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Abstract.  In this paper, a novel and effective damage diagnosis algorithm is proposed to detect and 
estimate damage using two stages least squares support vector machine (LS-SVM) and limited number of 
attached sensors on structures. In the first stage, LS-SVM1 is used to predict the unmeasured mode shapes 
data based on limited measured modal data and in the second stage, LS-SVM2 is used to predicting the 
damage location and severity using the complete modal data from the first-stage LS-SVM1. The presented 
methods are applied to a three story irregular frame and cantilever plate. To investigate the noise effects and 
modeling errors, two uncertainty levels have been considered. Moreover, the performance of the proposed 
methods has been verified through using experimental modal data of a mass-stiffness system. The obtained 
damage identification results show the suitable performance of the proposed damage identification method 
for structures in spite of different uncertainty levels. 
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1. Introduction 
 

Damage detection and estimation in engineering structures during their service life has received 

increasing attention in the last few decades. One of the many nondestructive evaluation methods is 

based on the change of vibration parameters with a change in the structural properties (Carden and 

Fanning 2004, Fan and Qiao 2011).  

As the number of sensors used to measure modal data is normally limited and usually are less than 

the number of DOFs in the finite element model, either the model reduction method should be 

used to match with incomplete measured mode shapes or the measured mode shapes must be 

expanded to the dimension of the analytical mode shapes (Kourehli et al. 2012). Therefore, it is 

essential to develop algorithms for damage diagnosis using modal data obtained by a limited 

number of sensors, which means using an incomplete set of modal data (Hosseinzadeh et al. 2014). 

Some researchers used the mode shape expansion methods for structural damage detection (Chen 

and Bicanic 2000, Au et al. 2003) in which others used the model reduction methods (Kourehli et 

al. 2013, Li et al. 2008, Kourehli 2015, Rasouli et al. 2014). Also, Goh et al. (2013) presented an 

approach combines a two-stage ANN model and statistical method to detect damage based on the 

limited number of sensors with consideration of uncertainties. 
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The least squares support vector machine (LS-SVM) is an advanced version of the standard SVM, 

which was first introduced by Suykens et al. (1999). LS-SVM has been widely used in different 

fields of engineering as robust and promising method for classification and function estimation. 

Tang et al. (2006) proposes an online sequential weighted Least Squares Support Vector Machine 

(LS-SVM) technique to identify the structural parameters and their changes when vibration data 

involve damage events. The proposed method is capable of tracking abrupt or slow time changes 

of the system parameters from which the damage event and the severity of the structural damage 

can be detected and evaluated. Also, Xie (2010) developed improved LS-SVM combined with 

Hilbert transform to extract the characteristics of monitoring signals and detect damage locations 

for the composite laminated plate. In other work, Shyamala et al. (2018) presented numerical and 

experimental investigation for damage detection in FRP composite plates using SVM. In this study, 

a rectangular fiber reinforced plastic composite plate investigated both numerically and 

experimentally to observe the efficiency of the SVM algorithm for damage detection. Also, Xie 

(2010) study Fuzzy Least Square Support Vector Machine (FLS-SVM) combining Fuzzy Logic 

with LS-SVM, and a real-coded Quantum Genetic Algorithm (QGA) is applied to optimize 

parameters of FLS-SVM. Then, the method of FLS-SVM integrated QGA is used to detect 

damages for fiber smart structures. The proposed method of FLS-SVM integrated QGA is 

effective and efficient for structural damage detection. In other work, Cao et al. (2016) proposed a 

damage identification method for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge 

using fuzzy clustering analysis.  

In this paper, a new two stage method is introduced to detect and estimate damage in structures 

using LS-SVM. In this method LS-SVM is used to predict the unmeasured mode shapes data and 

predicting the damage location and severity. The presented method for damage identification has 

been applied to two numerical examples, namely a three-story plane frame and cantilever plate. In 

addition, the experimental data from the vibration test of a mass-stiffness system are used in the 

present approach. The highlights of the proposed method are: 

 High performance of least squares support vector machine in prediction of unmeasured 

mode shapes. 

 High accuracy of LS-SVM in detecting damage in structural elements. 

 The proposed method is robust in spite of different noise levels and perturbations of 

stiffness and mass at different structural elements. 

 

 

2. Proposed method 
 

The proposed multi-stage damage detection method is divided into LS-SVM1 and LS-SVM2 as 

shown in Figs. 1 and 2. LS-SVM1 is used to relate the measured mode shapes and the mode 

shapes values at unmeasured points. Thus, the input parameters for LS-SVM1 are the measured 

nodal points in the mode shape for the first two modes of mode shapes and, while the outputs are 

the unmeasured nodal points in the mode shape for the first two modes of mode shapes as shown 

in Fig. 1. 

LS-SVM 2 receives information from LS-SVM1 to determine the damage location and severity. 

