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1. Introduction

Reinforced soil retaining walls (RSWs) have commonly
been used worldwide because of their advantages such as 
cost-effectiveness, easy installation, and versatile design. 
Most regular safety checks of RSWs are performed 
periodically through on-site visual inspection. However, it 
is difficult to predict and prevent the collapse of the RSW 
using these periodic field surveys. Various measuring 
sensors, such as laser displacement transducer, strain gauges 
and earth pressure gauges, were normally installed in the 
blocks and backfill areas of the RSW to monitor the 
behavior of RSW (Ling et al. 2004, 2009, Weidong et al. 
2020). However, these devices only provide local 
measurement results around the measuring device. 
Therefore, a lot of sensors must be installed to obtain the 
record for the entire area, which results in high maintenance 
costs. Recently, in the field of structural health monitoring, 
various techniques have been developed to measure the 
displacements and evaluate the stability of the structure. A 
laser scanner was used to extract geometric characteristics 
and calculate displacements (Oskouie et al. 2016). Total 
station and laser scanners were applied to measure various 
monitoring targets (Lienhart 2017). A mobile LiDAR 
mapping system was proposed to monitor the stability of 
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RSW using point clouds (Aldosari et al. 2020). Remote 
sensing devices, such as LiDAR and laser scanners, have 
the advantage of being able to perform overall maintenance 
through point clouds and three-dimensional (3-D) 
coordinates. However, owing to the high cost of equipment 
and a high level of understanding of the remote sensing 
devices, it is difficult to use them widely in various fields. 

Vision-based technology has advantages because of its 
low price and high usability. In particular, vision-based 
technologies have the advantage of not only evaluating 
stability through quantitative analysis but also visually 
monitoring a site without on-site visits. Various studies have 
been conducted to measure the behavior of bridges, soil nail 
walls, retaining walls, and slopes based on 3-D coordinates 
with images taken from two or more points of view (Jiang 
and Jauregui 2010, Esmaeili et al. 2013, Oats et al. 2017, 
Zhao et al. 2018). However, since a stereo camera system 
requires two or more multiple views, two or more cameras 
must be installed or one camera must be taken from 
multiple locations. In general, the installation of two or 
more cameras to monitor one object is not cost effective. 
Also, when one camera is continuously moved and taken 
from multiple views, continuous analysis is inefficient 
because of its additional work. By contrast, the monocular 
vision takes images and measures displacements from a 
fixed camera, and this enables continuous measurement. 
The monocular vision-based monitoring technology 
contributes to reducing the costs of installation and 
operation of cameras. Existing cameras such as CCTV, 
which are widely installed, have the advantage for real-time 
safety inspections without additional installation. Several 
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studies based on monocular vision have been conducted in 
various areas. In-plane dynamic displacements were 
analyzed for flexible bridges, masonry specimens, two-story 
steel frames, and buildings, and the performance of the 
vision sensor was evaluated (Pan et al. 2016, Lee and 
Shinozuka 2006, Choi et al. 2011, Fukuda et al. 2013, Feng 
et al. 2015, Liu et al. 2021, Wang et al. 2021). However, 
these studies on in-plane displacement have a limitation 
which is difficult to effectively describe the conditions of 
structure. In cases where the RSW moves forward (out of a 
plane), they cannot measure the facing displacement of 
RSW. These vision-based studies only measured the 
horizontal and vertical displacements within a plane 
perpendicular to the camera. 

In addition, an artificial target (AT) had to be installed to 
the region of interest (ROI) to track the target on the 
structure (Jiang and Jauregui 2010, Esmaeili et al. 2013, 
Lee and Shinozuka 2006, Choi et al. 2011, Feng et al. 
2015). However, the AT is not only heterogeneous to the 
structure, but also it obscures the condition of the structure 
behind the AT. Therefore, several researches were carried 
out to measure displacements of structure using a natural 
target (NT). For example, a specific area such as bolts or 
nuts in the bridge surface (Pan et al. 2016, Fukuda et al. 
2013) and edge of the structure (Choi et al. 2016, Wang et 
al. 2021) is considered as a kind of NT. Choi et al. (2016), 
Wang et al. (2021) obtained the displacement by 
considering the edge of structure as NT. However, these 
studies used strong references as NTs in order to obtain high 
performances of detection and matching. In contrast, in 
RSW, where the simple shape of a block is repeated and 
stacked, the features of each individual block should be 
quantitively evaluated to be used as NT. 

