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1. Introduction 

 
Rotating beams play a crucial role in representing 

complex mechanical components prevalent in vital sectors 
such as energy, e.g. wind turbine blades or large turbine 
blades, and transport industries, e.g., helicopter blades. 
Furthermore, their operational environments, particularly in 
challenging and aggressive conditions, significantly 
influence their structural integrity and, subsequently, their 
optimal performance. Consequently, they are sensitive to 
cracks that can propagate, resulting in either catastrophic 
failures or substantial maintenance expenses. It is therefore 
essential to ensure that sufficient reliability is maintained 
during operation. 

Blades with complex geometries can be effectively 
modeled using simplified approaches such as the Euler-
Bernoulli, Rayleigh, or Timoshenko beam theories. The 
main differences between these theories revolve around 
their geometric conditions and the mechanical insights they 
provide. In cases where the structural slenderness aspect is 
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significant, such as wind turbine blades, the simplified 
Euler-Bernoulli theory is fully justified (Ahmed and Rifai 
2021, Aydin 2013). During blade rotation, a centrifugal 
force emerges that varies based on the distance from the 
center of rotation. This force impacts the dynamic behavior 
in two distinct planes: the plane of rotation (referred to as 
“chordwise”) and the plane outside of it (“flapwise”). It 
leads to an increase in the natural frequency in both planes. 
Additionally, the Coriolis acceleration has an effect, 
exclusively influencing the “chordwise” vibrations (Kim et 
al. 2013). 

Understanding the dynamic behavior of beams is 
essential for their design and operational assessment. 
Regardless of the characteristics of the beam, the equation 
used for its dynamic analysis is a fourth-order differential 
equation with variable coefficients, the solution of which is 
highly complex. Various authors have addressed the 
resolution of this problem using diverse approaches. These 
include the Rayleigh or Rayleigh-Ritz method (Bath 1986), 
the finite element method (Cheng et al. 2011, Liu and Yiang 
2014, Valverde-Marcos et al. 2022), the Frobenius method 
(Lee and Lee 2017, Banerjee 2000, Banerjee et al. 2006, 
Muñoz-Abella et al. 2022a), the Galerkin method (Chen 
and Chen 1988) and the differential transform method 
(Talebi and Ariaei 2015, Özdemir and Kaya 2006). Of 
particular interest are those approaches that yield closed-
form solutions, establishing relationships between variables 
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and the dependent parameters. This capability proves 
invaluable in addressing the inverse problem. 

When a crack is present in the beam, it influences both 
flapwise and chordwise vibrations. However, more 
comprehensive studies have focused on flapwise vibrations 
(Masoud and Al-Said 2009). This emphasis is because 
flapwise vibrations are not coupled with other modes, as is 
the case with axial and chordwise vibrations (Kim et al. 
2013). 

The reduction in local stiffness caused by the crack’s 
presence impacts transverse displacements, causing them to 
increase, while also decreasing vibration frequencies. 
Consequently, two contrasting effects come into play. On 
one hand, there is heightened flexibility due to the defect, 
while on the other hand, stiffness increases due to rotational 
speed. Balancing these opposing effects can potentially 
complicate damage detection (Valverde-Marcos et al. 
2022). 

Research into cracked rotating beams dates back to the 
late 1980s. Initial investigations included works by Wauer 
(1991), who formulated the equation of motion for an 
Euler-Bernoulli beam by introducing a torsion spring to 
represent the effect of the crack’s flexibility, and Krawczuk 
(1993), who examined changes in natural frequencies 
considering a perpetually open crack in an Euler-Bernoulli 
beam using the finite element method. More recent studies 
have expanded this field. Liu et al. (2015) developed a 3D 
finite element model to explore diverse aspects of cracked 
blade behavior, Yashar et al. (2018) compared intact and 
cracked beam behavior using the Rayleigh-Ritz and finite 
element methods. Meanwhile, Yang et al. (2021a, b) 
conducted a comparative assessment of various crack 
models employed in such beams. Valverde-Marcos et al. 
(2022) utilized the finite element method to investigate how 
crack characteristics, including size and location, impact the 
natural frequencies of the element. Muñoz-Abella et al. 
(2022a) developed two closed-form expressions for low-
speed wind turbine rotations. These expressions enable the 
calculation of the first two natural frequencies of the beam 
based on all system parameters and the presence of a crack. 
However, to the authors’ knowledge, similar expressions, 
for other speed ranges, are not available in the literature. 

On the other hand, once the above expressions, 
corresponding to the direct method, are known, the inverse 
method can be tackled. The most straightforward approach 
to the inverse problem is to detect the presence or absence 
of a defect. However, the more intricate aspect, often 
referred to as identification, goes deeper into the location 
and/or characteristics of the crack. 