The estimated mode shape values at unmeasured points from LS-SVM1 are combined with the 

measured mode shapes and frequencies to form a set of input variables for LS-SVM2. Then 

LS-SVM2 is used to predict the damage values of each element in the structure. 
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Fig. 1 Flowchart of the first stage LS-SVM1 

 

 

  

 

 

Fig. 2 Flowchart of the second stage LS-SVM2 

 

 
Table 1 Obtained hyper-parameters for different examples 

 
Obtained 

hyper-parameters 

Three story irregular 

frame 
Cantilever Plate Experimental study 

First 

stage 

Gamma(γ) 1000 127 × 106 17.617 

sin2σ2 11 17.451 222.291 

Second 

stage 

Gamma(γ) 920 × 1012 2.146 × 1017 10.197 

sin2σ2 322 × 102 853 × 102 28.221 

 

 

Several factors such as erosions, cracks, and holes in a structure can reduce structure stiffness and 

they may be considered as damages. Stiffness reduction can be simulated by reducing the modulus 

of elasticity.  

(1 )d

e e eE d E 
 

, 0 1ed 
                            (1) 
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Where 
eE and d

eE are respectively the modulus of elasticity of the eth undamaged and the damaged 

elements. 
ed is a parameter between 0 and 1, which can respectively express the undamaged and 

fractured elements. 

In this paper, the LS-SVM method has been used to structural damage detection and estimation 

based on incomplete measured mode shapes and frequencies. Also, the LS-SVMlab1.8 code 

package was added into the Matlab toolbox (2013), which used the interface provided by LSSVM 

to realize the regression function. There are two parameters that need to be chosen in the LS-SVM 

model, which are the bandwidth of the Gaussian RBF kernel “σ” and the regularization parameter 

“𝛾”. Hyper-parameters (σ2,𝛾) have a great influence on the performance of the resulting LS-SVM 

(Kourehli 2016). Also, the obtained hyper-parameters for different examples are summarized in 

Table 1. 

 

 

3. Numerical examples 
 

In this section, the efficiency and effectiveness of the proposed methods is evaluated through 

some numerically simulated damage identification tests. A three story irregular frame and cantilever 

plate are chosen with two different scenarios of damage for each of them for the purpose.  

 

3.1 Three story irregular frame  
 

A three-story plane steel frame as illustrated in Fig. 3 with finite-element model consists of 

eleven elements (seven columns and four beams) and seven free nodes are considered. The 

numerical studies are carried out within the MATLAB (2016) environment, which is used for the 

solution of finite element problems. For the considered steel frame, the material properties of the 

steel include Young’s modulus of E=200 GPa, mass density of ρ=7800 kg/m3. The mass per unit 

length, moment of inertia, and cross-sectional area of the columns are: m=127 kg/m, I=3.082

10−4 m4 and A=1.61 10−2 m2, respectively; for the beams are: m=134 kg/m, I=3.666 10−4 m4 

and A=1.71 10−2 m2. Also, the damage severity in each element is given by the reduction factor 

listed in Table 2.  

In this case, only the first 11 DOFs selected as measured DOFs in the process of damage detection 

and quantification.  

 

 

 
Table 2 Damage scenarios for three story irregular frame 

Scenario 2 Scenario 1 

0.2 Element  1 0.2 Element  5 

0.2 Element  4 0.2 Element  8 

0.2 Element  7 

  0.2 Element  11     

 

 



 


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Table 3 Statistics for training and testing for two story plane frame 

 First stage Second stage 

 Samples MSE R MSE R 

Training 
1750 1.405 × 10−7 

 

0.9991 3.243 × 10−7 0.9991 

Testing 
194 1.231 × 10−6 

 

0.9961 1.382 × 10−6 

 

0.9992 

 

 
Table 4 The obtained results in the first stage for three story irregular frame 

Modes 
Scenario 1 Scenario 2 

Measured  Unmeasured Estimated Measured  Unmeasured Estimated 

F
IR

S
T

 M
O

D
E

  

0.26242 0.00930 0.00930 0.26015 0.011431 0.011429 

0.72087 0.02800 0.02801 0.69932 0.037539 0.037513 

0.99999 0.00353 0.00353 0.99983 0.003652 0.003655 

0.26062 0.04379 0.04374 0.25899 0.043662 0.04369 

0.72070 0.00762 0.00762 0.69877 0.006868 0.006871 

1.00000 0.06264 0.06262 1.00000 0.067163 0.067164 

0.25819 0.00858 0.00858 0.25658 0.008008 0.008011 

0.00507 0.02784 0.02783 0.00649 0.027997 0.027990 

0.07561 0.00155 0.00155 0.06152 0.001546 0.001541 

0.00834 0.03553 0.03548 0.01052 0.035251 0.035399 

0.06203   0.05806   

S
E

C
O

N
D

 M
O

D
E

 

