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Abstract.  Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined 
via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric 
have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal 
strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent 
model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives 
fewer number of field components compared to first-order plate model. Hamilton’s principle has been utilized 
for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been 
verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical 
voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-
size plates have been researched. 
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1. Introduction 

 
Piezoelectric foam and metal foam are in the category of smart and porous materials with low 

weight due to possessing different variations of porosities in them (Ahmed et al. 2019, Al-Maliki et 

al. 2019). Applying electric field to piezoelectric material structures yields elastic deformations and 

changed vibrational properties. The variation of porosities in this material causes a significant 

difference between metal foams and other perfect metals. In a non-perfect metal, the material 

characteristics are notably influenced by pore variations. Also, this variation in pores can affect the 

vibration frequencies of engineering structures made of metal foams. This issue can be understood 

from the works done by Chen et al. (2015, 2016). Different from metal foams, there are also 

functionally graded (FG) or ceramic-metal materials in which pore variation effect is very important 

(Medani et al. 2019, Meksi et al. 2019, Mahmoudi et al. 2019). In this material, pores may be 

produced in a phase between ceramic and material (Ait Atmane et al. 2017, Attia et al. 2018, Addou 

et al. 2019). Engineering structures made of this materials are studied to understand their vibration 

behaviors as reported in the works of Wattanasakulpong et al. (2014), Yahia et al. (2015), Atmane 

et al. (2015). Most recently, Ebrahimi et al. (2019) studied free vibrations of metal foam cylindrical 
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shells with different porosity distributions.  

Recent studies focus on engineering structures at nano-scales due to their involvement in nano-

mechanical systems or devices (Ebrahimi and Barati 2016, Li et al. 2013, Liu et al. 2016). However, 

the main issue in these studies is to select an appropriate elasticity theory accounting for small scale 

impacts. The impact of size-dependency might be considered with the help of a scale parameter 

involved in non-local theory of elasticity Eringen (1983). The word "non-local" means that the 

stresses are not local anymore. This is because we are talking about a stress field of nano-scale 

structure. Many authors are aware of these facts and they are using this theory to analysis mechanical 

characteristics of small size engineering structures (Eltaher et al. 2016, Natarajan et al. 2012, 

Elmerabet et al. 2017, Zenkour and Abouelregal 2015, Sobhy and Radwan 2017, El-Hassar et al. 

2016, Fenjan et al. 2019, Merazi et al. 2015, Sadoun et al. 2018, Sayyad and Ghugal 2018). Different 

values for nonlocal parameter are considered in research studies (Li et al. 2019). Related to the 

mechanics of porous functionally graded nano-size structures, there are some studies about their 

vibrations or buckling in the literature such as the paper of Mechab et al. (2016). These papers 

showed that pores inside FG material can cause extraordinary dynamic and static properties.  

Strain gradients at nano-scale are observed by many researchers (Lim et al. 2015). Thus, 

nonlocal-strain gradient theory was introduced as a general theory which contains an additional 

strain gradient parameter together with nonlocal parameter (Li and Hu 2016, Xiao et al. 2017, Zhou 

and Li 2017). The scale parameters used in nonlocal strain gradient theory can be obtained by fitting 

obtained theoretical results with available experimental data and even molecular dynamic (MD) 

simulations.  

In the present paper, dynamical responses of a porous FGM nanoplates subjected to out-of-plane 

harmonic and in-plane thermo-electric loads have been explored employing a four variables plate 

formulation based upon exact location of neutral surface. Suggested formulation verifies the shear 

deformations impacts and includes fewer number of field variables compared to first-order and 

improved 5-unknown plate formulations. Higher order theories are suitable for thicker structures 

needless of shear correction factor. Some functions have been applied for expressing the pore-

dependent material characteristics. The nanoplate’s equations are arranged in the forms of ordinary 

equations via DQ method to derive amplitude-frequency curves. Detailed effects of dynamical 

loading factors, nonlocal factor, foundation factors, and pores on amplitude-frequency curves of 

FGM nano-sized plates are explored. 