Since the 1980s, techniques grounded in modal 
characteristics such as eigenmodes and natural frequencies 
have gained extensive use as foundations for detecting and 
identifying cracks in the domains of civil and mechanical 
engineering. This is attributed, in part, to their capacity to 
quantify the severity and position of defects. Regarding the 
determination of position, the literature features numerous 
studies employing eigenmodes, along with their slopes and 
curvatures, to identify defects in the case of non-rotating 
beams (Nayyar et al. 2021, Yazdanpanah et al. 2015, 
Kindova-Petrova 2022). For rotating beams, there is hardly 

any work to be found. For instance, Banerjee and Pohit 
(2014) detected of size and location of open-edge transverse 
crack on a rotating beam using continuous wavelength 
transform from eigenmodes. 

The estimation of crack characteristics based on the 
knowledge of the natural vibration frequencies of the 
cracked element constitutes an inverse problem that 
numerous researchers have engaged. To address this, both 
response-based and model-based methods find application. 
Among the former, neural networks (Mohammed et al. 
2014, Muñoz-Abella et al. 2020, Bilotta et al. 2023) hold 
prominence, while within the latter category, conventional 
optimization techniques (Suh et al. 2000, Sekhar 2004, 
Rubio 2009), those rooted in the formulation of constructive 
algorithms from the vibration problem’s eigenvalues 
(Fernández-Sáez et al. 2017, Rubio et al. 2018) and genetic 
algorithms (Maity and Tripathy 2005, Muñoz-Abella et al. 
2018, Ramezani and Bahar 2021, Chen et al. 2022, Gairola 
et al. 2023) are frequently employed. 

In the context of rotating beams, Masoud et al. 2009 
proposed an identification algorithm grounded in a model of 
a cracked beam, where they analyzed the variation in lateral 
frequencies concerning rotational speed to detect crack 
location. On the other hand, Muñoz-Abella et al. (2022b) 
deployed neural networks to detect and identify cracks in 
rotating beams, particularly focusing on low rotational 
speed. 

This study presents a two-stage methodology for 
detecting the location and estimating the size of an open-
edge transverse crack in a rotating Euler-Bernoulli beam 
with a uniform cross-section. In the initial phase of the 
proposed methodology, a damage index utilizing the slope 
of the beam’s eigenmode has been employed to estimate the 
location of the crack. After detecting the presence of 
damage, the size of the crack is determined using a Genetic 
Algorithm optimization technique. 

In conclusion, the proposed methodology allows 
estimating both the position and depth of the crack based on 
modal parameters of the cracked beam, which will aid in 
developing more suitable maintenance plans. 

 
 

2. Statement of the problem 
 
2.1 Cracked Euler-Bernoulli beam model 
 
This study is focused on analyzing a cracked Euler-

Bernoulli rotating beam with the following characteristics. 
The beam under consideration is a uniform beam of length 
L with a rectangular cross-section that exhibits double 
symmetry. The cross-section has a height H and a thickness 
b. The beam rotates with a constant angular velocity Ω 
around the Z’ axis. The crack, which has a depth a, is 
located at a distance Xc from the junction point O, where 
the beam is connected to the hub. Point O serves as the 
origin of the XYZ reference frame. Fig. 1 illustrates the 
schematic diagram of the cracked beam, where R represents 
the radius of the hub attached to the beam. Additionally, it is 
only considered the transverse deflection along the Z 
coordinate (flapwise), which is represented by the displace- 
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Fig. 1 Scheme of the cracked rotating beam
 
 

displacement W (X, t), also shown in Fig. 1. 
The governing differential equation for the motion of an 

intact rotating beam, as expressed in Eq. (1), is a fourth-
order equation derived from Newton’s Second Law (Lee 
and Lee 2017, Banerjee et al. 2006). 

 𝜌𝐴 𝜕ଶ𝑊(𝑥, 𝑡)𝜕𝑡ଶ + 𝜕ଶ𝜕𝑥ଶ ቆ𝐸𝐼 𝜕ଶ𝑊(𝑥, 𝑡)𝜕𝑥ଶ ቇ − 𝜕𝜕𝑥 ൬𝑃(𝑥) 𝜕𝑊(𝑥, 𝑡)𝜕𝑥 ൰ = 0 
(1)

 
being t the time, ρ the density, E the Young’s modulus, I the 
moment of inertia of the section, and A its area. Last, P(X) 
is the centrifugal force arising in the axial direction due to 
rotation, and it can be computed using Eq. (2). 

 𝑃(𝑋) = න 𝜌𝐴𝛺ଶ(𝑋 + 𝑅)௅
௑ 𝑑𝑋 (2)

 
The conventional method of separating variables can be 

used to solve Eq. (1), so that 
 𝑊(𝑋, 𝑡) = 𝐿𝑊ഥ (𝑋)𝑒௜ఠ௧ (3)
 𝑊ഥ (𝑋)  represents the non-dimensional displacement 

(see Fig. 1) while ω denotes the vibration natural frequency. 
Eq. (1) is transformed into Eq. (5) using the dimensionless 
variables from Eq. (4). 

