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Abstract.  The objective of this study is to present a data-driven machine learning (ML) framework for predicting 

ultimate shear strength and failure modes of reinforced concrete ledge beams. Experimental tests were collected on 

these beams with different loading, geometric and material properties. The database was analyzed using different ML 

algorithms including decision trees, discriminant analysis, support vector machine, logistic regression, nearest 

neighbors, naïve bayes, ensemble and artificial neural networks to identify the governing and critical parameters of 

reinforced concrete ledge beams. The results showed that ML framework can effectively identify the failure mode of 

these beams either web shear failure, flexural failure or ledge failure. ML framework can also derive equations for 

predicting the ultimate shear strength for each failure mode. A comparison of the ultimate shear strength of ledge failure 

was conducted between the experimental results and the results from the proposed equations and the design equations 

used by international codes. These comparisons indicated that the proposed ML equations predict the ultimate shear 

strength of reinforced concrete ledge beams better than the design equations of AASHTO LRFD-2020 or PCI-2020. 
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1. Introduction 

 
Reinforced concrete inverted-T bent caps (beams with ledges) are being used as the main girders 

that support the lateral, secondary and incoming beams or slabs which is one of the common 

structural systems for many existing bridges and parking garages. Reinforced concrete ledge beams 

are often used in construction to decrease the overall height of bridges and to improve available 

clearance below the beams. The use of reinforced concrete ledge beams can result in large savings 

in the overall cost of the bridge and lead to more appealing bridges. In buildings, the use of 

reinforced concrete ledge beams decrease for the overall story heights (Mirza et al. 1983, Deifalla 

and Ghobarah 2014, Varney et al. 2015, Garber et al. 2017). 

The behavior of reinforced concrete ledge beams, despite its usual use since the 1950s, continued 

to be as one of the least investigated until mid-1980s. Until that time, no instruction for handling 

design issues specifically those related to the inverted-T section was available in design standards.  
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One of the main complications to the design of these beams is the behavior of the ledge. The 

cross-section shape can have a considerable effect on the behavior and design, as concluded by 

several researchers (Furlong and Ferguson 1971, Mirza and Furlong 1985, Chalioris and Karayannis 

2009, Deifalla and Ghobarah 2006a, b, Karayannis 1995, Karayannis and Chalioris 2000). Many 

experimental studies were made on reinforced concrete ledge beams with various cross sections and 

loading characteristics. These studies aim to know the structural behavior and the response of 

reinforced concrete ledge beams (Smith and Fereig 1977, Tan et al. 1997, Zhu et al. 2003, Fernandez 

Gomez 2012, Larson et al. 2013, Garber et al. 2017, Galal and Sekar 2008, Salman et al. 2019, 

Hedia et al. 2020).  

Recently, design provisions for predicting the ultimate shear strength and failure modes of 

reinforced concrete ledge beams have been developed and incorporated in some codes. In the united 

states, the American Association of State High ways Transportation Officials (AASHTO LRFD-

2020) [29], the Strut and Tie Method (STM) with regard to the American Concrete Institute Code 

(ACI 318-2019) and the design handbook of Prestressed Concrete Institute (PCI-2020) include 

provisions for predicting the ultimate strength and failure modes of reinforced concrete ledge beams.  

Machine learning (ML) is a branch of artificial intelligence that uses algorithms to develop 

patterns in data and make predictions about the future. The success of ML applications in areas such 

as bioengineering, medicine, and advertising has been highly obvious (Cheung et al. 2008, Gui et 

al. 2017, Gul and Catbas 2009, Salehi et al. 2018, 2019). In the last decade the community of 

structural engineering researchers have begun to seriously search for ways in which ML can improve 

the efficiency and accuracy of specific tasks or solve previously complex problems. Machine 

learning framework is being used recently in many structural engineering applications such as 

structural system identification, structural health monitoring, structural vibration control, structural 

design and prediction applications (Chou et al. 2014, Dantas et al. 2013, González and Zapico 2008, 

Reddy et al. 2011, Siddique and Aggarwal 2011, Yan and Shi 2010). ML framework is essential in 

prediction of properties of concrete beams (Solhmirzaei et al. 2020, Markou and Bakas 2021, 

Rahman et al. 2021, Zhang et al. 2020, Ly et al. 2020, Abuodeh et al. 2020, Wakjira et al. 2022, He 

et al. 2022, Uddin et al.2022). 

The behavior of the ledges is one of the main issues that arise when designing ledge beams. 

