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Abstract.  This paper proposes a data-driven methodology for online early damage identification under changing 
environmental conditions. The proposed method relies on two data analysis methods: feature-based method and hybrid 
principal component analysis (PCA) and kernel PCA to separate damage from environmental influences. First, spectral 
sub-band features, namely, spectral sub-band centroids (SSCs) and log spectral sub-band energies (LSSEs), are 
proposed as damage-sensitive features to extract damage information from measured structural responses. Second, 
hybrid modeling by integrating PCA and kernel PCA is performed on the spectral sub-band feature matrix for data 
normalization to extract both linear and nonlinear features for nonlinear procedure monitoring. After feature 
normalization, suppressing environmental effects, the control charts (Hotelling T2 and SPE statistics) is implemented 
to novelty detection and distinguish damage in structures. The hybrid PCA-KPCA technique is compared to KPCA by 
applying support vector machine (SVM) to evaluate the effectiveness of its performance in detecting damage. The 
proposed method is verified through numerical and full-scale studies (a Bridge Health Monitoring (BHM) Benchmark 
Problem and a cable-stayed bridge in China). The results demonstrate that the proposed method can detect the structural 
damage accurately and reduce false alarms by suppressing the effects and interference of environmental variations. 
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1. Introduction 
 

The structural health monitoring (SHM) process provides timely and exact information regarding 

the performance of structures under gradual, and sometimes sudden, changes in their condition to 

ensure durability, safety, and serviceability of the structures and prevent economic and human losses. 

In the field of SHM, vibrationbased damage identification approaches have been extensively 

developed for the past few decades to diagnosis damage of civil infrastructure systems, especially 

bridges. The underlying idea of these methods is that damage-derived alterations in the physical 

properties will result detectable changes in the structural characteristic properties, which in turn will 

affect the vibration responses (Doebling et al. 1996). Thus, the damage assessment process can be 
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implemented by using damage-sensitive features reecting the irregularity in the dynamic information 

or the changes of vibration data that occur in the damaged structure. Data interpretation techniques 

can be categorized into two classes in SHM: inverse or model-based techniques and data-driven 

techniques (Zhang et al. 2019, Razavi and Hadidi 2020, Sajedi and Liang 2020, Pan et al. 2018). 

Model-based methods rely on finite element (FE) analyses to connect the structural model to 

measurements by updating the FE-model. In contrast, data-driven methods employ only the 

information extracted from processed, or direction, dynamic measurements to predict damage. 

Data-driven monitoring techniques in which damage can be identified by employing only the 

measured vibration responses have been widely accepted in online SHM under operational and 

environmental conditions. These approaches aim to provide damage information by extracting 

sensitive features from the recorded dynamic response of the healthy structure, monitoring the 

structure by any alteration in the features. Many studies have been conducted in data-driven 

structural damage assessment based on changes in natural frequencies (Gillich et al. 2017), modal 

strain energy (Moughty and Casas 2017), or modal curvature (Shokrani et al. 2018). Moreover, 

artificial neural networks (Nguyen et al. 2019), Bayesian networks (Yin and Zhu 2018), genetic 

algorithms (Ramezani and Bahar 2021), support vector machines (Shyamala et al. 2018), and signal 

processing techniques are used, among others, with the aim of structural damage identification. 

Signal processing based approaches can be defined as a tool to extract sensitive features from the 

dynamic response of structures and to interpret this information into a recognition of damage, which 

can then be employed for decision making regarding maintenance management strategies. Feature 

extraction based on signal processing is considered as one of the main components and challenging 

aspect of vibration-based SHM (Goyal and Pabla 2016). Various features extracted using signal 

processing techniques can be used to obtain recognition information, including time-domain features 

(Cao et al. 2017, Azim et al. 2020) (like standard deviation, mean, root mean squares, kurtosis, 

skewness, crest factor, etc.), frequency domain features (Pedram et al. 2018, Oliver et al. 2016, 

Zhang and Aoki 2019) (such as Fourier coefficient, frequency bands, energy in different frequency 

bands, and others), and time{frequency domain features (Pan et al. 2018) (such as amplitude levels 

in timefrequency bands, energy concentration, time-frequency distribution, etc.). Time-frequency 

analysis such as wavelet transform, Hilbert-Huang transform, short-time Fourier transform, and 

empirical wavelet transform have been extensively used to extract damage sensitive features from 

the measured dynamic response (Balafas et al. 2018, Li et al. 2019, Xin et al. 2019, Hamidian et al. 

2018, Ahmadi et al. 2021). 

Data-driven damage detection algorithms are often signifficantly affected by environmental and 

operational variations that may lead to false alarms in detecting damage. In the SHM field, the 

procedure of separating the environmental effects from the structural response is usually called data 

normalization, which can be complex depending on the type of structure. 

