely innovative kinds of products, such as gyroscope sensor in esinadw detectionystems
(Hwangboet al. 2013), multiaxis inertial motion sensors for smartphdrased navigation (Niat
al. 2012) and rehabilitation systems based on inertial measurement units (IMU) (Lesrdini
2014). Additionally, the integration of Global Positiog System and inertial Navigation System
(GPSJ/INS) is usually employed to measure the position of AUVs €Yt 1999, BoninFont et
al. 2015). Unfortunately, small errors in the measurement of initial data are double integrated into
larger errors progssively in attitude data, and such errors increase unbounded. Error Reduction
calibration for initialization of INS is paramount for the systematic parameter, like scale factor,
bias and misalignment of axes. Based on the situation depicted above,ratioalimethod is
investing and adopted in our stu(Bao et al. 2013). There are many researches utilized Kalman
filter (KF) (Luinge and Veltink 2005), complementary filter (CF) (Ruiz et al. 2012), adaptive
Kalman filter (AKF) (Li and Wang 2013) or extended Kalman filter (EKF) (Mirzaei and
Roumeliotis 2008) to fuse gyroscope and accelerometer together, taking advantages of their
individual strength. One of the above, EKF is a form of-lio@ar estimation and typadly used to
compute the solution from these multiple sources. The EKF also developed by (@4aiir)01)
allows estimating the orientation of attitude using IMUs. In this research, we chose the EKF to
filter IMU outputs with a balance of noise canoell and adaptability simultaneously, used in
sensing attitude algorithm for ASRS.

However, the system is computationally complex due to values estimation of AUV, and causes
the high dimension which is call edstimigeeofe of
computational complexity and the classification error (&hal 1991). The purpose of feature
extraction is to reduce the dimension of the large measurement datas and prevent program
operation from out of memories. We adopted nine kindfeatures to improve dimensionality
reduction before send into the classifiers. Feature extraction is a technique for extracting a subset
of new features from the original set by some functional ways which keep as much information in
the data as possibi@iricik et al. 2012). Conventional Principal Component Analysis (PCA),
which is orthogonal theigenvector®f the covariance matrixis one of the most widely used for
feature extractiortechnigues andactor analysigWold et al. 1987). Hence, PCA was chosen to
redwce the dimension of the AUV attitude value in this study. Feeding the value to the classifier to
determine the conditions of AUV after feature extractions.

The sensing algorithm with EKF for sensing the attitude of AUV, while employing the
backpropagatiometwork (BPN) to classify motion data that are formed in the AThé neural
network consists of multiple artificial neurons to receive inputs, and process them to obtain an
output (Hopfield 1982). By repeating amendments to the model weights, neural network makes
central processing unit (CPU) more logical to calculat nonlinear systems of AUV motion
(Sayyaadi and Ura 1999). Neural network has been widely used because of a number of
advantages, including estimating which variables are important in classification, detecting possible
interactions between predictor vadries and constructing the prediction model with high accurate
rate. Furthermore, neural network has emerged as an important tool in classification which has
been investigated in many different important applications (Zhang 2000). In one work,at/ahxi
(2005) designed a scalable mobile phbased system for multiple vital signs monitoring and
healthcare. Constructing neural network classifier (NNC) for classifying human activities by using
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a wearable sensor. (Yaeg al. 2008, Wanget al. 2012, Tuncekt al. 2009). As mentioned above,
activity recognition is one of the most active application areas of NNC. In this research, NNC is
used in the calculation of nonlinear systems AUV attitude data to detect a catastrophic failure of an
AUV. We based on the ritilayer feedforward backpropagation algorithm as NNC and proposed

an effective activity recognition method usingR@F sensor moduldBackpropagation network
(BPN) is the most widely used type of networks and is an efficient way to compute the gradient

a ANN (Rumelhartet al. 1986). This application is capable of reducing the probability of
damaging and sinking the AUV.