The behavior of RSW is caused by the surface load and 
lateral pressure from the backfill. Various studies have been 
conducted to determine the general behavior and collapse 
mechanisms of RSWs. Many researchers have analyzed 
facing displacement and settlement to figure out the 
collapse mechanism and the stability of RSWs (Rowe and 
Skinner 2001, Yoo and Jung 2004, Yoo and Jung 2006, 
Portelinha et al. 2014, Rahardjo et al. 2020, Shinde and 
Mandal 2007, Bathurst and Benjamin 1990, Benjamim et 
al. 2007, Panah et al. 2015, Koseki and Hayano 2000, 
Leonards et al. 1994). Koerner and Koerner (2018) 
analyzed the collapse mechanisms of retaining walls from 
320 collapse accidents worldwide. The collapse usually 
occurred due to facing displacement and settlement caused 
by the surface load, water pressure, and earth pressure 
owing to the continuous structural shape of the retaining 
wall. Therefore, detection and calculation of the facing 
displacement and settlement for an RSW is most important 
and necessary to monitor the stability of the RSW. 
Therefore, in this study, a targetless displacement 
measurement technology (TDMT) was proposed with an 
image registration module that detects pixel changes of the 
RSW block in an image pair and a displacement calculation 
module that calculates the displacements from the pixel 
changes. Laboratory and field experiments were conducted 
to validate the TDMT for the behavior of RSW. The 
proposed TDMT aims to evaluate monocular vision and 

feature matching to analyze the facing displacements and 
settlements of the RSW blocks using the performance 
evaluation process through laboratory and field 
experiments. The goals of this study are as follows: (1) to 
evaluate whether an RSW block can be used as an NT; (2) 
to figure out which performance metrics for feature 
matching are more suitable for displacement calculation; 
and (3) to evaluate the performance of TDMT for RSW 
blocks at the laboratory and field scales. 

 
 

2. Targetless displacement measurement 
technology (TDMT) of RSW 
 
The TDMT includes technologies that detect and match 

the feature of ROI in an image pair, and calculate the 
behavior of an RSW based on the pixel change of the target. 
The terminology ‘targetless’ means that arbitrary RSW 
blocks are considered as NTs, without artificial target on 
RSW blocks. Fig. 1 shows the flowchart of the proposed 
TDMT consisting of an image registration module and 
displacement calculation module. In the image registration 
module, feature detection was performed to determine the 
distribution of features in the ROI sections of the two 
images before and after the behavior. These detected 
features of NTs were adapted to match the image pairs. 
Then the transformation matrix was estimated from the 
inlier matching features, and the exact pixel coordinate of 
each NT before and after behavior was figured out. In the 
displacement calculation module, the pixel changes before 
and after the behavior were obtained from the changes of 
pixel coordinates to calculate the displacements using the 
displacement calculation algorithm. 

 
 
 
 
 

 
Fig. 1 Flowchart of the proposed TDMT 
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2.1 Image match ng 
 
Image-matching methods can be divided into two types: 

area-based and feature-based. The area-based matching 
method is typically used for cross-correlation (Avants et al. 
2008), image correlation (Pan et al. 2009), normalized 
correlation coefficients (Luo and Konofagou 2010), and 
convolutional neural networks (Haskins et al. 2019, 
Simonovsky et al. 2016). However, the target in the image 
is sometimes covered with small overlapping areas or has 
large deformations, which are significantly difficult to 
optimize in similarity measurements. Therefore, the feature-
based matching method is widely used in the image-
matching community. Since an image can be represented 
with spare features, the feature-based matching method is 
more flexible and robust for matching images with 
geometric deformation and noise (Jiang et al. 2021). 
Several studies were conducted to determine the optimal 
feature-matching technique for various types of targets and 
transformations (Tareen and Saleem 2018, Pieropan et al. 
2016, Mikolajczyk and Schmid 2005, Chien et al. 2016, Ha 
et al. 2022). 

In this study, KAZE method, which showed the best 
matching performance for the behavior of RSW blocks (Ha 
et al. 2022), was used as a feature detector and descriptor to 
match targets. The KAZE method was developed in 
nonlinear scale space by means of nonlinear diffusion 
filtering (Alcantarilla et al. 2012). The nonlinear diffusion 
for an image L with spatial coordinates and time t is defined 
as 

∂L
∂t  = div c x, y, t ∙∇L , (1) 

 
where div and ∇  are respectively the divergence and 
gradient operators, and c is a conductivity function. Perona 
and Malik (1990) proposed a gradient dependent 
conductivity function c. The conductivity function c reduces 
the diffusion at the location of edge within a region and 
smooths a region preserving boundaries. The conductivity 
function c is defined as 

 
c x, y, t  = g ∇Lσ x, y, t , (2) 

 
where the luminance function ∇Lσ is the gradient of a 
Gaussian smoothed version of the original image L. The 
conductivity function g is chosen to promote wide regions, 
the conductivity function g is 

 

g = 
1

1+
∇Lσ

2

k2

, 
(3) 

 
where k is the contrast factor that controls the level of 
diffusion. 