In recent years, outputonly approaches, which characterize the effects produced by the 

environmental variations without measuring them, have been applied to structural damage 

recognition. Examples of output-only techniques are the auto-associative neural network (Sohn et 

al. 2002), time series models (Achilli et al. 2021), cointegration (Liang et al. 2018), and principal 

component analysis (PCA). Sousa Tomé et al. (2019) presented a data-based methodology for 

identifying the existence and location of damage in a cable-stayed bridge using multivariate data 

analysis methods. They proposed the combined application of multiple linear regression and 

principal component analysis methods to suppress the effects of environmental and operational 

variations. The changes in principal components of frequency response function (FRF) were also 

used by Esfandiari et al. (2020) for structural model updating and structural damage estimation. 
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Kesavan and Kiremidjian (2012) developed a wavelet-based damage detection technique using the 

principal component analysis. They proposed the damage-sensitive feature vector obtained as a 

function of the wavelet energies at the fifth, sixth, and seventh dyadic scales. Shokrani et al. (2018) 

introduced a PCAbased method to detect and localize damage under the effects of environmental 

variations by performing PCA on mode shape curvatures. Nie et al. (2019) proposed a feature 

extraction method based on wavelet packet transform (WPT) combining with PCA employed for 

damage identification in vibration-based SHM. 

Although the linear PCA has been widely utilized for feature extraction approaches to process 

high-dimensional, highly correlated, and noisy data, it can not reveal nonlinear relationships 

between variables for nonlinear systems. More recently, nonlinear PCA methods, known as kernel 

PCA (KPCA), have attracted significant attention from researchers in the damage detection field. 

Ghoulem et al. (2020) implemented kernel PCA to investigate damage identification of nonlinear 

cable structure and compared it with PCA. Reynders et al. (2014) developed an output-only method 

for structural health monitoring using Gaussian kernel PCA to estimate and eliminate nonlinear 

environmental and operational effects on the monitored features. Santos et al. (2015) compared the 

performance of linear and nonlinear PCA for detecting damage in a three-story frame structure under 

the inuence of operational and environmental variations. The comparative study concluded that 

using the PCA-based algorithm with RBF kernel leads to the best classification performance and 

reduces the number of false alarms. 

The present paper aims to detect structural damage of bridges under changing environmental 

conditions using the normalized feature-based strategy. A data-driven methodology for online early 

structural damage identification is proposed and implemented in a numerical model of a bridge 

benchmark problem and a real cable-stayed bridge (Yonghe bridge). The feature extraction methods 

based on spectral sub-band features and a hybrid model of PCA and KPCA for data normalization 

are combined to present damage index. In the first stage, we propose using two spectral sub-band 

features, namely SSCs and LSSEs, as damagesensitive features for extracting damage information 

from the measured dynamic responses of the structures. These features provide frequency 

information by applying a filter-bank to the power spectrum of the vibration signals. In the second 

stage, a hybrid PCA-KPCA of the extracted features is proposed by closely integrating linear PCA 

and nonlinear KPCA of the features to suppress the effects of environmental variations and reduce 

false alarms. The Hotelling T2 and SPE control charts are employed to identify the abnormal 

procedure operation condition and distinguish damage in the structures. The hybrid PCA-KPCA 

method is compared to KPCA by the SVM classifier to evaluate the effectiveness of its performance 

in detecting damage. Numerical and full-scale studies are carried out to validate the feasibility and 

effectiveness of the proposed method. The results demonstrate the ability of the proposed normalized 

features in detecting structural damage successfully and reducing false alarms by suppressing the 

interference of environmental effects. 

 

 

2. Spectral sub-band features 
 

2.1 Spectral sub-band centroids 
 

Spectral Sub-band Centroids (SSCs) related to spectral peak locations of the signal illustrate at 

what frequency in the filter-bank of the power spectrum the center of mass is located. For each sub-

band, the first centroid is computed to extract the frequency information of the power spectrum and 
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to find SSCs for a frame. Because these features are basically calculated from the power spectrum 

in which locations of spectral peaks are approximately unchanged under noisy conditions, SSC can 

be computed reliably. We assume the FFT amplitude spectrum of a segment by S[k], where k=1, …, 

N is called the discrete frequency indicator. The indicator k=N relates to half the sampling frequency 

fs/2 and the SSC for the m-th sub-band is defined as (Nicolson et al. 2018) 

𝑐𝑚 =
∑ 𝑘𝑊𝑚[𝑘]𝑆𝛾[𝑘]

𝑞ℎ(𝑚)
𝑘=𝑞1(𝑚)

∑ 𝑊𝑚[𝑘]𝑆𝛾[𝑘]
𝑞ℎ(𝑚)
𝑘=𝑞1(𝑚)

 (1) 

where Wm[k] denotes frequency response of the m-th bandpass filter coefficients. ql(m); qh(m) are 

lower and higher edges of m-th sub-band, respectively, and γ is called a constant applied for 

controlling the dynamic range parameter of the power spectrum. The key component of this method 

is the filter-bank, dividing the power spectrum into several frequency bands. In this work, the SSCs 

are calculated by dividing the frequency band uniformly on mel scale, and a value of γ=1 is used. 