The concept of ASRS comes from the vehicle safety device: airbags consists of a flexible fabric
bag in order to protect occupant ams$trict during a crash accident (Lund and Ferguson 1995,
Burgesset al. 1995). Wang (2005) and Dragcewtal (2009) designed the airbags, which fires
via a small pyrotechnic charge to increase motorcyclists safety protections while riding a
motorcycle The airbags are applied to not only fadbtection device but also automatic inflatable
life by the inflatable method of gas cylinder (Guangyil 2007, Toshiyaet al. 2008, Tamuraet
al. 2009, Ishizakat al 2014). We extended the airbags systeonkad on the AUV with C®
cylinders to implement the ASRS. In this research, we developed a malformed detection algorithm
for AUV with both SCEKF and ANN, and the Implementation of air bag system loaded on AUV is
under way.

2. Theoretical methods and designs

This section presents an overview of the theoretical method on the formulation of sensors
algorithm and classification. The former includes the sensors calibration and extended Kalman
filter algorithm; the latter is constructed of feature extoacti and neur al cl assi
designs the concept of the airbag system for ASRS. Fig. 1 shows an overview of the SARS
scheme.

2.1 Sensors algorithm

The implemental detail of using IMU in the AUV will be explained in this section. It includes

constructing the XMOF sensors module, sensors calibration and EKF algorithm.
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Fig. 1 An overview of the SARS scheme
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Fig. 2 Block diagram of the :OF sensor module
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2.1.1 Senor design

The MEMS sensor system contain€@DOF IMU (three accelerometers, three gyroscopes,
three magnetometers) and barometer integratddmicrocontroller (Arduino MEGA2560)The
six-axis inertial sensors (MPU6050) which is a complete triple axis gyroscope and triple axis
accelerometer inertial sensing systame the most suitable sensors for stabilization and attitude
measurement, where accelerometeack and eliminate the gyroscopes drift in vertical attitude
(roll, pitch) of AUVs. The advantage of MPUG050 is that it eliminates the-antiat differential
problem between gyroscope and accelerometer and saves more space. MPU6050 contains the
digital motion processor (DMP) which performs the motion processing algorithm itself. However,
the horizontal attitude (yaw) is not possibility measurement. We useaetoageter (HMC5883L)
with fusion algorithm accordingly for eliminating the gyroscope offset to recognize the AUV
activity context more reliably. The barometer (BMP180) is used in ASRS to detect the depth of the
AUV position and control the pressure of the air bag for supplying the perfect buoyancy. In
addition, BMP180 also includes temperature sensor which is not only measure the underwater
temperature but for thermal compensation for the MPU6050. The block diadrdra 10DOF
module as shown iRig. 2.

2.1.2 10-DOF sensors data calibration

Although the development of the MEMS technology has made a great progress, the IMUs are
difficult to be implemented a precision data in the presence of various errors, which categorizes
into the deterministic error and the stochastic error (Titteztai 1997). Owing to the integration
of IMU, any residual error will be accumulated and grow without bound, resulting in attitude data
and orientation errors. Th atlMUiissto ctlibrate its geaserea n why
Calibration is theprocess of the measurement outputs comparing with kmefenence data and
determining the caecients that drive the output to agree with the reference data over a range of
output.We can establish the error model illustrate&im 3.

Ui | Ui |
Mi Mi
lreal ——| Serror a ‘} ‘} —>Omeas

bmeas I'meas

Fig. 3 Thesensor error model
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Where |, is the real raw value of the inpuf), .. represents the measurement of the output,
scale factorsS,,, , biases b, stochasticnoise I, and M, and M, are the axial
coupling factor corresponthg with the U, and U; respectively. The relationship between
sensor error model can be expressed usiadollowingequation

Omeas= (1+ Serror) l real + bmeas+ Miui +M juj + r'meas (1)

If further simplify the equation the @libration errors during assembly of eacbmponent
generatednto the IMU module can beignored Therefore, thecharacteristic equation can be
expressed as

Omeas: (1+ SEI‘I’OI') I real + bmeas+ rmeas (2)

The position and velocity driflepends of scale factor, biasidstochasticsensolerror. Then it
is very important theccurateprocedure of calibration for anitialization of the IMUto improwe
theworking efficiencythe sensing element.