Although they have a better profile, the complicated load transfer mechanism makes designing 

beams with ledges difficult. In comparison to conventional rectangular or T beams, the behavior of 

inverted-T beams is more complex. For instance, the ledge is subjected to loads from bridge girders 

that flow transversely to the web's bottom, vertically to the top compression chord, and finally along 

the beam's length to the supports on either end. In order to facilitate the design of these beams, it is 

very important to develop a ML framework to predict the ultimate shear strength and failure mode 

of RC ledge beams and improve the use of these beams in concrete structures 

The aim of this study is to propose expressions to predict ultimate shear strength and failure 

modes of reinforced concrete ledge beams using ML framework based on collected experimental 

data. In addition, a comparison was conducted between ultimate shear strength of ledge failure 

predicted from the proposed equations and that from the experimental results and that from the 

design equations of AASHTO LRFD-2020 and PCI-2020. 

 

 

2. Types of failures in reinforced concrete ledge beams 
 

In the design of reinforced concrete ledge beam or any other ledged members, the following three  
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(a) (b) 

Fig. 1 (a) Cross section and (b) longitudinal section with typical types of ledge failures: 1) shear

friction; 2) punching shear 3) yielding of hanger reinforcement; 4) flexural failure of ledge and 

5) bearing failure 

 

 

main types of failures must be considered: 

i. Web shear failure. 

ii. Flexural failure. 

iii. Ledge failure as shown in Fig. 1, and it can be divided into the following types: 

   - Shear friction failure between the ledge and the web. 

   - Punching shear failure of the ledge at the point of loading. 

   - Yielding of hanger reinforcement. 

   - Flexural failure of ledge reinforcement.      

   - Bearing failure of concrete under the load point. 

 

 

2. Database collection 
 
A literature review was done to collect data from experiments conducted on Normal Strength 

Concrete (NSC) and High Strength Concrete (HSC) ledge beams. Many parameters affect the 

behavior of reinforced concrete ledge beams such as type and strength of concrete, web dimensions, 

ledge dimensions, web reinforcement ratio, ledge reinforcement ratio, shear span to depth ratio and 

load points. These parameters are used to predict ultimate shear strength and failure modes of 

reinforced concrete ledge beams. 

A total of 130 specimens from different sources were included and filtered in the collection 

database (Fernandez Gomez 2012, Larson et al. 2013, Garber et al. 2017, Galal and Sekar 2008, 

Salman et al. 2019, Hedia et al. 2020). Twenty seven specimens tested under torsional loads couldn’t 

be used. In addition, fourty nine specimens have not sufficient information to make data base. Table 

1 provides the filtered database as it was reduced to 54 tests that have detailed  information to 

perform various analyses and build a comprehensive database. 

The database contains a summary of selected experimental specimens with design variables 

including 𝑓𝑐
′ (Compressive strength of concrete), fcu (Cube compressive strength of concrete), d 

(Beam depth), b (Beam width), bw (Beam web width), Ld (Ledge depth), Lw (Ledge width), Ll 

(Ledge length), a/d (Shear span-to-depth ratio with shear span measured from center of reaction to 

the first reaction point), ρv (Web vertical reinforcement ratio), 𝑓yv (Yield strength of web vertical 

reinforcement), ρh (web horizontal reinforcement ratio), 𝑓yh (Yield strength of web horizontal 

reinforcement), ρl (Vertical reinforcement ratio of ledge), 𝑓yl (Yield strength of vertical  
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(a) 
 

(b) 

Fig. 2 (a) Typical reinforcement details of ledge beams and (b) Different design variables for reinforced 

concrete ledge beams 

 

 

reinforcement of ledge) and Vu (Ultimate shear carried in the critical section of the test region). The 

design variables and reinforcement details for reinforced concrete ledge beams can be seen from Fig. 

2. The number of times that each value or range of the variables appear in the database is shown in 

Fig. 3. 

 

 

4. ML Framework for prediction of failure mode 
 
4.1 General 
 
ML trains models to classify data by using the best classification model type including decision 

trees, discriminant analysis, support vector machines, logistic regression, nearest neighbors, naive 

bayes, ensemble and neural network classification. In this study, ML framework implemented in the 

programming system and language MATLAB 2020 (Yang et al. 2020) was applied for the collected 

experimental data in order to train the best model that generates predictions for the failure mode as 

shown in Fig. 4. 