Through this process, the KAZE can make blurring 
locally adaptive to the image with reducing noise but 
retaining object boundaries, obtaining superior localization 
accuracy and distinctiveness (Alcantarilla et al. 2012). 

Image matching process to track the behavior of the target 
was performed in the following order: (1) set the ATs and 
NTs to track the behavior in the image of RSW at the initial 
state, (2) detect and match features in image pairs (the 
image of the target at initial state and the image of RSW 
after the behavior occurred), and (3) estimate the 
transformation matrix based on inlier matching features. M-
estimator sample consensus (MSAC) algorithm with 
parameters of 100,000 iterations, 99% confidence, and 1.5 
maximum distance was used to estimate 3 × 3 
transformation matrix from the selected inlier features. The 
inliers and outliers refer to data in a dataset that is, 
respectively, consistent with or inconsistent with the 
underlying pattern in the data. Inliers are data that fit a 
model well and conform to the trend of the data. For 
example, in a set of points that form a straight line, the 
points that are close to the line are considered inliers. 
Outliers, on the other hand, are data that digress 
significantly from the rest of the data and do not conform to 
the general pattern. 

 
2.1.1 Performance evaluation 
In this study, feature count-based and feature location-

based performance metrics were separately analyzed to 
compare their correlations with the displacement calculation 
performance. The feature count-based performance metric 
was obtained through the number of features detected and 
matched in each image pair. Repeatability and matching 
score refer to the consistency of a feature detection 
algorithm in detecting the same features and are widely 
used to evaluate the matching performance based on the 
number of features (Mikolajczyk and Mikolajczyk 2004, 
Revaud et al. 2019, Yi et al. 2016, Detone et al. 2018). 
Repeatability of each part is the number of matching 
features divided by the smallest number of features detected 
in the image pair (Mikolajczyk and Mikolajczyk 2004, 
Revaud et al. 2019) 

 RepeatabilityThe number of matching featuresMinimum the number of detected features . (4) 

 
The matching score of each part is the number of inlier 

matching features divided by the smallest number of 
features detected in the image pair (Revaud et al. 2019, Yi 
et al. 2016, Detone et al. 2018) 

 Matching scoreThe number of inlier matching featuresMinimum the number of detected features . (5) 

 
The number of inlier matching features indicates the 

number of features without outlier matching features. 
However, because feature count-based performance metrics 
evaluate the performance based on the number of features, 
it is difficult to quantitatively evaluate the registration of an 
object in an image before and after matching (Ha et al. 
2022). 

The feature location-based performance metric was 
obtained through the location of features detected and 
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matched in each image pair. The mean target registration 
error (mTRE) is widely used to evaluate the image 
registration performance in various fields (Chou et al. 2013, 
Rivaz et al. 2014, Huizinga et al. 2016). In this study, the 
mTRE was adopted as the feature location-based 
performance metric. The block image registration error is 
used to evaluate the quantitative error based on the 
coordinates of the inlier features in the matched image pair 

 𝑚𝑇𝑅𝐸 1𝑛 𝑥 𝑥 𝑦 𝑦  (6) 

 
where n is the number of inlier matching features, xti and 
yt  are the x and y coordinates of each feature in the 
transformed image, respectively, and xb and yb are the x 
and y coordinates of each feature in the image after the 
behavior occurs respectively. 

In addition, because mTRE is analyzed based on a 
specific point within an image pair, its representativeness is 
imperfect. To compensate for this limitation, the standard 
deviation of the matching features was analyzed. The 
standard deviation of the inlier matching features evaluated 
the distribution of the matching features, which were used 
as the reference coordinates for mTRE. 

 
2.2 D splacement calculat on w th monocular v s on 
 
The facing displacement and settlement, which 

contribute to the instability of the RSW, are the main safety 
checkpoints. Therefore, the proposed TDMT was applied to 
measure two main behaviors (facing displacement and 
settlement) of RSW using KAZE and displacement 
calculation algorithm through the images obtained from 
monocular vision. 