Stochastic noise: thermal noise

There is no temperature compensatigmen designing the IMU modulehdse variable type
sensorare sensitive to tengpature changesh€ purpos®f thermal compensation is tietermine
the adjustment in performance of a systerhen operated under&irent tempetaresand to
measure the desired variable precis€here are two main approaches for theromhpensation
thethermal soak methoand thethermal rampmethod(Aggarwalet al 200§. In thisresearchthe
thermal soak methodasadoptedto investigate thermala@ct of IMU because afecordingthe
sensordatauntil the element temperature stabilizedd method of linear interpolation has been
used to establish thkermalcompensation

a2 - W) =d"(T-T)- (T +T,)

3)
where a’rT1 and a’rT2 are known at temperaturéf and T,, T is therequired temperature point

and a’rT is a calculated IMU value at “C. The thermaltesting procedures of thigsearchs to

maintain constant temperatuby uilizing the thermal turntable cabinethown inFig. 4. The
variation of the thermal errors dMU sensor is evaluatedt temperatures ranging from Z5to
60°C.

#

Fig. 4 Thermal turntable cabinet setup
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Bias

First of all conductingstatic output measuremetat cdculate the amount of the bias, atte
static noise output should be low and be the well distribstignlesignal withinideally condition.
In order to minimize the error causeg bias we averaged the IMU data to calculate the bias,
which is deducted from the output values of IMU measurem@&hesCalculation formulaof the
bias value is by Eq. (4)

a4,
m= i=1
n (4)

Where M is the bias of IMU, d; is the output values of IMU measuremerasd N

represents the totalimber of samples
Scale factor
TheLinear relationship between input and output is one of a very important characteristic for an
ideal inertial sensing element. Scale factor drifts of inertial sensors describe how well the relation
between input and output IMUs are usually modeled withnaali response to simplify the
calculation of measurement. we found the linear equation belongs to each components by linear
least square (LLS) formula.

In order to find the coefficient of IMU linear equatjdhe scale factor is denoted &g, , the
offset coefficient is&,, the corresponding value set in the user interfac@gjs[wS ag mS]T;

o/ =[Wr a m]T is the real raw measurement data, where acceleraipangularvelocity w,
magnetic valuesm. The model function is given tBqg. (5)

d,=a,+ad -

Using the followingfunction was written it in matrix to find the coefficient of IMU linear
equation

al a,0, . ad,0
& 033,05 & 0
mnjed 4o% goedo
@ g, 96T &y 0
C alrn %sn- 2 (6)
Then, the solution of parameteg, may t hen be simpliyed as
a-n_ldridsi' nQ;’ras
a=-—mrs =
&7,(d)- nd) -

where @), and d,, are thereal raw and sample valuat the i orientation and rotation,
respectivelyof all N samplescan be calculated &3.(8) by Eq. (5).

a,= 5Is - ‘315; (8)
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Fig. 5 Overview of the SCEKF structure

2.2 EKF algorithm

A quaternion based EKF is proposed in this section for determining the attitude of the AUV
from the outputs of IMU. Attitude estimation is a very important part of the ASRS systems. If the
initial data are double integrated into larger errors without baitibdings on the misclassification
of ANN algorithm with wrong attitude values. For the sake of this error, We used a series of
measurements observed over time $@nal processingThe main advantage of the KF is its
ability to provide the quality of the estimate, whereas the KF only applies to the linear and
Gaussian models. The EKF conversely is a form oflm@ar version of the KF which linearizes
about an estima of the current mean and covariance (Sabatini 2006). In view of this, we chose
the EKF to filter IMU outputs with a balance of noise cancelling and adaptability simultaneously,
used in sensing attitude algorithm for ASRS. We proposed the EKF fusintheitftcelerometer,
gyroscope and magnetometer integrated with sensor calibration (SC). SCEKF results to an
i mprovement of the or i ent-chartiobstructare medormedhby thé r om | |
proposed SCEKEF is capsuledHig. 5.

9 Sensor calibratiofSC)

The IMU calibrationequationpresented irfEgs.(3)-(5) and discussed in section 2.1.