 𝜉 = 𝑋𝐿 ;      𝑟 = 𝑅𝐿 ;      𝛼 = 𝑎𝐻 ; 
𝜇 = ඨ𝜌𝐴𝐿ସ𝐸𝐼  𝜔;      𝑀 = ඨ𝜌𝐴𝐿ସ𝐸𝐼  Ω 

(4)

 𝑑ସ𝑊ഥ (𝜉)𝑑𝜉ସ − 𝑀ଶ 𝑑𝑑𝜉 ൭ቆ𝑟(1 − 𝜉) + 12 (1 − 𝜉ଶ)ቇ 𝑑𝑊ഥ (𝜉)𝑑𝜉 ൱−𝜇ଶ𝜔 = 0 
(5)

 
In the presence of a crack, the governing Eq. (5) is 

divided into two separate equations, as can be seen in Eq. 
(6), each corresponding to one side of the crack. These 
equations are connected by a massless rotational spring, 
where the stiffness K, according to Chondros et al. (1998), 

represents the inverse of the flexibility introduced by the 
damage, which is given by Eq. (7). 

 𝑑ସ𝑊௃തതതത(𝜉)𝑑𝜉ସ − 𝑀ଶ 𝑑𝑑𝜉 ൭ቆ𝑟(1 − 𝜉) + 12 (1 − 𝜉ଶ)ቇ 𝑑𝑊௃തതതത(𝜉)𝑑𝜉 ൱− 𝜇ଶ𝜔 = 0 J = 1     0 ≤ 𝜉 ≤ 𝜉஼ J = 2     𝜉஼ ≤ 𝜉 ≤ 1 being 𝜉஼ = 𝑋஼𝐿  

(6)

 1𝐾 = 6𝜋(1 − 𝜈ଶ)𝐻𝐸𝐼 (0.6272𝛼ଶ − 0.04533𝛼ଷ+ 4.5948𝛼ସ − 9.973𝛼ହ + 20.2984𝛼଺− 33.031𝛼଻ + 47.1063𝛼଼− 40.7556𝛼ଽ + 19.6𝛼ଵ଴) 

(7)

 
where υ is the material Poisson’s ratio. 

To solve the aforementioned differential equations, it is 
necessary to establish four boundary conditions, two for 
each end of the beam (Eq. (8)) and four compatibility 
conditions associated with the cracked section (Eq. (9)). 

The boundary conditions (Eq. (8)) are those correspond 
to those of a cantilever beam. The base of the beam (ξ = 0) 
undergoes neither deflection nor rotation, while at the free 
end (ξ = 1) it is assumed that there is neither bending 
moment nor shear force. On the other hand, the 
compatibility conditions (Eq. (9)) model transverse 
deflection continuity, slope discontinuity, bending moment 
continuity and shear force continuity. 

 𝑊ଵതതതത(0) = 0 𝑑𝑊ଵതതതത(0)𝑑𝜉 = 0 𝑑ଶ𝑊ଶതതതത(1)𝑑𝜉ଶ = 0  𝑑ଷ𝑊ଶതതതത(1)𝑑𝜉ଷ = 0 
(8)

 𝑊ଵതതതത(𝜉௖) = 𝑊ଶതതതത(𝜉௖) 𝑑𝑊ଶതതതത(𝜉௖)𝑑𝜉 − 𝑑𝑊ଵതതതത(𝜉௖)𝑑𝜉 = 𝐸𝐼𝐾 𝑑ଶ𝑊ଶതതതത(𝜉௖)𝑑𝜉ଶ  𝑑ଶ𝑊ଵതതതത(𝜉௖)𝑑𝜉ଶ = 𝑑ଶ𝑊ଶതതതത(𝜉௖)𝑑𝜉ଶ  𝑑ଷ𝑊ଵതതതത(𝜉௖)𝑑𝜉ଷ = 𝑑ଷ𝑊ଶതതതത(𝜉௖)𝑑𝜉ଷ  

(9)

 
2.2 Solution of the cracked beam equation of 

motion 
  
The equation of motion has been solved utilizing the 

Frobenius series method, which allows the representation of 
the solution as a power series. This method enables the 
expression of the solution of the differential equation in the 
form depicted by Eq. (10). 

 𝑓(𝜉, 𝑗) = ෍ 𝑎௡ାଵ(𝑗)ஶ
௡ୀ଴ ⋅ 𝜉௝ା௡ (10)

 
The series coefficients are denoted as 𝑎௡ାଵ(𝑗), while j is 

an indeterminate exponent. The function 𝑓(𝜉, 𝑗) represents 

167



 
Belén Muñoz-Abella, Lourdes Rubio and Patricia Rubio 

both 𝑊ଵതതതത and 𝑊ଶതതതത , as they are initially identical before 
applying the boundary conditions. 

By substituting Eq. (10) into Eq. (6), indicial equation 
and the recurrence relationship can be obtained (Banerjee 
2000 and Muñoz-Abella et al. 2022a). From them, the 
solutions of the equations, 𝐹ଵ(𝜉)  and 𝐹ଶ(𝜉)  , are 
calculated as a linear combination of 𝑓(𝜉, 0), 𝑓(𝜉, 1), 𝑓(𝜉, 2) and 𝑓(𝜉, 3). Taking into account that 𝑓(𝜉, 𝑗) 
represents both 𝑊ଵതതതത and 𝑊ଶതതതത,  the solutions can be written 
according Eq. (11). 