340



 

 

 

 

 

 

Prediction of ultimate shear strength and failure modes of R/C ledge beams… 

 
Table 1 Collected specimens for reinforced concrete ledge beams from tests 

 
 

Ref Specimen ID Concrete 
𝑓c

’  

(MPa) 

b  

(mm) 

bw  

(mm) 

Ld  

(mm) 

Lw  

(mm) 

Ll  

(mm) 
a/d  

ρv 

(%) 

𝑓yv 

(MPa) 

ρh 

(%) 

𝑓yh  

(MPa) 

ρl 

(%) 

𝑓yl  

(MPa) 
Vu  

(KN) 
Failure Mode 

(Fernandez

 Gomez  

2012,  

Larson et 

al. 2013) 

DS1-42-1.85-03 NSC 36.3 1067 533 533 267 3845 1.96 0.30 434 0.30 434 0.19 434 3167 Web Shear 

DS1-42-2.50-03 NSC 37.2 1067 533 533 267 3845 2.65 0.30 434 0.30 434 0.19 434 1806 Web Shear 

DS1-42-1.85-06 NSC 34.6 1067 533 533 267 4093 1.85 0.60 421 0.60 421 0.19 421 2762 Web Shear 

DS1-42-2.50-06 NSC 35.1 1067 533 533 267 4093 2.5 0.60 421 0.60 421 0.19 421 2237 Web Shear 

DL1-42-1.85-06 NSC 33.3 1067 533 533 267 6482 1.85 0.60 421 0.60 421 0.19 421 3296 Web Shear 

DL1-42-2.50-06 NSC 34.4 1067 533 533 267 6482 2.5 0.60 421 0.60 421 0.19 421 2767 Web Shear 

SS3-42-1.85-03 NSC 40.6 1067 533 356 267 4093 1.85 0.30 462 0.30 462 0.28 462 2326 Web Shear 

SS3-42-2.50-03 NSC 40.6 1067 533 356 267 4093 2.5 0.30 462 0.30 462 0.28 462 1988 Web Shear 

SS3-42-2.50-06 NSC 43.2 1067 533 356 267 3434 2.5 0.60 421 0.60 421 0.28 421 2295 Flexural 

SC3-42-2.50-03 NSC 40.5 1067 533 356 267 2479 2.5 0.30 441 0.30 441 0.28 441 1463 Web Shear 

SC3-42-1.85-03 NSC 40.5 1067 533 356 267 2479 1.85 0.30 441 0.30 441 0.28 441 2148 Web Shear 

DS3-42-2.50-03 NSC 39.2 1067 533 533 267 3434 2.5 0.30 448 0.30 448 0.19 448 1913 Web Shear 

DL1-42-1.85-03 NSC 34 1067 533 533 267 6482 1.85 0.30 441 0.30 441 0.19 441 2785 Web Shear 

DL1-42-2.50-03 NSC 34 1067 533 533 267 6482 2.5 0.30 441 0.30 441 0.19 441 2269 Web Shear 

SL3-42-1.85-03 NSC 34.7 1067 533 356 267 6482 1.85 0.30 455 0.30 455 0.28 455 2540 Web Shear 

SL3-42-1.85-06 NSC 36.2 1067 533 533 267 6482 1.85 0.60 448 0.60 448 0.19 448 3309 Web Shear 

DC1-42-1.85-06 NSC 25.7 1067 533 533 267 3100 1.85 0.60 421 0.60 421 0.19 421 2309 Web Shear 

SS1-75-1.85-03 NSC 21.6 1067 533 635 267 3845 1.87 0.30 448 0.30 448 0.15 448 3314 Web Shear 

DC3-42-1.85-03 NSC 31.5 1067 533 533 267 3100 1.85 0.30 434 0.30 434 0.28 434 1757 Web Shear 

DS3-42-1.85-03 NSC 31.5 1067 533 533 267 4752 1.85 0.30 434 0.30 434 0.28 434 2019 Web Shear 

SS1-42-2.50-03 NSC 39.3 1067 533 356 267 4093 2.5 0.30 462 0.30 462 0.19 462 1770 Web Shear 

SS1-42-1.85-03 NSC 39.4 1067 533 356 267 4093 1.85 0.30 462 0.30 462 0.19 462 2593 Web Shear 

DC1-42-2.50-03 NSC 27.8 1067 533 533 267 2479 2.5 0.30 427 0.30 427 0.28 427 1624 Web Shear 