 

 

2. Nanoplate modeling based on NSGT 
 

In the well-known nonlocal strain gradient theory (Lim et al. 2015), strain gradient impacts are 

taken into accounting together with nonlocal stress influences defined in below relation 

(0) (1)
ij ij ij                                (1) 

in such a way that stress 
(0)
ij is corresponding to strain components kl and a higher order stress 

is related to strain gradient components kl  which are (Lim et al. 2015) 

(0)
0 0( , , ) ( )ijkl klij

V
x x e a x dxC                          (2a) 
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(1) 2
1 1( , , ) ( )ijkl klij

V
l x x e a x dxC                         (2b) 

in which ijklC  express the elastic properties; Also, e0a and e1a are corresponding to nonlocality 

impacts (Semmah et al. 2019, Yazid et al. 2018) and l is related to strains gradients. Whenever two 

nonlocality functions 0 0( , , )x x e a   and 1 1( , , )x x e a   verify Eringen’s announced conditions, NSGT 

constitutive relation may be written as follows 

2 2 2 2 2 2 2 2 2 2

1 0 1 0[1 ( ) ][1 ( ) ] [1 ( ) ] [1 ( ) ]ijkl kl ijkl klije a e a e a l e aC C              (3) 

so that 2  defines the operator for Laplacian; by selecting 1 0e e e   , above relationship 

decreases to 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC                       (4) 

 

 

3. Porous nanoplate model with different porosity distributions 
 

A porous material, for instance a steel foam, might be placed in the category of lightweight 

materials and can be applied in several structures such as sandwich panels. Often, pore variation 

along the thickness of panels/plates results in a notable alteration in every kind of material property. 

When the pore distribution inside the material is selected to be non-uniform, the metal foam might 

be defined as a functionally graded material since its properties obey some specified functions. 

Herein, the following types of pore dispersion will be employed 

 Uniform kind 

2 0(1 )E E e                                (5a) 

2 0(1 )e                                (5b) 

2 0(1 )e                                (5c) 

 Non-uniform kind 1 

2 0( ) (1 cos )
z

E z E e
h

 
   

 
                     (6a) 

2 0( ) (1 cos )
z

z e
h


 

 
   

 
                     (6b) 

2( ) (1 cos )m

z
z e

h


 

 
   

 
                    (6c) 
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 Non-uniform kind 2 

2 0( ) (1 cos )
2 4

z
E z E e

h

  
   

 
                   (7a) 

2 0( ) (1 cos )
2 4

z
z e

h

 
 

 
   

 
                   (7b) 

2( ) (1 cos )
2 4

m

z
z e

h

 
 

 
   

 
                   (7c) 

The most important factors in above relations are the greatest values of material properties 

E2, α2 and 2  . For a piezoelectric foam all material properties (P) including elastic 

constants (cij), piezo-electric constants (eij) and dielectric coefficients (kij) can be described 

via the function 2 0(1 )P P e     for uniform porosities and 2 0(1 cos )
z

P P e
h

 
   

 
 for 

non-uniform porosities. Also, there are two important factors related to pores and mass 

which are e0 and em as 

2 2
0

1 1

1 1
E G

e
E G

                               (8a) 

2

1

1me



                                 (8b) 

Based on the open cell assumption of porous material, we use the following relations 

2

2 2

1 1

E

E





 
  
 

                              (9a) 

01 1me e                               (9b) 

Based on uniformly distributed pores, the following parameter is used in Eq. (5) as 

2

0

0 0

1 1 2 2
1 1e

e e


 

 
     

 
                    (10) 

By defining exact location of neutral surface, the displacement components based on axial u, 

lateral v, bending wb and shear ws displacements may be introduced as 

    * **, , , , , ( ) [ ( ) ] s
x

bw w
r z r

x
u x y z t u x y t z

x
 

 
  

 
            (11a) 
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    * **, , , , , ( ) [ ( ) ] s
y

bw w
r z r

y
u x y z t v x y t z

y
 

 
  

 
              (11b) 

( , , , ) ( , , )z b su x y z t w x y t w w                        (11c) 

so that 
/2 /2

*

/2 /2
( ) / ( )

h h

h h
r E z zdz E z dz

 
    

/2 /2
**

/2 /2
( ) ( ) / ( )

h h

h h
r E z z dz E z dz

 
                     (12) 