 𝐹ଵ(𝜉) = 𝐶ଵ𝑊ଵതതതത(𝜉, 0) + 𝐶ଶ𝑊ଵതതതത(𝜉, 1)                +𝐶ଷ𝑊ଵതതതത(𝜉, 2) + 𝐶ସ𝑊ଵതതതത(𝜉, 2) 0 ≤ 𝜉 ≤ 𝜉஼  𝐹ଶ(𝜉) = 𝐶ହ𝑊ଶതതതത(𝜉, 0) + 𝐶଺𝑊ଶതതതത(𝜉, 1)                +𝐶଻𝑊ଶതതതത(𝜉, 2) + 𝐶଼𝑊ଶതതതത(𝜉, 2) 𝜉஼ ≤ 𝜉 ≤ 1 

(11)

 
It should be noted that the constants C1 to C8 can be 

computed based on the boundary and compatibility 
conditions, Eqs. (8) and (9), respectively. 

 
 

3. Calculation of modal parameters 
 
After presenting the methodology for solving the 

differential equation in the previous section, the next step 
involves investigating the changes in modal parameters. 
Specifically, the behavior of the first two natural 
frequencies and their corresponding eigenmodes for a given 
beam and rotational speed are examined. The parameters 
analyzed are different properties of the beam and the crack, 
including its location and size. 

In this study, a slender beam composed of steel with the 
following material properties has been considered: modulus 
of elasticity E = 210 GPa, Poisson’s ratio ν = 0.33, and 
density ρ = 7850 kg/m³. 

Moreover, the following parameter values have been 
considered: 

• Slenderness ratio of the beam, SL = 70, 120, 170, and 
220, calculated by Eq. (12). 

 𝑆௅ = ඨ𝐴𝐿ଶ𝐼  (12)

 
• Dimensionless hub radius: r = 0, 0.1, 0.2 and 0.3. 
• Dimensionless crack location: ξc = 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6 0.7, 0.8, and 0.9. 
• Dimensionless crack depth: α = 0, 0.1, 0.2, 0.3, 0.4 

and 0.5. 
• Constant rotation speed: Ω = 0, 50, 100, 150, 200, 

250 and 300 rad/s. 
 
Through a convergence analysis, it has been determined 

that, under the specified operating conditions, the optimal 
number of terms for the Frobenius series is N = 35. The 
combination of these parameters has enabled the calculation 
of 5040 cases, which will be utilized in the development of 
the crack detection and identification method, the main 
objective of this study. To gain a deeper understanding of 

5.

Fig. 2 Eigenmode 1 for ξc = 0.4, SL = 120, r = 0.2, Ω = 200 
rad/s, for both the non-rotating and rotating intact 
beams and for all the crack depths studied

 
 

Fig. 3 Eigenmode 2 for ξc = 0.4, SL = 120, r = 0.2, Ω = 200 
rad/s, for both the non-rotating and rotating intact 
beams and all the crack depths studied 

 
 

the obtained results for the studied cases, selected examples 
are presented below, providing a more detailed insight into 
their behavior. 

 
3.1 Eigenmodes 
 
Figs. 2 and 3 illustrate the dimensionless eigenmodes 

corresponding to the first and second natural frequencies, 
respectively, for the cases with ξc = 0.4, SL = 120, r = 0.2, Ω 
= 200 rad/s, and the five considered crack depths. The 
figures also include the eigenmodes of a comparable intact 
non-rotating beam. It should be noted that for the remaining 
positions analyzed, the graphical representations exhibit a 
similar pattern. 

For the two eigenmodes shown, a subtle disparity can be 
observed in the plot of the defective section (ξc = 0.4), 
depending on the location and depth of the crack. To 
facilitate a more convenient comparison between the 
curves, a close-up view of this specific region is also 
presented in each case. However, despite the differences 
observed among the above curves as a function of crack 
depth, these graphs do not provide accurate information for 
precise estimation of the position and size of the defect. 
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Fig. 4 Variation of µ₁ concerning position and crack 

size for the specific case of SL = 120, r = 0.2, 
and Ω = 200 rad/s 

 
 

 

 

Fig. 5 Variation of µ2 concerning position and crack 
size for the specific case of SL = 120, r = 0.2, 
and Ω = 200 rad/s 

 
 

 

 

3.2 Natural frequencies 
 
In addition, the first two natural frequencies of the 5040 studied cases have been computed. In Figs. 4 and 5, the values of

μ₁ and μ₂ (dimensionless natural frequencies) are presented, encompassing all the values of α and ξc that were considered,
while maintaining average values for the remaining parameters: SL = 120, r = 0.2, and Ω = 200 rad/s. It is worth noting that
the general shape of the graphs remains consistent for the remaining values of slenderness, hub radius, and rotation speed. 

Regarding the first natural frequency, as depicted in Fig. 4, it is observed that the frequency decreases with an increase in
crack size, as expected. Furthermore, the impact of the crack becomes less significant as its distance from the hub increases.