 
2.2.1 Displacement calculation algorithm 
Fig. 2 compares a stereo camera system with the TDMT. 

In the stereo camera system, P1, P2, and P3 are points in 3-D 
space (Fig. 2(a)). It has unclear spatial points (gray zone) 
from P1 to P2 in the left view, and from P2 to P3 in the right 
view. These unclear points can be removed by acquiring 
images from different viewpoints. Then, 3-D coordinates 

 
 

can be obtained from the depth images. In Fig. 2(b), the 
behavior in the horizontal direction in an image plane can 
be normally interpreted as three types of behaviors (X, X + 
Z, or Z behaviors in a coordinate system in the real world). 
However, in the RSW, only facing displacement (X-
direction) and settlement (Y-direction) occur, and the 
change in the horizontal direction in the image plane should 
be interpreted as a displacement in the X-direction. 
Furthermore, the change in the vertical direction in the 
image plane can only be interpreted as a settlement. 
Therefore, the TDMT with monocularly captured RSW 
images can be used to clearly measure the behavior of 
RSWs. 

Fig. 3(a) shows a schematic of the displacement 
calculation process in the TDMT. The calculated facing 
displacement (xc) and settlement (yc) of the RSW were 
obtained by computing the x-axis pixel change (xp) and y-
axis pixel change (yp) in the image plane. Figures 3b and 3c 
show detailed images to calculate the xc and yc based on xp 
and yp. The pixel changes xp, yp), incident angle (θx), 
distance (D), and camera parameters (i.e., focal length and 
pixel size) were used to calculate the displacements (xc, yc). 

The process of calculating xc through xp is as follows. 
The geometric relationship was calculated using the 
distance between the camera and center of the RSW. 

 𝑙 𝐷 sin𝜃 , (7) 
 

where l0 is the Z-axis distance between the camera and 
center of the RSW. 

Through the amount of pixel change in the image, the 
angles between the points before and after the behaviors 
and the center of the image are calculated as follows. 

 𝑘 𝑥 𝑥  (8) 
 𝑘 𝑥 𝑥  (9) 
 tan𝜃 𝑘 𝑝𝑠𝑓  (10)

 tan𝜃 𝑘 𝑝𝑠𝑓  (11) 

 
 

  
(a) Stereo camera system (b) Monocular vision (TDMT) 

Fig. 2 Comparison of pixel changes in an image with stereo camera system and monocular vision 
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(a) Concept diagram of the displacement calculation 

 

 

(b) Facing displacement calculation 
 

 

(c) Settlement calculation 

Fig. 3 Schematic diagram of the displacement calculation 
module in the TDMT. 

 
 
 
Here, xe is the x-coordinate of the center in the image, 

xp1 and xp2 are the x-coordinates before and after the 
behavior of the block, respectively, k1 and k2 are the pixel 
distances on the x-axis from the image center before and 
after the facing displacement, respectively, θ1 and θ2 are the 
angles calculated using k1 and k2 from the optical center, 
respectively, ps is the pixel size, and f is the focal length. 

The coordinates for the X-axis behavior in the RSW 
were calculated, and the facing displacement (xc) was 
obtained using the following equations. 

 𝜃 𝜋2 𝜃 𝜃  (12)
 

𝜃 𝜋2 𝜃 𝜃  (13)
 𝑛 𝑙 tan𝜃  (14)
 𝑛 𝑙 tan𝜃  (15)
 𝑥 𝑙 tan𝜃 𝑙 tan𝜃 tan 𝜃 𝜃  (16)
 
Fig. 3(c) shows the schematic of the settlement 

calculation. The process of calculating the settlement yc 
using yp is as follows. The distances between the optical 
center and the points before and after settlement were 
calculated as follows 

 𝑚 𝑙cos𝜃 , (17)

 𝑚 𝑙cos𝜃 𝑛 𝑛cos 𝜃 𝜃  (18)
 

where m1 and m2 are the distances between the optical 
center and the initial point and the point after settlement 
occurred, respectively. 

The angles between the points before and after the 
behaviors and the center of the image are calculated as 
follows. 𝑘 𝑦 𝑦  (19)

 𝑘 𝑦 𝑦  (20)
 tan𝜃 𝑘𝑓  (21)

 tan𝜃 𝑘𝑓  (22)
 
Here, ye is the y-coordinate of the center in the image, 

yp1 and yp2 are the y-coordinates before and after the 
behavior of the block, respectively, k3 and k4 are the pixel 
distances on the y-axis from the image center before and 
after settlement in the image, respectively, and θ5 and θ6 are 
the angles calculated using k3 and k4 from the optical center, 
respectively. 