 

2.2 Log spectral sub-band energies 
 

The Spectral Sub-band Energy (SSE) coefficients are calculated from the Power Spectral Density 

(PSD) using band filters uniformly on the mel scale. For a frame, the SSE that forms the final 

spectro-temporal representation of the signal is defined as (Chatterjee and Paliwal 2016) 

𝑋𝑖(𝑏) = ∑ ℎ𝑏(𝑘)𝑃̂𝑖(𝑘), 0 ≤ 𝑏 ≤ 𝐵 − 1

𝑘

 (2) 

𝑃̂𝑖(𝑘) =
1

𝑁
|∑ 𝑥𝑖(𝑛)𝑤(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝐾

𝐾−1

𝑛=0

|

2

,   0 ≤ 𝑘 ≤ 𝐾 − 1 (3) 

where hb refers to the b-th filter bank, Pi(k) is power spectral density, K is the DFT length, N the 

frame length, and w(n) is a windowing function. Log spectral subband energies (LSSEs) are local in 

both time and frequency. Spectral sub-band energy coefficients are scaled by the natural logarithm 

to form LSSEs 

𝐿𝑆𝑆𝐸𝑖(𝑏) = 𝑙𝑜𝑔 ∑ ℎ𝑏(𝑘)𝑃̂𝑖(𝑘),   

𝑘

0 ≤ 𝑏 ≤ 𝐵 − 1 (4) 

 

 

3. PCA and kernel PCA 
 

The PCA is a multivariate statistical method in which the original variables are transformed into 

a lower dimension space of uncorrelated principal components properly by their variances without 

missing much information. It extracts a new set of uncorrelated variables with high variances, called 

principal components (PCs), which illustrate changes of the dominant data. The variables with low 

variances are the residual matrix, which can be due to the noise information or environmental effects. 

Soo Lon Wah et al. (2018) The coefficients of the PCs, which are linear combinations of the 
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variables, can be calculated using eigenvectors of the correlation (or covariance) matrix of data. This 

technique with an orthogonal rotate retains only the PCs, also called the number of factors, by 

selecting the first k eigenvectors. Consider a data matrix X∈ ℝ𝑛×𝑚, where each row represents a 

sample, and each column represents a feature. By applying PCA, the data matrix X is decomposed 

as 

X = X̂ + X̅ = ∑ t𝑖

𝑘

𝑖=1

p𝑖
𝑇 + X̅ (5) 

where k denotes the number of retained principal components, t𝑖 ∈ ℝ𝒏 represents the i-th score 

vector or principle component, and p𝑖 ∈ ℝ𝑚 is the corresponding loading vector. Also, X̂ ∈ ℝ𝑛×𝑚 

denotes the matrix reconstructed using the principal components, and X̅ ∈ ℝ𝑛×𝑚  is called the 

residual matrix resulting from the k factors. The PCs in the matrix X are formed in descending order 

according to their respective eigenvalues. The first few PCs are related to the factors with large 

variances, which can reect most of the information of original variables, while the last PC represents 

the factor(s) generating the minimum variances. In kernel principal component analysis, a nonlinear 

mapping Φ(·) projects the original data X onto a higher dimensional feature space ℱ to correlate 

the data linearly. Then, linear PCA is performed on the new feature space ℱ. To avoid defining 

nonlinear mapping, a kernel function is applied to complete the nonlinear transformation. By 

applying the function ker(·, ·), the dot product of two feature vectors Φ(xi) and Φ(xj) can be computed 

according to 

ker(𝑥𝑖 , 𝑥𝑗) = Φ𝑇(𝑥𝑖)Φ(𝑥𝑗) (6) 

for any 𝑥𝑖 , 𝑥𝑗 ∈ ℝ𝑚, no need to do the nonlinear mapping. Typical kernel functions are the Gaussian 

kernel ker(𝑥𝑖 , 𝑥𝑗) = exp (−‖𝑥𝑖 − 𝑥𝑗‖
2

/𝑐), where c>0 is called the kernel width, the radial bases 

function (RBF) kernel ker(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) , where γ>0 is a kernel parameter that 

must be decided, and the polynomial kernel ker(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇 + 𝑑0)𝑑1, where d0 and d1 are the 

polynomial kernel parameters (Santos et al. 2015). Although PCA represents a robust and effective 

monitoring technique, it cannot withstand nonlinear processes. In contrast, kernel PCA is able to 

extract nonlinear properties. Because of the complexity of the procedure monitoring and the 

performance of KPCA, depending on selected kernel parameters, it is most difficult to warranty that 

kernel PCA can accurately capture the procedure characteristics. In addition, many identification 

procedures depend on both linear and nonlinear features. Integrating linear PCA and nonlinear 

KPCA can be represented as a new procedure monitoring by a hybrid model structure. When KPCA 

is employed in damage identification, two multivariate control charts, including the principal 

components score T2 and squared prediction error (SPE) plots, can be used for detecting abnormal 

conditions. One of the multivariate statistical techniques as a procedure control chart used for 

detecting abnormal behavior of a monitoring system is the Hotelling T2 statistic. The presence of 

abnormal values in the control limit can indicate the existence of damage. Investigating the 

variability of data by analyzing the score matrix in the space of PCs, The T2 statistic supposes that 

the underlying procedure pursues a multivariate normal distribution. For the i-th experiment, 

Hotelling’s T2 statistic that is the sum of the normalized squared scores can be defined as follows 