Similarly, for the second natural frequency, as shown in Fig. 5, a decrease in value is observed as the crack size increases.
Regarding the influence of the crack location, it is noted that for ξc = 0.5, the minimum frequency value is obtained for all
crack sizes. On the contrary, for ξc = 0.2, the frequency remains unaffected by the severity of the defect. 

In summary, it can be said that natural frequencies serve as potential parameters for the detection and identification of
cracks in rotating beams. However, it is important to note that their effectiveness is highly dependent on their location, as
certain positions may not show any perceptible variation in the natural frequencies concerning the size of the defect.
 
 
4. Closed-form solutions for the natural frequencies 

 
From the 5040 computed cases, two piecewise closed-form solutions, µ1 and µ2, respectively, have been derived to

calculate the natural frequencies values. They depend on the following dimensionless parameters: angular velocity, hub
radius, beam slenderness, crack location, and depth, according to Eqs. (13) and (14). These expressions will play a crucial
role in subsequent sections as they will be used to apply the Genetic Algorithm optimization method for crack identification
purposes. µଵ = µଵ(𝑀, 𝑟, 𝑆௅, 𝜉௖, 𝛼) 

𝜇ଵ =

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎧෍ ෍ ෍ ෍ ෍ 𝐺௜௝௞௟௠ଵଵ ∙ 𝑀௜ ∙ 𝑟௝ ∙ 𝑆௅௞ ∙ 𝜉௖௟ ∙ 𝛼௠  ;   0.1 ≤ 𝜉௖ < 0.2ଶ

௠ୀ଴
ଵ

௟ୀ଴
ଶ

௞ୀ଴
ଵ

௝ୀ଴
ଷ

௜ୀ଴෍ ෍ ෍ ෍ ෍ 𝐺௜௝௞௟௠ଵଶ ∙ 𝑀௜ ∙ 𝑟௝ ∙ 𝑆௅௞ ∙ 𝜉௖௟ ∙ 𝛼௠  ;   0.2 ≤ 𝜉௖ < 0.3ଶ
௠ୀ଴

ଵ
௟ୀ଴

ଶ
௞ୀ଴

ଵ
௝ୀ଴

ଷ
௜ୀ଴෍ ෍ ෍ ෍ ෍ 𝐺௜௝௞௟௠ଵଷ ∙ 𝑀௜ ∙ 𝑟௝ ∙ 𝑆௅௞ ∙ 𝜉௖௟ ∙ 𝛼௠  ;   0.3 ≤ 𝜉௖ < 0.4ଶ

௠ୀ଴
ଵ

௟ୀ଴
ଶ

௞ୀ଴
ଵ

௝ୀ଴
ଷ

௜ୀ଴෍ ෍ ෍ ෍ ෍ 𝐺௜௝௞௟௠ଵସ ∙ 𝑀௜ ∙ 𝑟௝ ∙ 𝑆௅௞ ∙ 𝜉௖௟ ∙ 𝛼௠  ;   0.4 ≤ 𝜉௖ < 0.5ଶ
௠ୀ଴

ଵ
௟ୀ଴

ଶ
௞ୀ଴

ଵ
௝ୀ଴

ଷ
௜ୀ଴෍ ෍ ෍ ෍ ෍ 𝐺௜௝௞௟௠ଵହ ∙ 𝑀௜ ∙ 𝑟௝ ∙ 𝑆௅௞ ∙ 𝜉௖௟ ∙ 𝛼௠  ;   0.5 ≤ 𝜉௖ < 0.6ଶ

௠ୀ଴
ଵ

௟ୀ଴
ଶ

௞ୀ଴
ଵ

௝ୀ଴
ଷ

௜ୀ଴෍ ෍ ෍ ෍ ෍ 𝐺௜௝௞௟௠ଵ଺ ∙ 𝑀௜ ∙ 𝑟௝ ∙ 𝑆௅௞ ∙ 𝜉௖௟ ∙ 𝛼௠  ;   0.6 ≤ 𝜉௖ < 0.7ଶ
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Fig. 6 Residual plot for the μ₁ fitting 
 
 
As can be seen in Eqs. (13) and (14), the functions µ1 

and µ2 have been fitted piecewise using polynomial 
expressions through multiple regression techniques. The 
degrees of the polynomials are represented by i, j, k, l and 
m, corresponding to M, r, SL, ξc, and α, respectively. 
Additionally, the coefficients of the fits, denoted as 𝐺௜௝௞௟௠ଵ∗  
and 𝐺௜௝௞௟௠ଶ∗ , with * ranging from 1 to 8, can be found in a 
public repository (Muñoz-Abella et al. 2023). 

Figs. 6 and 7 depict the residual plots for the variables 
μ₁ and μ₂, respectively, which were computed using Eq. 
(15). 

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝜇∗∗) = 𝜇∗∗௔௖௧௨௔௟ − 𝜇∗∗௣௥௘ௗ௜௖௧௘ௗ ℎ𝑒𝑟𝑒 ∗∗ = 1,2 
(15)

 
As can be seen, for μ1, the absolute value of the 

residuals is below 0.03, while for μ2, it is below 0.08. 
Furthermore, to assess the quality of the fit, the mean square 
error (MSE), according to Eq. (16), and the coefficient R2 
have been employed. In Table 1, the calculated parameters 
are shown. 