Here, third order shear function is employed as 

3

2

5
( )

4 3

z z
z

h
                                 (13) 

Accordingly, we can calculate the components of the strain field based upon the four variables 

plate assumptions 
2 2

* **

2 2

2 2
* **

2 2

2 2
* **

( ) [ ( ) ]

( ) [ ( ) ]

2( ) 2

( ) (

[ ) ]

)

(

,

x

y

xy

yz

b s

b s

b s

s s
xz

w wu
z r z r

x x x

w wv
z r z r

y y y

w wu v
z r z r

y x x y x y

w w

y x
g z g z







 









 
    

  

 
    

  

  
     

     

 

 
  

         (14) 

Considering the fact that foam nanoplate is under electrical field with electrical potential ( ), one 

can define the potential in following form as functions of electrical voltage (VE) 

2
( , , , ) cos ( ) ( , , ) E

z
x y z t z x y t V

h
                        (15) 

with / h  . Calculating the three-dimensional gradient of electrical potential gives the electrical 

field components (Ex, Ey, Ez) as follows 

, cos ( ) ,x xE z
x





  


                          (16a) 

, cos( ) ,y yE z
y





  


                        (16b) 

,

2
sin ( ) E

z z

V
E z

h
                               (16c) 
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Next, one might express the Hamilton’s rule as follows based on strain energy (U) and kinetic energy 

(T) 

0
( ) 0

t

U T V dt                              (17) 

and V is the work of non-conservative loads. Based on above relation we have 

  

(1) (1) (1)

(1) (1)

(

)

xx xx xx xx yy yy yy yy xy xy xy xy
V

yz yz yz yz xz xz xz xz x x y y z z

U

D E D E D E dV

                  

              

        

        


  (18a) 

Placing Eq. (14) in Eq.(18(a)) leads to 

2 2

2 20

2 2 2

2 2

2

0
[ [ ] [ ]

( ) 2

2 ]

c

b
b sb s

xx xx xx yy

b s bb s b
yy yy xy xy

s s s s
xy yz xz

x

a w wu w w v w w

x x x x x y y y

w w wu v w w w w
M M N M

y y y x x y y x x y

w w w
M Q Q dydx

x y y x

D

U N M M N
    

     

  


      

  
       

       
      

         

  
  

   

 

  

/2

0 0 /2
os( ) cos( ) sin( )

a b h

y z
h

z D z D z dzdydx
x y

 
       



    
    

     
  

(18b) 

in which 

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0

/2

( )

( )

( )

( )

(

h

xx xx xx xx xx
h

h

xy xy xy xy xy
h

h

yy yy yy yy yy
h

h
b b b

xx xx xx xx xx
h

h
s

xx xx xx
h

N dz N N

N dz N N

N dz N N

M z dz M M

M f

 

 

 

 

 











   

   

   

   

 










(1) (0) (1)

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (

/2

)

( )

( )

( )

( )

s s

xx xx

h
b b b

yy yy yy yy yy
h

h
s s s

yy yy yy yy yy
h

h
b b b

xy xy xy xy xy
h

h
s s

xy xy xy xy
h

dz M M

M z dz M M

M f dz M M

M z dz M M

M f dz M

 

 

 

 









 

   

   

   

  








0) (1)

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

( )

( )

s

xy

h

xz xz xz xz xz
h

h

yz yz yz yz yz
h

M

Q g dz Q Q

Q g dz Q Q

 

 







   

   




                 (19a) 
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where 

/2 /2
(0) (0) (1) (1)

/2 /2

/2 /2
(0) (0) (1) (1)

/2 /2

/2 /2
(0) (0) (1) (1)

/2 /2

/2
(0) (0)

/2

( ) ,    ( )

( ) ,    ( )

( ) ,    ( )

(

h h

ij ij ij ij
h h

h h
b b b b

ij ij ij ij
h h

h h
s s s s

ij ij ij ij
h h

h
i

xz xz
h

N dz N dz

M z dz M z dz

M f dz M f dz

Q g

 

 

 



 

 

 



 

 

 



 

 

 
/2

(1) (1)

/2

/2 /2
(0) (0) (1) (1)