DL3-42-1.85-03 NSC 29 1067 533 533 267 6482 1.85 0.30 427 0.30 427 0.28 427 2798 Flexural 

SL1-42-2.50-03 NSC 29.5 1067 533 356 267 6482 2.5 0.30 441 0.30 441 0.19 441 2215 Web Shear 

SC1-42-2.50-03 NSC 29.5 1067 533 356 267 2479 2.5 0.30 441 0.30 441 0.19 441 1419 
Ledge (Shear  

friction) 

DS1-42-1.85-06/

03 
NSC 28.8 1067 533 533 267 4093 1.85 0.60 448 0.30 448 0.28 448 2398 Web Shear 

DS1-42-2.50-06/

03 
NSC 28.8 1067 533 533 267 4093 2.5 0.60 448 0.30 448 0.28 448 3287 Web Shear 

SC1-42-1.85-03 NSC 29.9 1067 533 356 267 2479 1.85 0.30 462 0.30 462 0.19 462 2060 

Ledge  

(Yield of ledge  

tie) 

DC1-42-1.85-03 NSC 29.6 1067 533 533 267 2479 1.85 0.30 462 0.30 462 0.28 462 3000 Web Shear 

SC1-42-1.85-03 NSC 20.8 1067 533 356 267 2479 1.85 0.30 476 0.30 476 0.19 476 2028 Web Shear 

DC1-42-1.85-03 NSC 20.7 1067 533 533 267 2479 1.85 0.30 476 0.30 476 0.28 476 1886 Web Shear 

SS1-75-2.50-03 NSC 35.9 1067 533 635 267 3845 2.5 0.30 441 0.30 441 0.15 441 2887 
Ledge  

(Punching Shear) 

(Galal and 

Sekar  

2008) 

IT-G1 NSC 32 560 180 190 190 3600 2.24 1.09 440 0.19 440 0.19 440 230 Ledge (Hanger) 

IT-G2 NSC 31 560 180 190 190 3600 2.24 1.09 440 0.19 440 0.19 440 230 Ledge (Hanger) 

IT-G3 NSC 33 560 180 190 190 3600 2.24 1.09 440 0.57 440 0.57 440 254 Web Shear 

IT-G4 NSC 33.5 560 180 190 190 3600 2.24 1.09 440 0.57 440 0.57 440 258 
Ledge (Punching  

Shear) 

(Garber et 

al. 2017) 

SS1-75-1.85-06 NSC 40.7 1067 533 635 267 3845 1.85 0.60 441 0.60 441 0.15 441 4062 
Ledge (Punching  

Shear) 

SS1-75-2.5-06 NSC 44.1 1067 533 635 267 3845 2.5 0.60 441 0.60 441 0.15 441 4726 
Ledge (Punching  

Shear) 
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The collected experimental data passes through three stages: 

 Training stage to predict the model.  

 Validation stage to make sure that the algorithm is working as expected.  

 Testing stage to explore the behavior of the developed models. 

Decision Trees are a type of supervised ML used in MATLAB (that you explain what the input 

is and what the corresponding output is in the training data) where the data is continuously split in 

accord with a certain parameter. The tree can be explained by two entities, namely decision nodes 

and leaves. The leaves are the final outcomes, and the decision nodes are where the data is split 

(Rokach and Maimon 2005). 

Support Vector Machine (SVM) is a supervised ML algorithm used in MATLAB that can be used 

for both classification or regression problems. However, it is usually used in classification problems. 

In the SVM algorithm, we plot each data item as a point in n-dimensional space (where n is the 

number of features you have) with the value of each feature being the value of a specific coordinate. 

Then, we perform classification by finding the hyper-plane that separates the two classes very well. 

Support vectors are simply the coordinates of individual observation. The SVM classifier is a 

frontier that best segregates the two classes (hyper-plane/ line) (Noble 2006). 

K-Nearest Neighbor is one of the simplest ML algorithms used in MATLAB and based on 

supervised learning technique. It considers the similarity between the new case and available cases 

and put the new case into the category that is most related to the available categories. K-NN 

algorithm stores all the available data and classifies a new data point based on the similarity. This 

means when new data appears then it can be simply classified into a well suite category by using K-

NN algorithm as shown in Fig. 5. It can be used for regression as well as for classification, but it is 

usually used for the classification problems. K-NN is a non-parametric algorithm, which means it 

does not make any assumption on underlying data (Keller et al. 1985). 

Table 1 Continued 

(Salman

 et al. 