𝑇2 = 𝑡Λ−1 𝑡𝑇 (7) 

where Λ denotes the diagonal matrix of the inverse of the eigenvalues associated with the retained 
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principal components, and t=[t1 t2… tl] includes the linear and nonlinear principal components. The 

confidence threshold (or limits) for T2-statistic can be computed using statistical F-distribution in 

the for 

𝑇𝑙,𝑛,𝛼
2 =

𝑙(𝑛 − 1)

𝑛 − 𝑙
𝐹𝑙,𝑛−𝑙,𝛼 (8) 

where n denotes the number of examples in the training data set applied in the computation of the 

model, F is called the Fisher-Snedecor’s F-distribution, l is the number of the linearnonlinear 

principal components retained, and α parameter, percentage of the F-distribution, is the standard 

deviation. The squared prediction error (SPE), also called the Q-statistic, is the measure of fit of an 

example to the PCA model and is defined as 

𝑆𝑃𝐸 = ∑ 𝑡𝑗
2

𝑛

𝑗=1

− ∑ 𝑡𝑗
2

𝑙

𝑗=1

 (9) 

For the SPE, the control limit obtained by fitting a weighted x2-distribution to the reference 

distribution can be calculated from its approximate distribution 

𝑆𝑃𝐸𝛼~𝑔𝑥ℎ
2 (10) 

Where g denotes a weighting parameter included to compute for the SPE magnitude, and h 

calculates for the freedom degrees. Detailed information on these control charts is given in Lee et 

al. (2004). 

 

 

4. Hybrid model based on PCA and KPCA for damage detection 
 

The proposed hybrid model technique combines linear PCA and kernel PCA using a serial model 

structure to consider linear and nonlinear properties for monitoring procedures. As shown in Fig. 1, 

this approach consists of four-step: (1) linear PCA is applied to obtain linear features, (2) nonlinear 

KPCA is used to obtain nonlinear features, (3) after fusing the linear and nonlinear principal 

components achieved from the previous steps, the KPCA is performed to the new feature matrix to 

compute KPCA decomposition, and (4) the squared prediction error (SPE) plot and principal 

components score plot T2 are applied for detecting abnormal conditions. Given the training data 

matrix X ∈ ℝ𝑛×𝑚, the PCA decomposition is used as (Deng et al. 2018) 

X = ∑ t𝐿𝑖
p𝐿𝑖

𝑇

𝑘𝐿

𝑖=1

+ X̅ (11) 

where t𝐿𝑖
 and p𝐿𝑖

 are i-th linear score vector and corresponding loading vector. kL is the number 

of retained principal components, and X̅ = [𝑥̅1 𝑥̅2 𝑥̅3 … , 𝑥̅𝑁]𝑇 is the data matrix in residual space 

of the PCA. The loading vector can be computed from the eigenvectors of the covariance matrix of 

data X as 

1

𝑛 − 1
XX𝑇p𝐿𝑖

= λ𝐿𝑖
p𝐿𝑖

 (12) 

where λ𝐿𝑖
 is the i-th eigenvalue. For a testing vector xt, t𝐿𝑖

= 𝑥𝑡
𝑇p𝐿𝑖

 . By applying the KPCA  

184



 

 

 

 

 

 

Damage detection of bridges based on spectral sub-band features and hybrid modeling… 

 

Fig. 1 Schematic for hybrid modeling based on PCA and KPCA 

 

 

analysis of a feature matrix SSCs or LSSEs in a higher dimensional space ℱ, KPCA decomposition 

is obtained as 

Φ(X) = ∑ t𝑁𝑖
(p𝑁𝑖

)𝑇

𝑘𝑁

𝑖=1

+ 𝐸 (13) 

where kN denotes the number of retained kernel principal components, t𝑁𝑖
∈ ℝ𝑛  is the i-th 

nonlinear score vector, p𝑁𝑖
∈ ℱ is related to the row of the loading vector, and E ∈ ℝ𝑛 × ℱ is 

called the residual matrix of the KPCA. The nonlinear score vectors t𝑁𝑖
 and loading vectors p𝑁𝑖

 

of the KPCA can be computed by the decomposition of the covariance matrix as 

1

𝑛 − 1
Φ𝑇(X)Φ(X)p𝑁𝑖

= 𝜆𝑁𝑖
p𝑁𝑖

 (14) 

where 𝜆𝑁𝑖
 is the i-th eigenvalue of matrix and there exist projection vectors 𝛼𝑖 =

[𝛼𝑖,1 𝛼𝑖,2 … 𝛼𝑖,𝑛]𝑇. 

p𝑁𝑖
= ∑ 𝛼𝑖,𝑗Φ(𝑥𝑗) = Φ𝑇(X)

𝑛

𝑗=1

𝛼𝑖 (15) 
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Fig. 2 Flowchart showing the methodology for damage identification 

 

 

t𝑁𝑖
= Φ𝑇(𝑥𝑡)p𝑁𝑖

= ∑ 𝛼𝑖,𝑗

𝑗=1𝑛

Φ𝑇(𝑥𝑗)Φ(𝑥𝑡) (16) 

A new feature space is constructed by combining the linear PCA and nonlinear KPCA modeling 

of the feature matrix as 

X̃ = [X − X̅    Φ(X) − E] (17) 

The KPCA analysis is performed on the linear-nonlinear feature matrix X̃ to the decomposition 

process. After the feature normalization procedure using the above hybrid modeling, two monitoring 

statistics (T2 and SPE) are constructed for novelty detection. In order to identify the damage 

condition for the SPE and T2 monitoring charts, the threshold value is defined based on the 

confidence limit over the entire training features in the undamaged states. For each monitoring 

statistic, the confidence limit is required to examine if a damage occurs. The confidence limits for 

T2 and Q statistics are computed using F distribution and weighted x2-distribution. 