/2 /2

) , ( )

( ) , ( )

h
i

xz xz
h

h h
i i

yz yz yz yz
h h

dz Q g dz

Q g dz Q g dz



 



 



 

 

 

  

  

             (19b) 

for which (ij=xx, xy, yy). The variation for the work of non-conservative force is expressed by 

0 0

0 0

0

( ) ( ) ( ) ( )
(

( ) ( )
2 ( )( ) ( )

( ) ( ) ( ) ( )
( ( ))( ))

a b
b s b s b s b s

x y

b s b s
xy w dynamic b s b s

E T b s b s b s b s
p

w w w w w w w w
V N N

x x y y

w w w w
N k q w w w w

x y

w w w w w w w w
k N N dydx

x x y y

 


 

 

       
 

   

   
    

 

       
   

   

 

     (20) 

where 0 0 0, ,x y xyN N N  denote membrane forces; kw, kp are elastic substrate constants. Moreover, 

qdynamic is the applied force from periodic mechanical loading. Also, the kinetic energy variation is 

obtained as 

(21a) 

in which 

(21b) 

 
Substituting Eqs. (18)-(21) into Eq. (17) then collecting the coefficients for field variables results 

in
 
four equations of motion for piezoelectric plates 

 
 

0 1
0 0

2 3

( ) ( )
[ ( ) (

) ( ) (

a b
b s b s b b b

b s s s s b b b b

w w w w w w wu u v v u u v
K I I

t t t t t t t x t x t t t y t

w w w w w w w w wv u u v v
I I

y t t t x t x t t t y t y t t x t x t y t y

    


     

            
     

              

            
      
                     

 

4 5

)

( ) ( )]s s s s b s s b b s s b

t

w w w w w w w w w w w w
I I dydx

x t x t y t y t x t x t x t x t y t y t y t y t

     



           
     

                       

/2
* * 2 ** * ** ** 2

0 1 2 3 4 5
/2

( , , , , , ) (1, ,( ) , ,( )( ),( ) ) ( )
h

h
I I I I I I z z z z f z z z f z f z z dz


      
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3 32
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x y t x t x t

  
   

                       (22a) 
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                      (22b) 
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           

   

    
       

      

(22c) 
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    
         

      

 (22d) 

/2

/2
cos( ) cos( ) sin( ) 0

h yx
z

h

DD
z z z D dz

x y
   



 
   

  
             (22e) 

in which electric force may be defined as 
/2

31
/2

2h
E E

h

V
N e dz

h
  . Thermal load can be calculates 

as 
/2

11
/2

h
T

h
N c T dz


  . Also, note that for a metal foam plate the piezoelectric effect must be 

neglected and therefore Eq. (22(e)) must be deleted. 
Next, all edge conditions for x = 0 , a and y = 0 , b may be expressed by (Draiche et al. 2016) 

Specify bw  or 0

b b bb
xy yy xyxx

x y

M M MM
n n

x y y x

     
               

 

0

s s ss
xy yy xyxx

xz x yz y

M M MM
Q n Q n

x y y x

     
                 

       (23a) 

Specify 
bw

n




 or 2 2 0b b b

xx x x y xy yy yM n n n M M n    

Note that 
() () ()

x yn n
n x y

  
 

  
 ; nx and ny respectively define axial and lateral normal 

vectors at edges, and non-classic edge condition may be written as 

Specify 

2

2

bw

x




 or (1) 0b

xxM   

Specify 

2

2

bw

y




 or (1) 0b

yyM                        (23b) 
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Specify 

2

2

sw

x




 or (1) 0s

xxM   

Specify 

2

2

sw

y




 or (1) 0s

yyM   

Furthermore, we can define the relations between the stresses and the strain field based upon the 

four variables plate assumptions 

1 0 0 0

1 0 0 0
( )2 2) ) 0 0 (1 )/2

21 0 0 (1 )

(1 (1 0 0

0 0

0

/2

(1 )/20 0 0

vx x

y y

xy xy

yz yz

xz xz

v
E z

v
v v

v

 

 

 

 

 

      
 



  
   
   
   
   

    
    
    
     

     

    (24) 