9 Compute the predict phase

X =F (T, )X +7k ©)

-

N
ﬂ% =FR.,R9F., +B_ QB[ (10)

First step of EKF predicts a current state and covariance matrix atkimé/e estimated a

current state based on the previous stafigs =[&, Uz, _,]' which is composed of the

gyroscope measurementz , and white noise/&_lZ[a‘lﬁ_l “fe ”‘/ﬁ_l]T and the priori

covariance matrixF'% based on a previous covariance matFiQ@, covarianceQ and B, isa
state noise coefficient matrix.


https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Covariance_matrix

Yi-Ting Yangand ShengChih Shen

1 Jacobian computation

Fk—1:% T, Wy =‘]f(Ts"E—1) (11)
V, = -h(VO)H=m~:JV
Ye =Z.- hik.,0), H, ux‘fk h (%) (12)

However, in view of the nonlinear process oftate transitionF, , and observation H,

directly ,EKF approach requires being estimated by computing the Jacobian
9 Gravity measurement correct

S =HEH,T+R, (13)

K, =BH,"(H &R, +R )" (14)
X" =& +K,(a - HX%) (15)
R = (Is - K HE (16)

Where the innovation covarianc®, based on a priori error covariance mattfkand the
measurement covariance matrix of acceleromd®er which main diagonal elements are from the

accelerometer values, nomain diagonal elementse all zero conversely. The Kalmgain K,

is the error covariance matrix after gravity measurement correct.
1 Yaw measurement correct

S =H,RYH, +R, (17)

K, =PH,’ (HkPk(l)HkT + Rn)l (18)
X2 =X+ K, (m, - Hx?) (19)
R®=(14,- SHRY (20)

Where he measurement covariance matdk magnetometersR, which main diagonal
elements are from thmagnetometevalues, normain diagonal elements are aéroconversely.
Pk(z) is theerror covariance matriafteryaw measurement corrected

2.3 Structure of NNC

We are going to introduce the structure of NCC for recognition of AUV activties in this section.
The NNC scheme is classified into two categories: the feature extraction and BPN algorithm
which comprises a feature classifier, a stterin classifier, and Bbngterm classifier as shown in
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Fig. 6.A sliding window technique cut the sensors data into 20 second in eacteshowindow
with 50% overlapping.

In the beginning, for the purpose of reducing the dimension of the extracted features from the
sensomata, these extracted features are selected by the PCA and feeding into the feature classifier
to make a distinction of the AUV motions. Upon completion of the feature classifier construction,
we are capable to distinguish every AUV motion in each operatniod. This way is helpful for
recognition the complex AUV activities and detecting each kind of motions well.

2.3.1 Feature extraction and selection

AUV motions are defined by the six degrees of freedom including hesawrge sway, pitch,
roll andyaw, andtheyarecouplingby the vehicle shagp trends and curreiiteraction Therefore,
the attitude data of AUV is the high dimension and very compldle purpose offeature
extractionis to reducethe dimension of the large measurement datas and prevegitam
operationfrom out of memoriesThe characteristics of a data segment is to keep the most meaning
ful features and remove the redundant of dBtereforethe featureextraction methoslhave been
applied for activity detectiofrom accelerometedata. (Saeedi and Ebheimy 2015Preeceet al.
2009. Kn order to extract feature easily, t he
into manyoverlapping segments of which east20 seconddime, wasillustrated inFig. 6.In this
paper, we adopted the principal components analysis (PCA) as the feature selection procedure to
lower the dimension of the original featur@isrzanowski 1979 Featureextraction is highly
subjective in naturdt depends ompplications. Hereye introducel the following features that is
beneficial to classificationf AUV failure detection; sed these features to disoimate the type of
AUV activity (Ranganathant d. 200)).

1 Min,Max: minimum and maximum of the sensors signal.

9 Mean: the mean value is computed over a window of sensors signal. In the below equation

that W describeshe number of elements of

W

aizlyi
W

1 Interquartile ranggIQR): The interquartile range of aegmentcan be calculated by
integratingwhile the mean values of differenlasses are similar and compare of the spread of
data in a data set.

1 Root mean squaf®MS): quadratic mean value of thgsal

y= (21)

RMs= |= 5™ y? (22)

1
W

i Standard deviation (STD): mean deviation of thessesisignal compared to the averge

_ 1w 2
sto= [L 4" 9) (23)

1 RootMean Square ErrqRMSE) the RMSE makes an general purpose deviation metric for
each signal of sensand is given by
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_ 1 s W —\2
RMSE_mai:j(yj 'y) (24)

9 Signal magnitude area (SMAPBouten et al. 1997: SMA is the average of absolute
acceleration overw@aindow length and suitable for distinguishing between static and dynamic.