 

 

5. Process of damage detection 
 

According to the above analysis, it can be stated that the damage features normalized by a hybrid 
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model of PCA and KPCA will have an obvious jump after the damage occurred. The proposed 

method can remove the environmental factors from the measured response of a structure and reduce 

false alarms, based on which structural damage can be detected accurately. The detail process is 

described as follows (Fig. 2): 

1. A dataset containing the acceleration time-series of the measured structural response is split 

into specified sections to the feature extraction procedure. The dataset related to the normal operating 

status (healthy) is considered as the baseline data. 

2. Spectral subband features for a frame of raw data are calculated as damage features. These 

indicators include SSCs and LSSEs as potential candidates for extracting damage information. A 

comparison is also made between two feature matrices to investigate their ability and sensitivity in 

showing structural damage. 

3. A data normalization procedure is performed on each of the feature matrices by hybrid 

modeling of linear PCA and nonlinear KPCA. Combining PCA and KPCA modeling presents a new 

and viable alternative to procedure monitoring. Using the model, which considers both linear and 

nonlinear features, can remove the effect caused by the environmental change except the structural 

damage, also leading to improvement in the identification process performances. In order to 

determine the optimal number of principal features in this paper, the few principal components (PCs) 

with the largest eigenvalues are selected as the retained features, yielding high classification 

accuracy in detecting damage by the SVM classifier. 

4. After the damage feature matrix is normalized, tow monitoring statistics or control charts are 

applied for novelty detection. The Multivariate control charts include Hotelling’s T2 statistics and 

the Squared Prediction Error (SPE) for online monitoring. Once damage occurs, the dynamic 

balance is disturbed, which leads to an obvious jump in the control chart. It should be noted that all 

calculations were carried outusing the MATLAB software. 

 

 

6. Numerical benchmark and full-scale studies 
 

6.1 Numerical model simulations 
 

As the first phase to demonstrate the feasibility of the proposed method for damage identification, 

a numerical model of a Bridge Health Monitoring Benchmark Problem is used for the simulations. 

The numerical benchmark problem was conducted by University of Central Florida (UCF), and the 

vibration data of the bridge model were accessible. The physical structure that is a steel grid model 

includes two spans in the longitudinal direction with continuous girders across the middle columns, 

and seven transverse beams connecting tow the girders, as shown in Fig. 3. The bridge has tow 5.49 

m longitudinal girders, 1.83 m wide, and 1.07 m columns. Details about the benchmark problem can 

be found at the benchmark bridge website (http://cee.ucf.edu/people/catbas/benchmark.htm) and 

Gul and Catbas (2011). A finite element model of the bridge was generated using 181 elements and 

176 nodes that consist of 1056 degrees of freedom. Three damage patterns were simulated by various 

levels, such as reduced stiffness at connections and boundary condition changes. Several 

accelerometers were placed on the model to record dynamic data under random loading. Four 

accelerometers located on nodes of the model (N1, N2, N4, and N5 in Fig. 3) are selected to collect 

the vertical accelerations. Three damage cases (i.e., cases A, B, and C) with varying levels of damage 

scenarios are considered to illustrate the effectiveness of the proposed methodology in detecting 

damage. 
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Fig. 3 Node numbers for steel grid structure used for the numerical benchmark study (Gul and Catbas 2011) 

 

 

6.1.1 Case A: Release moment at node N3 
For this case, the moment of the transverse beam at node N3 was released by eliminating the 

bolts connecting the longitudinal girder to the transverse beam. The vertical acceleration response 

data at nodes N1 and N2 were recorded from the model, and 10% white noise was artificially added. 

The response data is framed, and 40 filter banks are employed to calculate the spectral sub-band 

features for damage identification. Using spectral sub-band centroids (SSCs) and log spectral sub-

band energies (LSSEs) are proposed as potential candidates for extracting damage-sensitive feature 

matrices. Since not all vectors of the feature space contain damage information, the most efficient 

feature vectors are found by a PCA-based method to create a new feature space that carries the most 

significant information about the structural damage. For this purpose, after the feature extraction 

process, the proposed hybrid modeling of linear PCA and nonlinear KPCA is performed on spectral 

sub-band features (SSCs and LSSEs) to normalize data and reduce the dimension of the feature 

space. A comparison of two spectral sub-band features is carried out to investigate their ability for 

structural damage detection. In the proposed hybrid modeling of PCA-KPCA, kL=1 PCs for the PCA 

and kN=3 nonlinear PCs for the KPCA with the Gaussian kernel are considered to normalize the 

SSCs feature matrix. According to Figs. 4 and 5, the control charts of hybrid modeling, both T2 and 

SPE statistics, for this case at node N1 can successfully detect damage while the KPCA T2 statistic 

cannot identify the damage. Fig. 6 illustrates the performance of the SSCs features normalized for 

this case at node N2.  