 
 

Fig. 7 Residual plot for the μ2 fitting
 
 

Table 1 MSE and R2 of the natural frequencies fitting 

 μ₁ μ2 
MSE 2.12·10-6 4.92·10-7 

R2 0.999 0.999 
 
 
Based on the obtained values, it can be concluded that 

the derived closed-form expressions are valid for estimating 
the first two natural frequencies as a function of the angular 
velocity, hub radius, beam slenderness, crack location, and 
depth. 𝑀𝑆𝐸 = 15040 ෍ ൫µ∗∗௔௖௧௨௔௟ − µ∗∗௣௥௘ௗ௜௖௧௘ௗ൯ଶହ଴ସ଴

௜ୀଵ  (16)

 
 

5. Two-stage crack identification 
 
In the previous sections, the direct problem has been 

addressed, which involves calculating the values of the 
natural frequencies based on the system and crack 
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Fig. 8 Flow chart of the proposed two-stage identification 
methodology 

 
 

parameters. The next step, explained in the current section, 
is to approach the inverse problem, which consists of a two-
stage identification method. First, the location of the crack 
is estimated, and then its size is determined. Fig. 8 shows a 
flow chart of the proposed two-stage identification 
methodology. 

 
5.1 Step one. Estimation of the crack position 
 
In the literature, various methods based on the analysis 

of eigenmodes and their derivatives can be found for 
locating defects in structures and mechanical components. 
In this study, the “Mode shape slope difference” (MSSD), 
method proposed by Kindova-Petrova (2022) for non-
rotating beams has been chosen due to its simplicity and the 
fact that it does not require the eigenmodes of an intact 
beam as a reference. The MSSD is calculated using Eq. (17) 
to Eq. (20). The positions of cracks are located identifying 
the points with the maximum values of MSSD. 

 𝑀𝑆𝑆𝐷(𝑘) = |Δ(Φ௞)′|𝑚𝑎𝑥หΔ(Φ௞ୀଵ,   ,௡)′ห (17)

 Δ(Φ௞)ᇱ = ൫Φ௞,௣ଵ൯ᇱ − ൫Φ௞,௣ଶ൯ᇱ (18)
 ൫Φ௞,௣ଵ൯ᇱ = −3Φ௞ + 4Φ௞ାଵ − Φ௞ାଶ2ℎ௠  (19)

 ൫Φ௞,௣ଶ൯ᇱ = Φ௞ିଶ − 4Φ௞ିଵ + 3Φ௞2ℎ௠  (20)

 
In the proposed method, the MSSD parameter is 

calculated by comparing the slopes of the eigenmodes at 
different points. The eigenmode is represented by the 
symbol Φ, and k denotes each of the points ξ used to 
calculate the eigenmode. The parameter hm represents the 
distance between two consecutive k points. To facilitate 
comprehension, Fig. 9 shows the schematic of a first 
eigenmode, in which these parameters are noted. The 
scheme is also applicable to the second eigenmode. 

The MSSD parameter quantifies the difference between 

Fig. 9 Schematic of a first eigenmode
 
 

Fig. 10 MSSD for SL = 120, r = 0.2, and Ω = 200 rad/s, 
with crack positions ξc = 0.2, 0.5 and 0.9

 
 
 

the slopes of the eigenmodes calculated using two 
numerical approximation formulas. Specifically, Eq. (19) 
employs the prior approximation “p1”, while Eq. (20) 
utilizes the posterior approximation “p2”. By evaluating the 
MSSD, one can identify the position of a potential crack by 
locating the points with maximum deviations in the slopes 
of the eigenmodes. 

As an illustrative example, Fig. 10 displays the MSSD 
parameter calculated from the first eigenmode, using 100 
points. This is shown for the cases where SL = 120, r = 0.2, 
and Ω = 200 rad/s, with crack positions ξc = 0.2, 0.5, and 
0.9. These positions were chosen as they represent the most 
challenging cases to detect based on the values of the 
natural frequencies (see Figs. 4-5). 

It is important to note that since the MSSD parameter is 
dimensionless, the obtained graphs for the same crack 
position are identical regardless of the beam’s slenderness, 
crack size, hub radius, and angular velocity. Additionally, 
the MSSD graphs remain the same regardless of the specific 
eigenmode used to calculate them. 

Upon using 100 points to calculate the eigenmodes, it is 
observed that at ξc = 0.2, the estimated position is ξc,est = 
0.19. For ξc = 0.5, the estimated location corresponds to 
ξc,est = 0.5, and at ξc = 0.9, the estimated position is ξc,est = 
0.9. In conclusion, using 100 points, the maximum error is 
found to be less than 5%. 

Therefore, the MSSD parameter can be considered a 
reliable indicator to determine the presence and position of 
a crack, if any, where the accuracy of crack location 
depends primarily on the number of data points used to 
characterize the beam’s eigenmode. 
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Table 2 GA parameters 

Parameter Value 
Population size 50 

Crossover function Scattered 
Crossover fraction 0.8 

Elite count 3 
Scaling function Rank 

Selection function Stochastic uniform 
Mutation function Adaptive feasible 

Mutation probability 0.01 
 

 
 
5.2 Step two. Estimation of the crack size 
 
After estimating the position of the crack, the 

subsequent step is to determine its depth. In the proposed 
methodology, the crack identification problem is addressed 
using the Genetic Algorithm optimization technique (GA). 