1, .. sur sw . e
SMA (@ A L+ 8 LA, (25)

,a™® representth of the acceleration of the surge, svamylheave

sur

where a7, g,
respectively
9 Signal vector magnitude (SVM(Karantoniset al. 2009: SVM distinguishes between
shorter periods of activitgnd rest than SMAIt is able to detect the AUV is being attacked or
hit the obstacles.

swa

SVI\/I:\/a1_sur2 + aiswa2 + a1_heaz (26)

9 Averaged acceleration energy (AEE): the AEE is the mean value of the energy over three
acceleration to describes how the energy
static activities. from dynamic activities.

2.3.2 BPN construction

Findly, these extracted features selected by the PCA are feeding into the fdassiéer,
shortterm classifier andong-term classifier sequentially and output the AUV condition. In order
to detect the AUV conditioraccurately, reliably, stabland robustly, wedivided recgpnition
system into three classifiers whiehebas& on BPN. BPNis considered the workhorse of ANNs
and is themultilayer perceptrodMLP) based on a feed forward algorithiRufnelhartet al. 1986.
The hidden layers, between utmnd output layers, use the error bpoipagatio (BP) algorithm
to compute nonlinear relationship in supervised learflihgmain feature®f BPN are as follows:
high learning accuracy, fastsponse@nd can process tm@nlinear problems

c

(& e

o}
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(@)
c
/5

o
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In this pape a thredayer BPN is used for classifying AUV failure condition. The topology of
t he BPN c | as shigy™dNielsen201% The input laiyen has R neurorexjual to the

. . u .
dimension of the featureectors | :[I 1(1), Ir(l),2 ,IS) , Where superscripl indicates the ®1

layer. The hidden layer hdseurons, and the output layeas P neurons, equal to the number of
AUV condition O=[0, 0,2 ,O,‘f”]T , where superscript 3 indicates telayer. w() wi?
denotesthe weight from the hidden to the output layemd from the input to the hidden layer
respectively b® b® denoteghe bias in % and 2¢ layer respectively. Thé™and o™ is the

input valueand the activation of aeuronin the n” layer {ni N:n¢ 3}. We take thenterval

between hidden layer 1@ and output layer (3 as an example. The function of the neurons in
each step are defined follows:(Rumelhartet al. 1986

1 In the BPN network, thintermediate quantitynet}?’) is the weighted input to the neurons

in the 3rd layer, and implements a nonlinear transformation from the output values2&f the
layer to the output values of th&.3s is called the sigmoid functioim generalnonlinear
anddifferentiable the functions of the"pneuronare given by

J
o =5 (net?) =s(al w0 +p) (27)
J:
1 The discrepancy E® between the desired outptf’ and the real outpuD$’ in 3“

layer can motivate the BP learning algorithm as gradient descent oscuemned discrepancy.
The factor of 1/2 will simplify the exponent when differentiatingtéa. The function is
defined as

1.. 2
3) — (3) 3
E —Eap_(tp - 0)) (28)

1 Then, adjusting the weights to find thartial derivative E with respect to a Weighlwg’):

D " - A(E® /i), However, the discrepancy is not directly the function of weights.

Calculating the derivative of the discrepancy is done usinghhim ruletwice.

® ® 3)
puld = pPE Py et 29)
pi ) et(p3) 3
|J0p i pi
Let 6s di spartiabderivaieesimturm f
1 In the last term oEq. (29)is the derivative of thaet netf) with respect to a weight

(3.
ij .

3) J

pne e
(E)) = H(3) (@ wyo? +by) =of? (30)
}.I\ij Ll\/Vp]- j=1
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1 Next, thederivative of the activatiorof) with respect to the net inputet”:

“0533) __H 3)
pnet uneté“"s(neﬁ”) (31)

=5 (net?)(1- s (net?)) =0l (1- o)

9 Last we consider théerivative of the E with respect to the activatiods a consequence
of the neuron is in the output layer, th€? is equal to ofY.

2
HE _ HME _ U(]/Z(tf’) - OS)) ) — (t(s) _ 0(3)) (32)
HOF()S) HOEJB) HO:JB) P p

T Finally, substituting these resulEg)s.(30)-(32) back into originaEg. (29) to find the weight
change Dw{) rule.