2019) 

B1 NSC 29.8 300 100 80 100 2000 3.75 0.50 360 1.26 360 0.31 360 38 Flexural 

B2 NSC 32.2 300 100 80 100 2000 3.75 0.50 360 1.26 360 0.31 360 41 Flexural 

B3 NSC 32.2 300 100 80 100 2000 3.75 0.50 360 1.26 360 0.31 360 50 Flexural 

B4 NSC 32.2 300 100 80 100 2000 3.75 0.50 360 1.26 360 0.31 360 40 Flexural 

B5 NSC 32.2 300 100 80 100 2000 3.75 0.50 360 0.87 360 0.31 360 33 Flexural 

B6 NSC 32.2 300 100 80 100 2000 3.75 0.25 360 1.26 360 0.16 360 45 Web Shear 

B7 NSC 32.2 300 100 80 100 2000 3.75 0.50 360 1.26 360 0.31 360 50 Flexural 

(Hedia 

et al.  

2020) 

BLN1 NSC 25.6 640 240 150 200 600 1.33 2.36 480 0.80 450 0.28 360 113 
Ledge (Yield of  

ledge tie) 

BLN2 NSC 25.6 640 240 150 200 600 1.33 2.36 480 0.80 450 0.45 500 165 
Ledge (Shear  

friction) 

BLN3 NSC 25.6 640 240 150 200 600 1.33 2.36 480 0.80 450 0.64 360 180 
Ledge (Yield of  

ledge tie) 

BLN4 NSC 25.6 640 240 150 200 600 1.33 2.36 480 0.80 450 1.03 500 270 
Ledge (Shear  

friction) 

BLH1 HSC 60 640 240 150 200 600 1.33 2.36 480 0.80 450 0.28 360 188 
Ledge (Yield of  

ledge tie) 

BLH2 HSC 60 640 240 150 200 600 1.33 2.36 480 0.80 450 0.45 500 248 
Ledge (Shear  

friction) 

BLH3 HSC 60 640 240 150 200 600 1.33 2.36 480 0.80 450 0.64 360 263 
Ledge (Yield of  

ledge tie) 

BLH4 HSC 60 640 240 150 200 600 1.33 2.36 480 0.80 450 1.03 500 338 
Ledge (Shear  

friction) 

Average 34.7 867 407 360 230 3306 2.23 0.75 437 0.55 433 0.31 430.1 1671 

- Minimum 20.7 300 100 80 100 600 1.33 0.25 360 0.19 360 0.15 360 33 

Maximum 60 1067 533 635 267 6482 3.75 2.36 480 1.26 476 1.03 500 4726 
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Naive Bayes algorithm is a classification technique used in MATLAB and based on Bayes’ 

Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes 

classifier assumes that the presence of a particular feature in a class is unrelated to the presence of 

any other feature. Naive Bayes model is easy to build and particularly useful for very large data sets. 

Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification 

methods (Berrar 2018). 

Linear discriminant analysis in ML used in MATLAB means that each class (Y) generates data 

(X) using a multivariate normal distribution. In other words, the model considers (X) has a Gaussian 

mixture distribution. For linear discriminant analysis, the model has the same covariance matrix for 

each class; only the means differ (Balakrishnama and Ganapathiraju 1998). It computes the sample 

mean of each class. Then it computes the sample covariance by first subtracting the sample mean of 

each class from the observations of that class and taking the empirical covariance matrix of the result.  

 

 
(a) 

Fig. 3 (a) Distribution of different variables in the experimental dataset and (b) Distribution of different 

variables in the experimental dataset 
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(b) 

Fig. 3 Continued- 

 
 
Prediction by linear discriminant analysis uses three quantities to classify observations including 

posterior probability, prior probability, and cost. Prediction is classified to minimize the expected 

classification cost. 
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Fig. 4 Process of Machine learning framework 

 

 
Fig. 5 K-Nearest Neighbor 

 
 
Ensemble methods are learning algorithms that create a set of classifiers and then classify new 

data points by taking a weighted vote of their predictions. The original ensemble method is Bayesian 

averaging, but more new algorithms include error-correcting output coding, bagging, and boosting 

(Dietterich 2000). 
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Fig. 6 Linear discriminant analysis 

 
 

4.2 Linear discriminant analysis 
 
The best overall accuracy from all models based on linear discriminant analysis was 86% as linear 

discriminant analysis can separate two or more classes of objects with best performance as shown in Fig. 6. 