As widely known, GAs are general-purpose 
optimization algorithms inspired by Darwin’s theory of 
evolution and natural selection. They explore a solution 
space to find the optimal solution for a given problem. 

In a GA, potential solutions are encoded as 
chromosomes. The algorithm begins by creating an initial 
population of potential solutions and iteratively evolves 
them over multiple generations to find improved solutions. 
Each individual in the population is evaluated based on a 
fitness value, which is derived from the objective function 
of the problem. In each generation, new individuals are 
created through a selection process that favors the better-
adapted individuals from the previous generation. This 
process emulates the principle of “survival of the fittest” 
observed in the natural world. 

The proposed GA is developed under the MATLAB 
environment (Matlab 2023), with which the fitness 
function, f, as can be seen in Eq. (21), should be minimized. 

 

 
 

Where 𝜇ଵ௖  and 𝜇ଶ௖  are the first and second, 
respectively, dimensionless natural frequencies, calculated 
using Eqs. (13) and (14), and 𝜇ଵ௠  and 𝜇ଶ௠  are the 
measured values in a real system of the same variables.  
The parameters of the developed GA are shown in Table 2. 

 
 

6. Numerical experiments 
 
6.1 Comparison with data used to calculate 

the closed-form expressions 
 
To illustrate the two-stage crack identification 

procedure, several numerical experiments have been 
conducted. In the initial set of experiments, ten cases have 
randomly been selected from the data set of 5040 computed 
cases used to calculate the closed-form expressions. The 
properties of the chosen cases and the obtained results can 
be found in Table 3. In all cases, to ensure consistent 
results, each case has been executed five times over 50 
generations. It can be observed the estimated values for the 
position (ξcestimated) and depth (αestimated), calculated as the 
average of the results from the five runs. Additionally, it can 
be found the differences between actual and estimated 
values for both variables. 

As can be seen in Table 3, the differences in crack 
dimensionless location estimation are consistently below 
0.01. Naturally, the precision of crack location detection is 
mainly contingent on the number of data points (k) used to 
characterize the beam’s eigenmode. A greater number of 
data points leads to a narrower margin between the actual 
and estimated values. Regarding the dimensionless size 
estimation, the differences remain below 0.02. 

 
6.2 Comparison with data different from those 

used to calculate the closed-form expressions 
 
Secondly, the same procedure in the previous paragraph 

has been applied to ten random different cases from those 
 

 
 

 
 

𝑖𝑓 𝜉௖ ≤ 0.3 𝑓 = 0.75 ∗ (𝜇ଵ௖ − 𝜇ଵ௔)ଶ + 0.25 ∗ (𝜇ଶ௖ − 𝜇ଶ௔)ଶ𝑖𝑓  0.3 ≤ 𝜉௖ < 0.8 𝑓 = 0.25 ∗ (𝜇ଵ௖ − 𝜇ଵ௔)ଶ + 0.75 ∗ (𝜇ଶ௖ − 𝜇ଶ௔)ଶ𝑖𝑓  0.8 ≤ 𝜉௖ 𝑓 = 0.15 ∗ (𝜇ଵ௖ − 𝜇ଵ௔)ଶ + 0.85 ∗ (𝜇ଶ௖ − 𝜇ଶ௔)ଶ 
(21)

Table 3 Numerical experiment for 10 random cases from data used for developing the closed-form 
expressions 

Case Ω (rad/s) SL r ξc actual ξc estimated ξc actual- ξc estimated αactual αestimated αactual- αestimated

1a 150 120 0.2 0.7 0.707 -0.007 0.4 0.393 0.007 
2a 150 120 0 0.5 0.505 -0.005 0.5 0.498 0.002 
3a 50 70 0 0.2 0.192 0.008 0.4 0.382 0.018 
4a 200 70 0 0.2 0.192 0.008 0.2 0.194 0.006 
5a 50 120 0.3 0.7 0.697 0.003 0.3 0.291 0.009 
6a 300 220 0.2 0.8 0.798 0.002 0.4 0.381 0.019 
7a 100 220 0.3 0.8 0.798 0.002 0.3 0.297 0.003 
8a 50 70 0.1 0.9 0.899 0.001 0.5 0.488 0.012 
9a 250 70 0.1 0.9 0.899 0.001 0.3 0.288 0.012 

10a 300 70 0 0.3 0.303 -0.003 0.1 0.111 -0.011 
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used to determine the closed-form expressions. Those cases 
and their results can be seen in Table 4. 

According to the values shown in Table 4, both, for the 
estimation of the position and the depth of the crack, the 
differences found in Table 4 are slightly larger than those 
calculated for the data shown in Table 3, but in neither of 
the two variables they exceed 0.025. 