For a piezoelectric foam nanoplate, the constitutive relations become 

11 12 31(1 (12 2) )[ ]xx xx yy zc c e E                        (25a) 

12 11 31(1 (12 2) )[ ]yy xx yy zc c e E                      (25b) 

66(1 (12 2) )xy xyc                        (25c) 

55 15(1 (12 2) )xz xz xc e E                          (25d) 

55 15(1 (12 2) )yz yz xc e E                        (25e) 

15 11(1 (12 2) )x xz xD e k E                        (25f) 

15 11(1 (12 2) )y yz yD e k E                       (25g) 

31 31 33(1 (1 (2 2 2) ) 1 )z xx yy zD e e k E                    (25h) 

So that 

2 2

13 13
11 11 12 12 66 66

33 33

2

13 33 33
31 31 11 11 33 33

33 33

, ,

, ,

c c
c c c c c c

c c

c e e
e e k k k k

c c

    

    

                 (26) 

After integrating Eq. (24) in thickness direction, we get to the following relationships 
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1 0
2

(1 ) 1 0
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N A vy
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vNxy u v

y x

 

  
       

     
        

 
  

             (27) 

2 2
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     (28) 
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    (29) 
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y

 
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    

    
  

  

 
 
 

                  (30) 
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  
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  
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  (31) 

Two equations of motion for metal foam plate based on neutral surface location will be achieved 

by placing Eqs. (27)-(30) in Eqs. (22) by 
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( )
)( (

(1 ( 2 ) (1 ( 2 )
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For the piezoelectric foam nanoplate, the governing equations discarding in-plane displacements 

become 
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4. Solution by differential quadrature method (DQM) 
 

In the present chapter, differential quadrature method (DQM) has been utilized for solving the 

governing equations for NSGT porous FG nanoplate. According to DQM, at an assumed grid point 

(𝑥𝑖 , 𝑦𝑗)  the derivatives for function F are supposed as weighted linear summation of all functional 

values within the computation domains as 

𝑑𝑛𝐹

𝑑𝑥𝑛 | 𝑥=𝑥𝑖
= ∑ 𝑐𝑖𝑗

(𝑛)
𝐹(𝑥𝑗)𝑁

𝑗=1                       (42) 

where 

𝐶𝑖𝑗
(1)

=
𝜋(𝑥𝑖)

(𝑥𝑖−𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 = 1,2, … , 𝑁,        𝑖 ≠ 𝑗        (43) 

in which 𝜋(𝑥𝑖) is defined by 

𝜋(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)𝑁
𝑗=1 ,      𝑖 ≠ 𝑗                   (44) 

And when 𝑖 = 𝑗 

𝐶𝑖𝑗
(1)

= 𝑐𝑖𝑖
(1)

= − ∑ 𝐶𝑖𝑘
(1)𝑁

𝑘=1 ,     𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘, 𝑖 = 𝑗          (45) 

Then, weighting coefficients for high orders derivatives may be expressed by 

𝐶𝑖𝑗
(2)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1
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= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(2)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(2)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(3)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(3)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

          𝑖, 𝑗 = 1, 2, … , 𝑁. 

𝐶𝑖𝑗
(5)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(4)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(4)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

   

𝐶𝑖𝑗
(6)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(5)

𝑁

𝑘=1

= ∑ 𝐶𝑖𝑘
(5)

𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

(46) 

According to presented approach, the dispersions of grid points based upon Gauss-Chebyshev-

Lobatto assumption are expressed as 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖 − 1

𝑁 − 1
𝜋)]       𝑖 = 1, 2, … , 𝑁, 

𝑦𝑗 =
𝑏

2
[1 − cos (

𝑗 − 1

𝑀 − 1
𝜋)]       𝑗 = 1, 2, … , 𝑀, 

(47) 
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Next, the time derivative for displacement components may be determined by 

( , , ) ( , ) i t

b bw x y t W x y e                         (48) 

( , , ) ( , ) i t

s sw x y t W x y e                        (49) 

( , , ) ( , ) i t

mnx y t x y e                          (50) 

where Wb and Wn denote vibration amplitudes and 𝜔 defines the vibrational frequency. Then, it is 

possible to express obtained boundary conditions as 

2 2 2 2

2 2 2 2

4 4 4 4

4 4 4 4

0,

0 

0 

b s

b s b s

b s b s

w w

w w w w

x x y y

w w w w

x x y y

   