Results show that the damage index efficiently discriminates between healthy and damaged 

states. However, sensor N1 shows less accuracy than N2 since it is away from the damage location. 

As another alternative, the above normalization procedure is performed on the log spectral subband 

energies to obtain the damage index. Figs. 7 and 8 illustrate that the LSSEs features normalized by 

hybrid modeling of PCA-KPCA lead to satisfying accuracy for classification or prediction of the 

bridge state for this case at node N1 and N2. It is obvious that both T2 and SPE statistics obtained 

from LSSEs features through the normalization process can detect damage with good precision. 

Moreover, the LSSEs perform better than the SSCs in showing damage information and changes in 

structural conditions. 
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Fig. 4 Control charts of KPCA obtained using SSCs features for Case A at node N1 

 

 

Fig. 5 Control charts of hybrid modeling (PCA-KPCA) obtained using SSCs features for Case A at node N1 

 

 
6.1.2 Case B: Releasing moment and removing plate at N3  
In this case, the gusset plates at node N3 and the bolts connecting the transverse beam to 

longitudinal girders were removed. The time series of the accelerations were recorded from the 

bridge at nods N1 and N2, and 10% white noise was added. The spectral sub-band features, SSCs 

and LSSEs, are extracted from the response data to obtain damage sensitive feature matrices. Next,  
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Fig. 6 Control charts of hybrid modeling (PCA-KPCA) obtained using SSCs features for Case A at node N2 

 

 

Fig. 7 Control charts of hybrid modeling (PCA-KPCA) obtained using LSSEs features for Case A at node N1 

 

 

the feature normalization process is performed by hybrid modeling of linear PCA and nonlinear 

KPCA, and two control charts (T2 and SPE) are applied to anomaly detection. In order to evaluate 

the effectiveness of the proposed methodology when LSSEs features extracted from data at node 

N1, the monitoring charts are presented in Fig. 9. It can be seen that the normalized features are 

very sensitive to damage and efficient in identifying damage to this case. In Tables 1 and 2, the  
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Fig. 8 Control charts of hybrid modeling (PCA-KPCA) obtained using LSSEs features for Case A at node N2 

 

 

Fig. 9 Control charts of hybrid modeling (PCA-KPCA) obtained using LSSEs features for Case B at node N1 

 

 

classification precisions of spectral sub-band features normalized is studied using SVM as a 

classifier to show discriminative between damaged and healthy conditions. Results illustrate that the 

proposed methodology is successful in detecting damage with 100% classification accuracy. 
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Table 1 Mean of the monitoring statistic values obtained by extracting the SSCs features normalized using 

hybrid modeling of PCA and KPCA 

Case Situation 
T2 SPE 

Accuracy (%) 
Undamaged Damaged Undamaged Damaged 

Case-B 
N1 6 444 1.8E-10 1.4E-6 100 

N2 7 1727 2.3E-10 1.1E-5 100 

Case-C 
N4 7 2978 2.4E-10 4.4E-5 100 

N5 2.2 498 9.4E-6 1.4E-3 100 

 
Table 2 Mean of the monitoring statistic values obtained by extracting the LSSEs features normalized using 

hybrid modeling of PCA and KPCA 

Case Situation 
T2 SPE 

Accuracy (%) 
Undamaged Damaged Undamaged Damaged 

Case-B 
N1 6 3109 1.8E-10 5.9E-5 100 

N2 5 378 2.3E-10 8.2E-7 100 

Case-C 
N4 5 1305 4.8E-8 -5.4E-6 100 

N5 5 1139 1.4E-10 1.3E-5 100 

 

 

6.1.3 Case C: Boundary support restraint at N6 and N7  
For this case, changes in the boundary conditions occurred and moment releases of the column 

supporting at nodes N6 and N7 were eliminated. The response data was collected from the deck of 

the bridge at nodes N4 and N5, and 10% white noise was added artificially. Feature extraction and 

normalization processes were performed for datasets recorded at this location. In order to evaluate 

the performance of the proposed method in detecting damage, SPE and T2 statistic values are 

presented in Tables 1 and 2. Results clearly demonstrated that spectral sub-band features normalized 

by hybrid modeling of PCA-KPCA effectively discriminate between healthy and damaged 

conditions, which gives average accuracy of 100%, for this case at node N4 and N5.  

 

6.2 Application to Tianjin Yonghe bridge  
 

To validate the effectiveness of the proposed method in suppressing the effect of environmental 

change in practical application, the data recorded from a full-scale bridge, Yonghe cable-stayed 

bridge, is applied and processed. All the monitoring data coming from a real bridge established and 

issued as a benchmark problem by the Center of Structural Monitoring and Control at Harbin 

Institute. The vibration response of the full-scale cable-stayed bridge employed in this problem was 

recorded by a structural health monitoring system before and after the bridge was damaged. This 

benchmark problem can use to validate the damage detection methods (Li et al. 2014).  