The coordinate for the Y-axis behavior in the RSW is 
calculated, and the settlement (yc) is obtained through the 
following equations. 

 𝑝 𝑚 tan𝜃  (23)
 𝑝 𝑚 tan𝜃  (24)
 𝑦 𝑝 𝑝  (25)
 
Here, p1 and p2 are the Y-coordinates of the objects 

before and after settlement, respectively. 
The error and mean relative error (MRE) were used to 

evaluate the displacement calculation performance by 
comparing the calculated and reference displacements. Each 
performance metric for the displacement calculation was 
analyzed based on the Euclidean distance without 
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separately calculating the facing displacement and 
settlement. The MRE was only analyzed for the parts where 
the facing displacement and settlement occurred because 
the reference displacement was used as the denominator in 
the MRE. The MRE was calculated by averaging MREx and 
MREy using Eqs. (23)-(25). 

 𝑀𝑅𝐸 % 1𝑚 𝑥 𝑥𝑥 100, (26)

 𝑀𝑅𝐸 % 1𝑚 𝑥 𝑥𝑥 100, (27)

 𝑀𝑅𝐸 % 𝑀𝑅𝐸 𝑀𝑅𝐸2 , (28)
 

where xc and yc are the calculated facing displacement and 
settlement using TDMT, respectively. xr and yr are the 
reference facing displacement and settlement measured 
from the total station, respectively, and m is the number of 
targets. 

 
2.2.2 Validation of the displacement calculation 

algorithm 
Fig. 4 shows the experimental setup of the pilot-phase 

experiment constructed to verify the displacement 
calculation algorithm. The facing displacement, settlement, 
and combined displacement (facing displacement + settle-
ment) of a block were generated to be 10 mm each using 

 
 

 
 

a linear stage (Fig. 4(a)). The displacement was analyzed 
using images taken at incident angles between 5° and 85° 
with the experimental set up (Fig. 4(b)). As shown in Fig. 
4(c), the distance and incident angle were measured. The 
distances for each incident angles were similarly distributed 
in range of 745 to 793 mm. KAZE was used to match and 
calculate the pixel changes of the block before and after the 
behaviors. Images taken at a low incident angle of 5 – 15° 
were excluded because the facing of the block was not 
sufficiently photographed, and the features could not be 
sufficiently detected and matched. 

Moreover, images taken at a high incident angle of 75 – 
85° had difficulty capturing the behavior because they 
provided almost no change in pixels. Therefore, it is 
recommended to analyze the image at incident angles of 20 
– 70°. Table 1 lists the results of the pilot-phase experiment. 
The displacement calculation performance was evaluated by 
comparing the results of the displacement calculation 
algorithm with input displacements. The error was 
distributed from 0.07 mm to 0.49 mm, and the RMSE was 
0.36 mm in the incident angle from 20° to 70°. The results 
indicated that the displacement calculated using the 
proposed algorithm was in good agreement with the 
reference displacement. 

 
 

3. Experiments 
 
Two types of RSW experiments, laboratory and field, 
 
 

 
 

 

   
(a) Block and linear stage that generates 

precise behavior 
(b) Experimental setup of camera 

 
(c) Top view of incident angle and distance of the 

experiment 

Fig. 4 Pilot-phase experiment for validation of the TDMT 

Table 1 Results of pilot-phase experiment 

Repetition Incident angle 
(θx, °  

Error (mm) Minimum error 
(mm) 

Maximum error 
(mm) 

RMSE 
(mm) Horizontal Vertical Average 

10 

20 0.49 0.46 0.47 

0.07 0.49 0.36 

30 0.45 0.40 0.43 
40 0.13 0.47 0.30 
50 0.14 0.41 0.28 
60 0.07 0.46 0.27 
70 0.30 0.16 0.23 
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Table 2 RSW block size in the laboratory and field 
experiments 

Type Model Specifications 

Laboratory 
RSW block - Height: 30 mm, Width: 50 mm, 

Length: 35 mm 
Field RSW 

block G1 Height: 250 mm, Width: 500 mm, 
Length: 430 mm 

 

 
 

Table 3 Description of the camera and total station 

Type Model Specifications 

Camera SM-G977N 

Image sensor: Samsung SAK2LD, 
4032×3024 resolution 

Pixel size: 1.8 μm, 
Focal length: 5.4 mm 

Total 
station 

Sokkia 
SET510K Accuracy: 1–3 mm 

 