9 ) (??) ) (9?) fp(s?) ) )<'3> @® @®)
DS =A(tS -0)0P (1- 0)0® =h eo (33)

1 We can find thewveight change D/vff) in the same processes of above and is defined as:

1)) ).

Dwi? =hg ewo®(1- 0®)o =4 e (34)
j

BPN algorithm approach to recognize and intelligent defaitiires based on changes in
weights valuesDw'y D2 of theAUV featureparameters

2.4 The concept of the airbag system

In the case of AUV failure and sinking underwater, we designed an airbag system to increase
buoyancy and reduce the overall density of AUV. The AUV is 36 centimeter in length (14.2
inches), 20centimeter Beam (7.9 inches), 2.8 kilogeamhile full load (6.2 pounds), 3.1
kilogranms after putting the counterweight (6.8 pounds), 8rkhots (1.54m/s). The vision is that
we install a waterproof container system on both sides of AUV. The watérgabim, which
length 20 cm, diameter 10 cm, 1570L of the displacement, including sensing module,
doubletrigger inflator, andairbag.Fig. §a) illustrates a doubligger inflator includes a servo
motor, horn, spring, spring casdriker,water solubldPVA fiber, and CO2 cylinder. The designed
doubletrigger inflator not only can trigger by electricity but also trigger by water damage when
thewaterproof cabin is severely broken.

There are two ways to trigger the inflator. To begin with the electticgger way, in the case
of the waterproof cabin is watertight, after detecting the failure of AUVs, servo motor rotates for
pushing the strikerand the striker punches the release button. CO2 releases into the air bag
through the air tube as shownFig. 8(b).
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Servo Motor Striker

Water Soluble PVA Fiber Air Tube CQ:Cylinder Spring Case
(a) Before release (b) releasdy servo motor (c) releaseby spring

Fig. 8 The design diagram of inflator

We chose MG995 for servmotor which weights 55 grams; MG995 is sufficient to move the
horn from the striker with it'snaximum torque 13Xg-cm. Besides,if the AUV is severely
impacted and cause the cabin seepage, so that the power system is dalhmadddy can not
resurface by the thruster or the electrigiigger inflator. So we designed the watiegger inflator
for this kind of case. When the cabin is seeped, water melts the water soluble PVA fiber and
release the spring caae shown irfFig. 8(c). The music wire is selected to spring within the spring
case, the true maximum load of selected spring is 27.985N which have enough force to press the
release button through striker.

In addition if the total weight ofa waterproof container and gsibstance is 1.25 kg; the total
displacement and weight @n AUV are 3.61kg and 4.36kg respectively. Suppose that the
acceleration of gravity is the constant 9.8 rh Ars other words, the total buoyancy of entire AUV
apparatus is 32.73 Newton upwards contrary to the total gravitation is 42.63 Newton downwards.
In the development of ASRS, we used two bottlethef2 g CO, gas cylinder with 6 L of C@n,
and four natual rubber inflatable nylon airbag with a capacity of 2.4L. The airbags connect with
the regulating valves and cling to the valves to avoid falling and cause the pollution under the sea.
Assume that the maximum depth is 1@0vhich refers to 11atm pressutere, andsuppose that
the temperaturis regarded as Kelvin temperature 297A¢cording to the Ideal Gas law Eq. (35),
where R isgas constant 8314.32 (M)/(kmolK), Ncozis 0.273, Vyinger iS 0.014L of a 129
canister, the pressure in a CO2 cylinder is 475atm, which is much higher than the water pressure
1latm. So the CO2 cylinder can operate successfully without body deformation. The relationship
between flow rate and pressure is the followkitg (36): (Guangi et al.2007)
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3. Experimental test and result.
3.1 SCEKF

To validate the sensor calibration and fusion method proposed in this fhégegction covers
the results obtained from the-DIDF sensor module with operating system of Wind8vis 2.20
GHz CPU 8GB memoryand experiments are performed with the Arduino described in Section
211.The system wa s-vibsatioetdble o mniraize interfetericeThe proposed
SCEKF algorithm was used &stimate accelerometer and orientation wittHz7updating rate.