 

6.2.1 Description of the cable-stayed bridge  
Tianjin Yonghe Bridge, shown in Fig. 10, is one of the earliest cable-stayed bridges in Mainland 

China and connects Hangu and Tianjin cities. It comprises two towers, 260 m main span, two side 

spans of 25.15 m and 99.85 m each, and 11 m width with a continuous prestressed box girder. The 

bridge was built in 1987, and after 19 working years, cracks were found in the bottom of the mid-

span girder. Rehabilitation works were carried out, and a structural health monitoring system was  
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Fig. 10 General view of the Tianjin Yonghe Bridge (Liang et al. 2018) 

 

 

Fig. 11 Elevation of Tianjin Yonghe Bridge with the main dimensions and accelerations health 

monitoring system (Kaloop and Hu 2015) 

 

 

designed and implemented for the bridge during the repair process. The acceleration monitoring 

system includes 14 uniaxial accelerometers that were permanently installed on the bridge deck to 

monitor and collect vibration responses, as shown in Fig. 11. After the rehabilitation and 

maintenance procedure, the cable-stayed bridge was reopened for operation at the end of 2007. In 

August 2008, two kinds of damage, including a crack occurred in the closure segment at both spans 

and damage in the piers of the bridge, were found through the bridge inspection.  

 

6.2.2 Results of the proposed methodology  
In the present section, the results of the damage identification methodology employed to the 

Yonghe bridge as a benchmark problem are described. This analysis is carried out using the available 

data set that included time histories of accelerations of the bridge deck before and after the damage 

occurred. Time series data for health state include 24 data sets of one hour recorded with the 

sampling frequency of 100 HZ on 17 January 2008. For the damage state, the data sets consist of 

acceleration data of one hour repeated for 24 hours and recorded by deck sensors at the same 

locations on 31 July 2008. The dynamic monitoring data sets recorded from 12 different days, from  
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Fig. 12 Control charts of hybrid modeling (PCA-KPCA) obtained using SSCs features for Yonghe bridge 

at Sensor-1 

 

 

January to July in 2008, namely January 1, January 17, February 3, March 19, March 30, April 9, 

May 5, May 18, May 31, June 7, June 16 and July 31 are available to analyze change procedure of 

the bridge health state. Therefore, selecting the time-series monitoring data from January to July 

2008 can envelop the deterioration procedure of the bridge from health to damage. In order to 

determine damage-sensitive features, the SSCs are extracted from the segmented raw data to 

highlight the most relevant damage information. Twenty filter banks (passband filters) were 

employed to calculate the spectral sub-band features, leading to proper segregation of the vibration 

data in the presence of noises. Since not all sub-band features carry damage information, the 

significant features are determined through the data normalization process to discards irrelevant or 

redundant information and suppress the environmental effects. Hybrid modeling of linear PCA and 

nonlinear KPCA is proposed to normalize data and transform the SSCs feature space to new feature 

space. In the proposed hybrid modeling of PCA-KPCA, kL=2 PCs for the PCA and kN=5 nonlinear 

PCs for the KPCA with the Gaussian kernel are considered for reducing the dimensionality of the 

SSCs feature matrix. After the features are normalized, the SPE and T2 monitoring charts are applied 

for anomaly detection. In this study, 95% confidence limit is computed as the damage identification 

threshold. For the monitoring point AC1 of the bridge, the damage identification result obtained by 

combining SSCs features and the PCA-based method is illustrated in Fig. 12. The result shows that 

normalized SSC features, as damage index, effectively discriminate between healthy and damaged 

conditions for both SPE and T2 monitoring charts. It is obvious that hybrid modeling of PCA and 

KPCA exhibits good fitting performance for the spectral subband centroids before April 9. It means 

that an obvious structural alteration compared with the confidence limit did not occur from January 

1 to April 9. In the feature normalization step, a comparative study between KPCA and hybrid PCA-

KPCA methods is carried out using support vector machine (SVM) as a classifier to evaluate their 

performance in detecting damage. In the classification procedure, repeated random sub-sampling  
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Table 3 Classification accuracy of SSCs features normalized by two methods for the cable-stayed bridge (%) 

Situation KPCA Hybrid modeling of PCA and KPCA Performance improvement 

Sensor-1 92.1 99.6 7.5 

Sensor-2 93.2 98.4 5.2 

Sensor-4 94.1 98.3 4.2 

Sensor-6 92.1 97.3 5.2 

 

 

Fig. 13 Control charts of hybrid modeling (PCA-KPCA) obtained using SSCs features for Yonghe bridge 

at Sensor-2 

 

 

validation technique is employed to cross-validation, and 50% of data is randomly selected as the 

train set and the other 50% as the test set. Time histories of the accelerations for the health condition 

(data recorded in January 2008) and the damaged condition (data recorded in July 2008) are 

considered as input data. The classification accuracies of SSCs features normalized by KPCA, and 

hybrid PCA-KPCA methods are computed by the SVM classifier for the monitoring points (AC1, 

AC2, AC4, and AC6), as presented in Table 3. Compared with the KPCA, results indicate that the 

use of the hybrid method to feature normalization improves the performance of the damage detection 

process so that the classification accuracy of 99.6% is achieved for the monitoring point AC1.  