The flowchart for the linear discriminant analysis is shown in Fig. 7. In order to check the quality of 

classification The receiver operating characteristic (ROC) was plotted in Figs. 8-10. The area under ROC 

curve (AUC) being 1 indicates the best performance. So, an AUC value close to unity means better failure 

mode classification. AUC values for web shear, flexural and ledge failure mode were 0.81, 0.85 and 0.85. 

In order to examine the behavior of ML algorithms, a confusion matrix containing information 

on actual and predicted classifications was employed and plotted on the studied test dataset. It 

displays the total number of observations in each cell. The rows of the confusion matrix refer to the 

true class, and the columns refer to the predicted class. Diagonal and off-diagonal cells refer to 

correctly and incorrectly classified observations. For a particular class (i), the True Positive Ratio 

(TPR) is the number of outputs whose actual and predicted class is class i, divided by the number of 

outputs whose predicted class is class I, and the False Positive Ratio (FPR) is the number of outputs 

whose actual class is not class i, but predicted class is class i, divided by the number of outputs 

whose predicted class is not class i. The Positive Predictive Values (PPV) is the proportion of 

correctly classified observations per predicted class. False Discovery Rates (FDR) is the proportion 

of incorrectly classified observations per predicted class (Moore and Sanadhya 2007). 

The column on the far right of the plot shows the percentages of all the examples predicted 

belonging to each class that are correctly and incorrectly classified. These metrics are usually called 

the precision (or positive predictive value) and false discovery rate, respectively. The row at the 

bottom of the plot shows the percentages of all the examples belonging to each class that are 

correctly and incorrectly classified. These metrics are usually called the recall (or true positive rate) 

and false negative rate, respectively.  

A confusion matrix represents the actual failure modes versus the predicted failure mode was 

applied on the studied test dataset as shown in Fig. 11. As explained before, there are 3 classes of 

failure modes related to reinforced concrete ledge beams either web shear, flexural or ledge failure. 

According to the confusion matrix as shown in Fig. 11, the precision and recall for ledge failure 

mode were 75% and 92.3%, the precision and recall for the web shear failure mode were 93.3% and 

82.4% and the precision and recall for flexural failure mode were 75% and 85.7%. These results 

show that the proposed ML algorithms can effectively predict the failure mode classification of 

reinforced concrete ledge beams. 
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Fig. 7 A flowchart for the linear discriminant analysis 

 
 

Fig. 8 ROC curve for web shear failure mode classification (AUC = 0.81) 
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Fig. 9 ROC curve for flexural failure mode classification (AUC = 0.85) 

 
 

Fig. 10 ROC curve for ledge failure mode classification (AUC = 0.85) 

 
 
5. ML framework for prediction of ultimate shear strength 

 
The main variables for prediction the ultimate shear strength includes 𝑓𝑐

′, d, b, bw, Ld, Lw, Ll, a/d, 

ρv, 𝑓yv, ρh, 𝑓yh, ρl, 𝑓yl and Vu. Multiple linear regression analysis was used to develop equations to 

predict the ultimate shear strength of RC ledge beams based on the type of the failure. Regression 

models are used to describe relationships between variables by fitting a line to the observed data. 

Regression allows you to estimate how a dependent variable changes as the independent variable(s) 

change. Multiple linear regression is used to estimate the relationship between two or more 

independent variables and one dependent variable as shown in Fig. 12. The equation of multiple 

linear regression is defined as 
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(a) 

 

(b) 

Fig. 11 (a) Confusion matrix (TPR and FNR) for failure mode classification (b) Confusion matrix (PPV 

and FDR) for failure mode classification 
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(a) (b) 

Fig. 12 (a) Concept of linear regression and (b) Difference between linear and multiple linear regression 

 
 

    Y = a + b1X1 + b2X2 + … + bnXn + ε                        (1) 

Where 

Y : Dependent variable of the regression 

Xn : Independent variable of the regression 

a : y-intercept (constant term)  

bn : Slope of the regression 

ε : The error term 

The derived equations of each failure mode either web shear, flexural or ledge failure are shown 

in Table 2 based on the studied critical parameters. The coefficient of determination (R2) is also 

shown in Table 2. It should be noted that the best equation is the one that has R2 value close to 100%.  