 
 

were conducted to evaluate the image-matching and 
displacement calculation performances. In this study, the 
matching and displacement calculation performance at each 
position in the RSW was evaluated using the proposed 
monocular vision-based TDMT. We took several parts to 
detect and calculate the displacement for each experiment in 
order to evaluate performance according to the distance 
from the camera to each target within the image. Also, 
features were detected and matched to targets with high 
accuracy even if the distance becomes larger, since feature 
matching methods were measured up to 7 decimal places 
(ten millionths). Therefore, the performance with different 
distances from the camera to RSW was not considered. The 
general behavior was simulated for all blocks of RSW in the 
laboratory experiment and for specific blocks of the RSW 
in the field experiment. Table 2 presents a description of the 
laboratory and the field RSW blocks. The laboratory RSW 
block had a scale of 1:10 in the block standard (KS F 4416), 
and the blocks were made by injecting gypsum into a block 
mold. G1 RSW blocks, which are widely used in domestic 
RSW construction sites, were used for the field experiment. 
Table 3 shows a description of the camera and total station. 
The total station used had an accuracy of 1–3 mm. The 
measured result of the total station was used as the 
reference displacement. 

 
3.1 Laboratory exper ment 
 
The laboratory experiment was performed preferentially 

to evaluate the matching and displacement calculation 
performances under controlled conditions in a laboratory 
environment. Fig. 5(a) shows an experimental RSW (width: 
650 mm, height: 270 mm) made of 121 blocks, as shown in 
Table 2. The sheet targets were attached to 5 blocks of RSW 
to measure the behaviors of blocks using a total station and 
considered as ATs. Fig. 5(b) shows the experimental setup, 
consisting of RSW blocks, a camera, and a total station. The 
camera was installed at a position (θx = 43°, D = 1,267 mm) 
in the range of incident angles (20 – 70°) suggested through 
the pilot-phase experiment. Four steps of facing displace- 

  
(a) Monitoring targets for detection and 

tracking behavior 
 

(b) Experimental setup 
of camera and total 
station 

  
(c) Facing displacement and settlement with step-by-step behavior 

Fig. 5 Details of laboratory experiments 
 
 

ment and settlement were generated step by step using the 
displacement generator under the RSW (Fig. 5(c)). 

The displacements were calculated by matching and 
analyzing the images of the evenly distributed 10 target 
blocks (red boxes in Fig. 5(a)) taken before and after the 
behaviors. Image matching and displacement calculation 
were performed for 5 ATs and 5 NTs. The matching 
performance was evaluated based on repeatability, matching 
score, number of inlier matching features, and mTRE. The 
displacement calculation performance was evaluated by 
comparing the reference displacements which were 
measured from the total station. In addition, the correlation 
between the performance of matching and displacement 
calculation was analyzed. 

 
3.2 F eld exper ment 
 
A field experiment was conducted to evaluate the 

displacement calculation performance under field 
conditions. Fig. 6 shows the experimental setup. The RSW 
(width = 2,000 mm, height = 1,250 mm) consisted of 22 
blocks that are widely used in construction sites (Fig. 6(a)). 
The RSW blocks are divided into movable and fixed blocks. 
The facing displacement and settlement of the movable 
blocks (yellow box in Fig. 6(a)) were generated step by step 
using a moving plate (Fig. 6(c)). The left and right 
boundary blocks did not move during the experiment (blue 
box in Fig. 6(a)). The camera was installed at a position (θx 
= 50°, D = 2,874 mm) in the range of incident angles 
suggested through the pilot-phase experiment. 

The sheet targets were attached to each center of the 
nine blocks (Parts 1-9) and used as a reference point for the 
total station measurement. The displacements of the 14 
targets (red boxes in Fig. 6(a)) in the RSW were calculated 
by analyzing the images taken before and after 
displacement generation. In the field experiment, all targets 
were considered as NTs because the size of the sheet target 
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(a) Field RSW blocks and monitoring 

targets for detecting and tracking 
behavior 

(b) Experimental setup of 
camera and total station 
 

  
(c) Facing displacement and settlement with step-by-step behavior 

Fig. 6 Details of field experiments 
 
 

was small and did not significantly affect the matching of 
blocks. The experimental process of the matching and 
displacement calculation performances were evaluated in 
the same way as in the laboratory experiment, and the 
correlation between the matching and displacement 
calculation performances was also analyzed. 