   
   

   

   
   

   

                   (51) 

Now, one can express the modified weighting coefficients for all edges simply-supported as 

𝐶1̅,𝑗
(2)

= 𝐶𝑁̅,𝑗
(2)

= 0,       𝑖 = 1, 2, … , 𝑀, 

𝐶𝑖̅,1
(2)

= 𝐶1̅,𝑀
(2)

= 0,       𝑖 = 1, 2, … , 𝑁.                    (52) 

and 

𝐶̅
𝑖𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶̅
𝑘𝑗
(2)𝑁

𝑘=1        𝐶̅
𝑖𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶̅
𝑘𝑗
(3)𝑁

𝑘=1               (53) 

By substituting Eqs. (48)-(50) into Eqs. (34) and (36), and using the DQM, one obtains 

 2[ ] [ ]

0

dynamicbmn

ex smn dynamic

mn

W

K

Q

W QM

  
  

    
      

                      (54) 

in which ex is the excitation frequency. Six grid points are adequate for convergence of the method. 

The presented results are based on the below dimensionless factors 

24 4 3

0 2
0 1 2

2 2 2

32

2 2 2

4

2 11 0

, , , , ,
12(1 )

ρ ρ 10
ω , ω ,

E c

pw
w p

ex ex uniform

k ak a k a E h ea l
K K K D

D D D v a a

E ha
a W W

h a q

      


    

  

    (55) 
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Table 1 Electro-mechanical coefficients of material properties of piezoelectric material. 

Properties PZT-4  

11 22(GPa)c c  138.499 

12c  77.371 

13c  73.643 

33c  114.745 

55c  25.6 

66c  30.6 

-2
31 (Cm )e  -5.2 

33e  15.08 

15e  12.72 

2 -2 -1
11 (C m N )k  1.306e-9 

33k  1.115e-9 

(1 / )K  2e-6 

-3(kgm )  
7600 

 
 
5. Discussions on results 
 

Thorough the present section, results are provided for forced vibration investigation of scale-

dependent piezoelectric and metal foam plates formulated by a four-unknown plate theory and 

NSGT. The nano-size foam plate under a periodic dynamical loading has been depicted in Fig. 2. 

Table 1 presents material coefficients for the piezoelectric PZT material. Table 2 provides validation 

study for vibrational frequency of a functionally graded small scale plate with the results obtained 

by Natarajan et al. (2012). Accordingly, the present formulation and DQ solution is capable of giving 

accurate results of nanoplates. In this research, obtained results based on metal foam material are 

presented using the below properties 

 𝐸2 = 200 GPa, 𝜌2 = 7850 𝑘𝑔/𝑚3, 𝑣 = 0.33,  

In Fig. 3, the variation of normalized deflections of a metal foam nano-dimension plate versus 

excitation frequency of mechanical loading is represented for several nonlocality (µ) and stain 

gradients (λ) coefficients when a/h=10. By selecting µ= λ=0, the deflections and vibrational 

frequencies based upon classic plate assumption will be derived. Actually, selecting λ=0 gives the 

deflections in the context of nonlocal elasticity theory and discarding strain gradients impacts. 

Exerting higher values of excitation frequency leads to larger deflections and finally resonance of 

the plate. It can be understand from Fig. 3 that normalized deflection of system will reduce with 

strain gradient coefficient and will rise with nonlocality coefficient. This observation is valid for 

excitation frequencies before resonance. So, forced vibration behavior of the nanoplate system is 

dependent on both scale effects. An important finding is that the resonance frequencies of metal 

foam plate are outstandingly affected by the values of nonlocal and strain gradient coefficients. 
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(a) Non-uniform pore distribution 1 (b) Non-uniform pore distribution 2 

 
(c) Uniform pore distribution 

Fig. 1 Pore types along the thickness direction 

 

 

 

Fig. 2 Configuration of foam nanoplate under dynamical loading 

 

 

Effect of applied electric voltage on the variation of normalized deflections of a piezoelectric 

foam nano-dimension plate versus excitation frequency of mechanical loading is illustrated in Fig. 