Moreover, the SSCs extraction and feature normalization procedures are performed using the 

measured data of the acceleration recorded in the selected location of the sensor AC2. Fig. 13 refers 

to the bridge behavior from healthy to damaged conditions obtained by monitoring charts for the 

monitoring dates. According to the result, both SPE and T2 control charts can identify damage 

successfully. As potential candidates for showing damage features, the LSSEs are extracted from 

the acceleration data recorded in the selected locations of the sensors AC2 and AC4. Twenty filter 

banks (passband filters) are used to obtain the spectral subband features as input for the 

normalization process. The hybrid PCA-KPCA algorithm is performed to create effective features 

in the new feature space, of which the dimension is reduced by selecting the number of principal 
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Fig. 14 Control charts of hybrid modeling (PCA-KPCA) obtained using LSSEs features for Yonghe 

bridge at Sensor-2 

 

 

Fig. 15 Control charts of hybrid modeling (PCA-KPCA) obtained using LSSEs features for Yonghe 

bridge at Sensor-4 

 
 

components. In the hybrid PCA-KPCA, kL=2 PCs for the PCA and kN=4 nonlinear PCs for the 

KPCA with the Gaussian kernel are considered to remove irrelevant features. After the feature 

normalization process, the SPE and T2 control charts are used for abnormal detection. Figs. 14 and 

15 show the bridge behavior from healthy to damaged conditions for the monitoring points AC2  
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Table 4 Classification accuracy of LSSEs features normalized by tow methods for the cable-stayed bridge (%) 

Situation KPCA Hybrid modeling of PCA and KPCA Performance improvement 

Sensor-1 89.6 98.9 8.3 

Sensor-2 90.2 97.3 7.1 

Sensor-4 90.1 96.2 6.1 

Sensor-6 90.4 96.1 5.7 

 
 

and AC4, respectively. According to both SPE and T2 monitoring charts, the results show that 

normalized LSSE features, as damage index, can detect the damage successfully and present a good 

fitting performance of the bridge behavior. Table 4 presents the classification precisions obtained by 

the SVM classifier for LSSE features normalized by KPCA and hybrid PCA-KPCA techniques for 

the monitoring points (AC1, AC2, AC4, and AC6). It is found that the hybrid method has better 

accuracy than the KPCA method for feature normalization since they give a classification accuracy 

of about 99% for the monitoring point AC1. The elimination of the effects of environmental and Fig. 

13 Control charts of hybrid modeling (PCA-KPCA) obtained using SSCs features for Yonghe bridge 

at Sensor-2 operational changes was performed by reducing the damage-sensitive feature matrix 

without significant loss of damage information. The proposed feature matrix is transformed using 

the hybrid modeling of PCA and KPCA, which fuses the linear and nonlinear features, into new 

uncorrelated features arranged by their variances while preserving damage information to remove 

the irrelevant or redundant information. The new features with high variances indicate the 

dominating data variations, while other features with low variances are often thought to be the noise 

information or the influences of environmental and operational changes.  

 

 
7. Conclusions 

 

A novel data-driven methodology based on normalized spectral sub-band features for early 

damage identification is proposed in this paper to suppress, or at least minimize, the interference of 

environmental influences from the structural dynamic responses. As potential candidates in 

revealing damage information from data, the SSCs and LSSEs are proposed and utilized to separate 

vibration data in the presence of noises and is considered as the damage identification features. Since 

not all sub-band features extracted by SSCs or LSSEs processing carry damage information, the 

feature normalization algorithm based on hybrid modeling of linear PCA and nonlinear KPCA is 

proposed. The data normalization process aims to determine effective sub-band features and discard 

irrelevant or redundant information, leading to suppress the environmental effects. After the damage 

features are normalized, the SPE and T2 monitoring charts are employed for anomaly detection. 

Numerical simulation of bridge benchmark problem and then a full-scale example of a cable-stayed 

bridge are used to validate the feasibility of the proposed method for damage identification. The 

numerical simulation study has illustrated that the performance of spectral sub-band features normal-

ized by hybrid PCA-KPCA is highly promising as a damage index for the task of damage detection, 

despite the existence of numerical noise. For the LSSE features, both SPE and T2 monitoring charts 

can detect damage with good accuracy to varying levels of damage cases of the bridge. Although 

normalized SSCs can identify damage successfully, the LSSE features are very sensitive to structural 

damage. Besides, the real cable-stayed bridge study under varying environmental effects powerfully 
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proves that the proposed method can successfully detect the health condition and suppress the 

influences of environmental variations. Finally, a comparative study between KPCA and hybrid 

PCA-KPCA methods is carried out using the SVM classifier to evaluate their performance in 

detecting damage. Compared with the KPCA, the hybrid method for feature normalization improves 

the classification accuracy between around 5% to 8%.  
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