The coefficient of determination (R2) can be determined as 

R2 = 1 − 
sum squared regression (SSR)

total sum of aquares (SST)
 = 1 −  

∑ (yi − ŷi)²

∑ (yi − ȳ)²
           (2) 

Where  

yi : The y value for observation i 

ȳ : The mean of y value  

ŷi : The predicted value of y for observation i  

 
 
6. Comparison study for reinforced concrete ledge beams 
 

In order to show the reliability of the derived expressions, a comparison of the ultimate shear 

strength for different ledge failure modes was conducted between results obtained from the proposed 

ML models and the results from the reported experiments. In addition, the accuracy of the equations 

used by AASHTO LRFD-2020 and PCI-2020 for evaluating the shear strength of reinforced 

concrete ledge beams was examined. 
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Table 2 Derived equations for prediction of ultimate shear strength of reinforced concrete ledge beams 

Type of failure Derived Equation R2 (%) 

Web Shear failure 
𝑉𝑢 = √𝑓𝑐

′bwd (0.233 a/d + 0.161 ρv 𝑓yv 

- 0.0247 ρh 𝑓yh) 
89.2% 

Flexural failure 
𝑉𝑢 = √𝑓𝑐

′bwd (- 0.234 a/d - 0.167 ρv 𝑓yv 

+ 0.087 ρh 𝑓yh+ 1.442 ρl 𝑓yl) 
98.3% 

Ledge failure 
𝑉𝑢 = 5.49 𝑓𝑐

′ + 7.86 Ld + 2.43 Lw 

- 0.07 Ll + 36.35 ρl 𝑓yl - 1736.43 
94.6% 

General failure 
𝑉𝑢 = √𝑓𝑐

′bwd (0.0003 Ld + 0.002 Lw 

+ 0.00005 Ll - 0.1 a/d - 0.05 ρv 𝑓yv 

+ 0.12 ρh 𝑓yh + 0.06 ρl 𝑓yl) 

96.1% 

ρv, ρh and ρl are in percentage. 

Stresses are in MPa and dimensions are in mm. 

 
Table 3 Design equations used by AASHTO LRFD-2020 for calculating the shear strength of reinforced 

concrete ledge beams 

Type of failure Equation 

Shear friction failure 

between the ledge 

and the web 

𝑉𝑢 = ∅c𝐴𝑐𝑣 + 𝜇∅(𝐴𝑣𝑓𝐹𝑦 + 𝑃𝑐) 

𝑉𝑢 ≤ ∅𝐾1𝑓𝑐
,𝐴𝑐𝑣 

𝑉𝑢 ≤ ∅𝐾2𝐴𝑐𝑣 

𝑉𝑢 ≤ (3.3 + 0.08 ∗ 𝑓𝑐
′)∅𝐴𝑐𝑣  

 

Punching shear 

failure at load point 

𝑉𝑢 = 0.125 √𝑓𝑐
′(𝑊 + 2𝐿 + 2𝑑𝑒)∅𝑑𝑒        (c is greater than S/2)  

𝑉𝑢 = 0.125 √𝑓𝑐
′(𝑊 + 𝐿 + 𝑑𝑒)∅𝑑𝑒           (close to the edge)  

𝑉𝑢 = 0.125 √𝑓𝑐
′(0.5𝑊 + 𝐿 + 𝑑𝑒 + 𝑐)∅𝑑𝑒      (others)  

 

Failure of hanger 

reinforcement 

𝑉𝑢 =
𝐴ℎ𝑟(0.5𝑓𝑦)

𝑠
(𝑊 + 3𝑎𝑓)∅        (service limit state) 

𝑉𝑢 =
𝐴ℎ𝑟𝑓𝑦

𝑠
𝑆∅                    (strength limit state) 

𝑉𝑢 = 0.165√𝑓𝑐
′𝑏𝑓∅𝑑𝑓 +

𝐴ℎ𝑟𝑓𝑦

𝑠
∅(𝑊 + 2𝑑𝑓)      (strength limit state) 

 
Flexural failure of 

ledge reinforcement 𝐴𝑠 ≥
2𝐴𝑣𝑓

3
+ 𝐴𝑛 An ≥

Nuc

∅𝑓y

 

Bearing of concrete 

under the load point 
𝑃𝑢 = 0.85𝑓𝑐

′𝐴1𝑚∅ 

 
 

6.1 AASHTO LRFD-2020 
 
The shear capacity of each failure of ledge either shear friction, punching shear, hanger 

reinforcement, flexural or bearing are shown in Table 3 according to the design equations of 

AASHTO. 
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Fig. 13 Comparison study with the derived equations (R2 = 94.6%) 

 

 

Fig. 14 Comparison study with the design equations of AASHTO LRFD-2020 (R2 = 91.9%). 