 
6.3 Robustness of the proposed methodology 
 
The ultimate goal of this methodology is its application 

to real-world systems. To simulate real measurements of a 
rotating beam, sensitivity to errors has been examined. To 
achieve this, Gaussian random noise has been generated and 
incorporated into the responses of the beam model, 
specifically affecting the µ1 and µ2 inputs. Noise levels of 
5% relative to their respective values have been introduced 
for analysis. 

On the other hand, it is necessary to emphasize that the 
crack position is obtained in the first stage of the 
methodology and serves as an input for the second phase 
(GA), and its accuracy mainly depends on the number of 
points used to calculate the eigenmodes. For that reason, a 
5% Gaussian noise has also been introduced to this variable 
to subsequently estimate the crack depth, α. 

The sensitivity analysis has been calculated for five 
cases from the previous section. Table 5 shows the obtained 
differences between actual and estimated values in this 
analysis for the crack size. 

As shown in Table 5, the differences between the actual 
and estimated dimensionless crack depths do not exceed 
0.07 in the examined cases. Although it’s true that in the 

 
 

 
 

most challenging scenarios, the differences are notably 
higher compared to previous estimations without additional 
error, it can still be considered satisfactory for real-world 
applications, allowing for the establishment of more reliable 
maintenance plans, which constitutes the ultimate goal of 
this study. 

 
 

7. Conclusions 
 
This work presents a two-stage methodology that allows 

estimating the position and size of a crack in a uniformly 
sectioned rotating Euler-Bernoulli beam turning with a 
constant angular speed. In the first step, based on the 
formulation and solution, using the Frobenius method, of 
the equation governing the motion of the beam, two 
piecewise closed-form expressions have been developed. 
These expressions enable the calculation of the first two 
natural frequencies of the system as functions of angular 
velocity, hub radius, beam slenderness, and position and 
depth of the defect. It has been found that the fitting results 
of these expressions closely align with the original results 
obtained through the solution of the motion equation. These 
expressions offer the advantage of computing the modal 
parameters of the beam, based on its characteristics and the 
crack properties, without the need to solve the governing 
differential equation, employing a faster and simpler 
procedure. Additionally, they serve as the foundation for the 
presented two-stage methodology. 

Based on the developed closed-form expressions, the 
methodology first allows estimating the crack position 
through the MSSD parameter. This parameter depends on 

Table 4 Numerical experiment for 10 random cases from data different from those used for 
developing the closed-form expressions 

Case Ω (rad/s) SL r ξc actual ξc estimated ξc actual- ξc estimated αactual αestimated αactual- αestimated

1b 297 156 0.045 0.65 0.646 0.004 0.35 0.344 0.006 
2b 154 92 0.26 0.74 0.737 0.003 0.17 0.178 -0.008 
3b 101 200 0.29 0.33 0.313 0.017 0.42 0.445 -0.025 
4b 142 135 0.14 0.27 0.263 0.007 0.31 0.313 -0.003 
5b 62 82 0.06 0.48 0.475 0.005 0.44 0.437 0.003 
6b 212 95 0.18 0.55 0.545 0.005 0.27 0.267 0.003 
7b 85 166 0.28 0.17 0.171 -0.001 0.12 0.123 -0.003 
8b 292 128 0.18 0.38 0.384 -0.004 0.25 0.246 0.004 
9b 182 95 0.23 0.77 0.767 0.003 0.32 0.298 0.022 

10b 115 210 0.12 0.58 0.585 -0.005 0.04 0.050 -0.01 
 

Table 5 α differences obtained from the sensitivity analysis 
Case Ω (rad/s) SL r ξcactual αactual αestimated αactual- αestimated 

1b 297 156 0.045 0.65 0.35 0.38 -0.03 
2b 154 92 0.26 0.74 0.17 0.11 0.06 
3b 101 200 0.29 0.33 0.42 0.49 -0.07 
4b 142 135 0.14 0.27 0.31 0.24 0.07 
5b 62 82 0.06 0.48 0.44 0.39 0.05 
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the slope of any of the beam’s eigenmodes, and it is 
independent of angular velocity and crack depth. 
Subsequently, by applying the methodology, the crack size 
can be calculated using GA techniques. The following 
conclusions can be drawn from the obtained results: 

 
● The accuracy of the crack position estimation 

depends primarily on the points chosen to calculate 
the beam’s eigenmodes. 

● The GA results are very good for the values used in 
the development of the closed-form expressions and 
slightly less accurate, but still acceptable, for values 
not used in their development. 

● To simulate a real system, the methodology has been 
tested with input values to which a 5% Gaussian 
error has been applied. It has been found that 
although the differences are higher than in 
theoretical previous cases, they are sufficiently small 
to consider the methodology applicable to real 
systems to achieve appropriate maintenance plans. 

 
In summary, this work presents a two-stage 

methodology for identifying cracks in Euler-Bernoulli 
rotating beams. It enables the estimation of both the 
position and depth of the crack by utilizing modal 
parameters of the cracked beam in conjunction with genetic 
algorithm techniques. Implementing this approach in real-
world systems will be instrumental in devising more 
effective maintenance plans. 
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