 
 
 
 

  
(a) Repeatability of ATs (b) Repeatability of NTs 

 

  
(c) Matching score of ATs (d) Matching score of NTs 

 

  
(e) Number of inlier matching 

features of ATs 
(f) Number of inlier matching 

features of NTs 

Fig. 7 Count-based performance metrics in laboratory 
experiments 

4. Experimental results and discussions 
 
4.1 Laboratory exper ment 
 
Fig. 7 shows the feature count-based performance 

metrics such as repeatability, matching score, and number 
of matching features in the laboratory experiment. The 
matching performances were evaluated for the ATs (1 - 5 
parts) and the NTs (6 - 10 parts). Gray and white boxes in 
Fig. 7 represents the mean and standard deviation of ATs 
and NTs, respectively. All metrics slightly decreased as the 
steps progressed (i.e., facing displacement and settlement 
occurred with the step in Fig. 5(c)). NTs have higher 
repeatability with more features being matched than ATs. 
However, a large number of outlier matching features of 
NTs were excluded from the MSAC algorithm, and 
significantly fewer inlier matching features were selected to 
estimate the transformation matrix than that of ATs. 
Therefore, a ratio of inlier matching features of NTs was 
smaller, and the matching efficiency was relatively lower 
than that of ATs. 

Fig. 8 shows the feature location-based performance 
metrics. As the steps progressed, the feature location-based 
metrics in terms of mTRE (Figs. 8(a), (b)) and standard 
deviation (Figs. 8(c), (d)) increased, which means that the 
matching performance decreased. The mTRE and standard 
deviation of NTs were similar to those of ATs. 

Fig. 9 presents the results of the calculated and reference 
facing displacements and settlements in the laboratory 
experiment. The results showed that the calculated 
displacements agreed well with the reference displace-
ments, although there were minor errors (Figs. 9(a) and (b)). 
The displacement error was distributed from 0.09 mm to 
1.89 mm at ATs and from 0.11 mm to 1.68 mm at NTs 
(Figs. 9(c) and (d)). The displacement error results indicated 
that the performance decreased as the steps progressed, 
there was no significant difference in errors between NTs 
and ATs. The displacement calculation performances were 
more related to the feature count- based performance metrics, 

 
 

  
(a) mTRE of ATs (b) mTRE of NTs 

 

  
(c) Standard deviation of 

inlier matching features in 
an image pair of Ats 

(d) Standard deviation of inlier 
matching features in an 
image pair of NTs 

Fig. 8 Location-based performance metrics in laboratory 
experiments 
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(a) Calculated and reference 

facing displacements 
(b) Calculated and reference 

settlements 
 

  
(c) Displacement calculation 

error of Ats 
(d) Displacement calculation 

error of NTs 
 

 

(e) MRE 

Fig. 9 Results of the laboratory experiments 
 
 

 
Fig. 10 Examples of the block shape according to the 

behavior of the block in the image 
 
 

indicating that feature location-based performance metrics 
were more robust metrics to explain matching performance. 
In addition, the RSW blocks can be used as NTs. 

The MRE was distributed without significant 
fluctuations regardless of the progress of the stage, and the 
MRE ranged from 0.87% to 1.9%, with an average of 
1.53% for ATs and 1.24% for NTs (Fig. 9(d)). Fig. 10 
presents examples of the block shapes in the image 
according to the facing displacement, settlement, and 
combined displacement. As the steps progressed, scale and 
shear transformations continued to occur, which increased 
the complexity of the transformation in the image-matching 
procedure. Therefore, both displacement calculation errors 
increased and the matching performance decreased as the 
facing displacement and settlement of the RSW occurred 
cumulatively. 

 
4.2 F eld exper ment 
 
Fig. 11 shows the feature count-based performance 

metrics of both the movable and fixed blocks for the field 
experiment. The repeatability and matching scores of the 
movable blocks were slightly lower than those of the fixed 
blocks. The number of inlier matching features also showed 
lower performance in the movable blocks than in the fixed 

 
 

  
(a) Repeatability in movable NTs (b) Repeatability in fixed NTs 

 

  
(c) Matching score in movable 

NTs 
(d) Matching score in fixed NTs 

 
 

  
(e) Number of inlier matching 

features in movable NTs 
(f) Number of inlier matching 

features in fixed NTs 

Fig. 11 Count-based performance metrics in field 
experiments 

 
 

  
(a) mTRE in movable NTs (b) mTRE in fixed NTs 

 