 

 

A graphical comparison of ultimate shear strength of ledge failure of reinforced concrete ledge 

beams between results from experimental data and derived equation is shown in Fig. 13, while 

comparison between collected test data and equations from AASHTO appears in Fig. 14. It can be 

clearly observed that the proposed equations where R2 is 94.6% showed better performance than the 

design equations of AASHTO LRFD-2020 where R2 is 91.9%. 

 
6.2 PCI-2020 
 

The equations of shear strength of ledge, transverse bending of ledge, longitudinal bending of  
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Table 4 Design equations used by PCI-2020 for calculating the shear strength of reinforced concrete ledge 

beams 

Type Equation 

Shear strength of 

ledge 

For s > bt + hl 

𝑉𝑢 = 3∅λ√𝑓𝑐
′ hl [2(bl – b) + bt + hl] 

𝑉𝑢 = ∅λ√𝑓𝑐
′ hl [2(bl – b) + bt + hl + 2de] 

For s < bt + hl 

𝑉𝑢= 1.5∅λ√𝑓𝑐
′ hl [2(bl – b) + bt + hl + s] 

𝑉𝑢= ∅λ√𝑓𝑐
′ hl [(bl – b) + (

bt + h𝑙 

2
)+ de +s] 

Transverse 

(cantilever) bending 

of ledge 

𝐴𝑠 =
1

∅𝑓y
[𝑉𝑢 (

𝑎

𝑑
) + 𝑁𝑢 (

h𝑙 

𝑑
)] 

Longitudinal bending 

of ledge 
𝐴𝑙 = 200(𝑏𝑙 − 𝑏) dl/𝑓y   // 

 

Attachment of ledge 

to web 
𝐴𝑠 =

𝑉𝑢

∅𝑓y

(𝑚) 
 

Out-of-plane bending 

near beam end 
𝐴𝑤𝑣 = 𝐴𝑤𝑙 =

𝑉𝑢𝑒

2∅𝑓y𝑑w

 

 

 

Fig. 15 Comparison study with the design equations of PCI-2020 (R2 = 88.2%) 

 

 

ledge, attachment of ledge to web and out-of-plane bending near beam end is shown in Table 4 

according to PCI-2020. 

A graphical comparison of ultimate shear strength of ledge of reinforced concrete ledge beams 

between collected test data and equations from PCI appears in Fig. 15. It can be clearly observed 

that the proposed equation where R2 is 94.6% showed better performance than the design equations 

of PCI-2020 where R2 is 88% 
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7. Limitations  
 

 All the available experimental data were collected in the database, but by increasing the 

number of specimens the performance of the machine learning framework can be improved. 

 The derived equations are valid for the range of critical variables (𝑓𝑐
′, d, b, bw, Ld, Lw, Ll, a/d, 

ρv, 𝑓yv, ρh, 𝑓yh, ρl, 𝑓yl ) as shown in Table 1. 

 

 
8. Conclusions 

 
A data-driven machine learning (ML) framework for predicting ultimate shear strength and 

failure modes of reinforced concrete ledge beams has been presented. The available database was 

analyzed using different ML algorithms to identify critical parameters of reinforced concrete ledge 

beams. Based on the results of this study, the following can be concluded:  

 The critical parameters governing prediction of ultimate shear strength and failure mode of 

reinforced concrete ledge beams are design compressive strength of concrete, beam depth, beam 

width, beam web width, ledge depth, ledge width, ledge length, shear span-to-depth ratio, web 

vertical reinforcement ratio, yield strength of web vertical reinforcement, web horizontal 

reinforcement ratio, yield strength of web horizontal reinforcement, vertical reinforcement ratio 

of ledge and yield strength of vertical reinforcement of ledge. 

 Machine learning algorithms can effectively predict different failure modes of reinforced 

concrete ledge beams either web shear failure, flexural failure, or ledge failure. The best ML 

algorithm is linear discriminant analysis with an overall accuracy of 86%. 

 The proposed ML equations showed good predictions for ultimate shear strength of different 

failure modes of reinforced concrete ledge beams and can be safely used for design purposes. 

 The predictions of ultimate shear strength of ledge of reinforced concrete ledge beams using 

the proposed ML equations indicated better performance than the design equations of AASHTO 

LRFD-2020 or PCI-2020.  
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