As the calculation process skensor algorithpwe used the rotary platform with outputting the
quantitative and stable signal to observe the relative signal output. The rotary platform as shown in
Fig. 4. The first process is that fixing IMU at the center and along the rotation axis of the platform
and fixing it by valves. After the installation, setting the required rate or angle of rotation as a
reference data by the user interface; we measured the cotpesponding to the reference data.
The performance of the orientatidyefore/aftetSCEKF algrithm are presented fhig. 9(a}9(c),
respectively producel reasonable output values within thepected ranges. It is se¢hat each
component of Euleporienttion (i.e.,roll, pitch, and yaw) is within 0-1 degreeafter SCEKF
processingn thestatictest

3.2 AUVs attitude simulation and experiment

In order to construct a robust underwater vehicle fault attitude database, we simulated the
underwater vehiclenotion modelwith different situations in the water environmewhich can

provide the particular case of attitude data, such as the AUVs suffered a crash or propeller disabled.

Moreover, we built the fault simulator GUI interface for a more conveniemratpe, in other

words, the ASRS start with the fault simulator GUI interface, after inputting the required AUVs
dimensions, hydrodynamic coefficients, buoyancy center and, inertia coefficients. Next, simulator
calculates the different AUV motion data undfferent case through the Matfdbprogram as

shown in Fig. 10. The above results from simulator will combine with the experimental data as the
database for training and verification of BPN classifieast but not leasthe real AUV motion

signal is st as the testing dataset to ensure the establishment of the ASRS. The modular modeling
equation of AUVs is selected fro(®restero 2001)T he model i ng met hod of
considering the sea conditions of emission that can help us to generate the dynamic models of
AUVs quickly and conweiently. The dynamics model and kinematics model of AUVs are
established by analysis of the force working on AUVs moving underwater, based on the theorem
of the momentum of the rotation around the buoyancy center and the theorem of the motion of
mass cente The motion in @OF of the AUVs is determined. And then, the attitude data of
AUVs at any instant are determined.

Since we simulated the AUV motion in the underwater environment without considering the
influence of currents and waves, so we did the waa#er experiment in NCKU Ship Model
Towing Tank to observe the changes and effects on the AUV motion data in different wave height.
By experimenting with simulation, we can be closer to the state oé#hecean environmenthe
experiment of the AUVaffected by wave maker in NCKU Ship Model Towing Tank is illustrated
in Fig. 11.
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Fig. 11 The wave maker of the NCKU Ship Model Towing Tank

3.3 Classification results

In this paper, we focused on teanditions of AUVwhich are listedn Table 1 There are two
types of these AUV conditions. One of them is failure situation and the other is functional
condition both which include five motion status of the AUV. \d&ried out twenty times of
experimentdor capturingdataandverifying classifier. The data from ¥kperimentsvasadopted
in the training program of the recognition schertieese data werebtainedfrom the others
experimens wereused for testing theecognition performancedNote that, sine the sampling
frequency is 27.%51z, the total number of thehorttermand longtermsamplingsfor each activity
of each experiment 850 and 2200espectively which means 20 seconds per shertn window
and 80 seconds per lotgrm window. The feature extraction of this paper based on 50%
overlapping windows using 550 samples of window sizes to awd@mation loss atthe
boundary of a single windovlhe dimension of a featunreector was45 (an accelerometex 3
axes x9 features+ a gyroope x 3 axes >6 feature).Figl12. illustrates the first 2200 data of
accelerations and Eulerientatiors collected from the first experimernthe selected features of
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sensors data enabled effective recognition of the conditions and were suggestel foaifdRg
procedure A computation program adopted the input features and activatésatiueeclassifier
learning procedure with the BP algorithend outputted the results to shiatm classifier Then,

an AUV condition was disnguished by a longerm classifier which was inputted the several
outcomes from shoterm classifier to raise the accuracy of failure recognition. The number of
neurons in each hidden layer are 4, 6, arfdrthe feature classifier, shedrm clasdier, and
longterm classikr, respectively, and the number of epochgd8 for each neural trainingrhe

BPN classifier was trained on tlaining data set and tested on the test set which are from the
experiment values. The classifiwas created by neural network toolbox ATLAB ™ for
practical implementation and to validate the proposed model.

Fig. 12 The accelerations and Euler orientation of the first experiment