  
(c) Standard deviation of 

inlier matching features in 
movable NTs 

(d) Standard deviation of inlier 
matching features in fixed 
NTs 

Fig. 12 Location-based performance metrics in field 
experiments 
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(a) Calculated displacement 

and reference facing 
displacements 

(b) Calculated and reference 
settlements 
 

 

  
(c) Displacement calculation 

error of movable NTs 
(d) Displacement calculation 

error of fixed NTs 
 

 

(e) MRE of moveable NTs 

Fig. 13 Results of field experiments 
 
 

blocks because the transformation induced after the 
behavior significantly affects the image registration. In the 
movable and fixed blocks, the feature count-based 
performance metrics were not significantly changed as the 
steps progressed. Fig. 12 shows the feature location-based 
performance metrics of both the movable and fixed blocks 
for the field experiments. Feature location-based 
performance metrics such as mTRE and standard deviation 
of inlier matching features tended to increase in the 
movable blocks as the steps progressed. However, there 
were no significant changes in the fixed blocks according to 
step progress (Figs. 12(b) and (d)). 

Figs. 13(a) and (b) show the calculated and reference 
facing displacements and settlements, respectively, for the 
movable blocks in the field experiments. The calculated 
behaviors agreed with the reference behaviors, although 
minor errors occurred in some parts. Figs. 13(c) and (d) 
show the displacement calculation error for the field 
experiment. In particular, the trend of errors in the movable 
and fixed blocks increased as the steps progressed (Figs. 
13(c) and (d)). This shows a similar trend to the feature 
location-based performance metrics (Figs. 12(a) and (b)) 
rather than the trend of the feature count-based performance 
metrics (Figs. 11(a), (c) and (e)). This implies that the 
feature location-based performance metrics provide more 
accurate results than the feature count-based performance 
metrics when quantitatively evaluating the matching 
performance for image registration. Therefore, feature 
location-based performance metrics are preferentially 

recommended to evaluate the image matching performance 
in the field. 

The displacement calculation errors were distributed in 
range of 0.29 mm to 2.85 mm for the movable blocks and 
0.56 mm to 2.18 mm for the fixed blocks. In addition, for 
the movable blocks, the MRE ranged from 2.48% to 5.48%, 
with an average of 3.31%. The field experiments also 
indicated that each block of RSW can be considered as an 
NT. 

 
 

5. Conclusions 
 
In this study, the TDMT was proposed to analyze the 

behavior of RSWs. Based on the results of the pilot-phase 
experiment, laboratory and field RSW experiments were 
conducted to evaluate the performance of the proposed 
TDMT. 

In the laboratory experiment, the repeatability of NTs 
was greater than that of ATs, but the matching score and 
number of inlier matching features of NTs were smaller 
than those of ATs, resulting in inconsistency for feature 
count-based performance metrics (repeatability, matching 
score, and the number of inlier matching features). On the 
other hand, feature location-based performance metrics 
(mTRE and standard deviation of inlier matching features) 
and displacement calculation performance of NTs were 
similar to those of ATs. Based on performance results, it is 
found that the performance of NT is similar to that of AT, 
and each block of RSW can be used as an NT. 

In the field experiment, the feature location-based 
performance metrics and displacement calculation 
performance decreased as the steps progressed. However, 
the feature count-based performance metrics were not 
significantly changed as the steps progressed, since the 
feature count-based performance metrics were not affected 
by the displacements. Therefore, the feature location-based 
performance metrics were more suitable to accurately 
evaluate the displacement calculation performance. 

Regarding to displacement calculation performance, the 
maximum displacement calculation errors were less than 
1.89 mm and 2.85 mm in laboratory and field experiments, 
respectively. The average MREs were 1.39% and 3.31% in 
the laboratory and field experiments, respectively, which 
shows excellent displacement calculation performance to 
measure typical behavior of RSW. The proposed TDMT can 
be used to quantitatively measure the behavior of the RSW, 
in which each RSW block is considered as an NT. 

Although the proposed approach obtained great 
performance in measuring displacement of the RSW, the 
proposed technique focused on the matching and 
displacement calculation performances for the limited 
behavior of blocks occurring in laboratory and field RSW. 
In future studies, the performance of matching and 
displacement calculations for different conditions such as 
various incident angles and distances, and various 
displacement types such as bulging and overturning, which 
commonly occur in RSWs, should be evaluated. 
Additionally, various field conditions such as changes in 
weather and brightness should be taken into account for a 
comprehensive analysis. 
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