4. Uniform porosities with e0=0.2 inside piezoelectric foam have been assumed. One can see that 

applying negative electrical voltages to a nano-scale plate causes greater resonance vibration 

frequencies than applying a positive electrical voltage. Such observation is because of raised  
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(a) λ=0 (b) λ=0.1 

 
(c) λ=0.2 

Fig. 3 Effect of nonlocal and strain gradient factors on response curves of nano-size plate (a/h=10, Kw=0, 

Kp=0, e0=0.5) 

 

 

compressive loads by positive electrical voltages. Such compressive loads may result in the 

decrement in structural stiffness of the nano-scale plate as well as resonance frequency. Also, Fig. 5 

presents a comparison between response curves of piezoelectric and metal foam nanoplates. For 

simplicity, the electric voltage is selected to be zero VE=0. In this condition, piezoelectric foam 

nanoplate has larger resonance frequency than metal foam nanoplate due to having higher stiffness. 
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Fig. 4 Effect of applied electric voltage on response curves (a/h=20, µ=0.2, λ=0, e0=0.2) 

 

 

 

Fig. 5 Comparison between response curves of piezoelectric and metal foam nano-size plates (a/h=20, 

µ=0.2, λ=0, e0=0.2, VE=0) 
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(a) Uniform distribution (b) Non-uniform distribution 1 

 
(c) Non-uniform distribution 2 

Fig. 6 Effect of pore factor and distribution on response curves of the nano-size metal foam plate (a/h=10, 

Kw=0, Kp=0, µ=0.2, λ=0.1) 

 

 

In Fig. 6 one can see the response curves of metal foam plate system with different porosity 

coefficients and dispersions. Effect of surrounding medium is neglected for this figure. It can be 

understand from Fig. 6 that resonance frequency of system will reduce or increase with pore 

coefficient. But, this variation relies on the type of pore dispersion in thickness of nanoplates. 

Uniform pore type gives higher resonance frequencies than other pore types. 

In Fig. 7, normalized deflection variation pursuant to dynamical loading frequency based upon 

different elastic substrate factors has been explored for simple-supported nano-size plates by  
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(a) Kp=0 (b) Kp=2 

 
(c) Kp=5 

Fig. 7 Response curves of the nano-size plate according to a variety of foundation parameters (a/h=10, 

µ=0.2, e0=0.5) 

 

 

assuming a/h=10, µ=0.2, e0=0.5. It is found that increasing the substrate factors leads to greater non-

dimension resonance frequencies. Indeed, by increasing in substrate factors, the resonance 

frequency magnitude will be shifted to higher values and dynamical deflections will reduce. 

In Fig. 8, the response curves of a nano-size piezoelectric foam plate due to periodic dynamical 

loading for various temperature rises have been plotted at µ=0.2, e0=0.2. It is seen from the figure 

that increasing temperature yields smaller resonance frequency, because of the reduction in stiffness 

of nano-size plate. Therefore, considering thermal environments is vital for obtaining the best 

mechanical performances of nanostructures under dynamic loads. 

103



 

 

 

 

 

 

Raad M. Fenjan, Ridha A. Ahmed, Nadhim M. Faleh and Fatima Masood Hani  

 
Table 2 Verification study on normalized vibrational frequencies of nano-scale graded plates with various 

nonlocal factors 

a/h µ     

  a/b=1  a/b=2  

  Natarajan et al. (2012) present Natarajan et al. (2012) present 

10 0 0.0441 0.043823 0.1055 0.104329 

 1 0.0403 0.04007 0.0863 0.085493 

 2 0.0374 0.037141 0.0748 0.074174 

 4 0.0330 0.032806 0.0612 0.060673 

20 0 0.0113 0.011256 0.0279 0.027756 

 1 0.0103 0.010288 0.0229 0.022722 

 2 0.0096 0.009534 0.0198 0.019704 

 4 0.0085 0.008418 0.0162 0.016110 

 
 

 

Fig. 8 Response curves of the nano-size plate according to a variety of temperature changes (a/h=20, µ=0.2, 

e0=0.2) 
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