0.96070 0.03008 0.03008 0.93900 0.03231 0.032308 

0.38754 0.15876 0.15881 0.41041 0.19138 0.191272 

1.00000 0.01532 0.01532 0.99969 0.01376 0.013768 

0.96445 0.04400 0.04404 0.93941 0.03271 0.032707 

0.38660 0.03194 0.03195 0.41067 0.02585 0.025858 

0.999871 0.19485 0.19480 1 0.17616 0.176194 

0.964145 0.037731 0.037744 0.938585 0.032316 0.032321 

0.011244 0.162411 0.162317 0.012411 0.161904 0.161868 

0.083632 0.003413 0.003414 0.07225 0.003196 0.003185 

0.024336 0.159004 0.158865 0.027268 0.157765 0.158243 

0.206335   0.195959   

 

 

To generate the training patterns, a number of structures with different modal properties, using 

damage severity equal to 0, 20% for all elements were considered. The total number of 

combinations of the assigned damage severities is 2048. After training, the mean-square error 

(MSE) and Correlation Coefficient (R) of the measured and predicted damage severity values are 

determined. According to Table 3, the low value of MSE and high value of R achieved using the 

proposed method. 
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Fig. 3 Three-story plane frame with the finite element model 

 

 
Table 5 Two uncertainty levels considered for three-story plane steel frame 

Uncertainty Level 1 (UL1) 

Noise level in frequencies (%) 

Perturbations (%) of 

stiffness at 

elements no. 3, 7 

Perturbations (%) of 

mass at 

elements no. 6, 9 

2 2 2 

Uncertainty Level 2 (UL2) 

Noise level in frequencies (%) 

Perturbations (%) of 

stiffness at 

elements no. 1, 4, 10 

Perturbations (%) of 

mass at 

elements no. 2, 5, 11 

1 1 1 

 

 

Also, Table 4 shows the obtained results in the first stage to predict unmeasured mode shapes from 

measured mode shapes. It can be seen that the proposed algorithm has a good performance in 

predicting unmeasured mode shapes. 

To investigate the noise effects and modeling errors, two uncertainty levels have been 

considered.  

Table 5 shows the noise level and perturbations of stiffness and mass at different elements for     

three-story plane steel frame. 

Using the complete modal data from the first-stage, damage location and severity is predicted 

in the second stage. Fig. 4 shows the identified damaged elements using the complete modal data 

from the first-stage, which may be noisy or noise free. It can be seen that the damage severity and 

locations can be obtained, for two different scenarios considered. 

 

3.2 Cantilever plate 
 

A cantilever plate as illustrated in Fig. 5 with finite element model consists of 9 elements and 

16 nodes are considered. The thickness of considered plate is t=0.1 m and the material properties 

include Young’s modulus of E=20 GPa, mass density of ρ=2400 kg/m3 and Poisson’s ratio of 

μ=0.2. Also, the damage severity in each element is given by the reduction factor listed in Table 6.  
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Fig. 4 Results of second stage for the three-story plane steel frame with two uncertainty level 

 

 

 

 

Fig. 5 The cantilever plate with finite element model 

 

 

The master DOFs consist of eighteen DOFs related to nodes shown by A, B, C, D, E and F in 

Fig. 5. To generate the training patterns, a number of structures with different dynamic responses, 

using damage severity equal to 0, 20, 40% and 0, 20% for elements numbered 2,4,6,8 and 

elements numbered 1,3,5,7,9 ; respectively were considered. The total number of combinations of 

the assigned damage severities is 2592. The results were used for training patterns. 

Table 6 shows the LS-SVM performance in training and testing stages. According to Table 7, the 

low value of MSE and high value of R achieved using the proposed method. 

Table 8 shows the obtained results in the first stage to predict unmeasured mode shapes data based 

on limited measured modal data. The obtained results show high accuracy of LS-SVM1 in 

predicting unmeasured mode shapes. 

Table 9 shows the noise level and perturbations of stiffness and mass at different elements for     

cantilever plate. 

385



 

 

 

 

 

 

Seyed Sina Kourehli 

 
Table 6 Damage scenarios for cantilever plate 

Scenario 2 Scenario 1 

0.2 Element  4 0.2 Element  1 

0.1 Element  5 0.2 Element  2 

0.3 Element  8 

  0.3 Element  9     

 

 
Table 7 Statistics for training and testing for cantilever plate 

 
First stage 

(Predicted unmeasured mode shapes) 

Second stage 

(Predicted damage) 

 Samples MSE R MSE R 

Training 2333 
2.325 × 10−11 

 

0.9995 7.303 × 10−9 

 

0.9993 

Testing 259 
2.200 × 10−6 

 

0.9999 1.476 × 10−7 0.9991 

 

 

 
 

 

Fig. 6 Results of second stage for the cantilever plate with two uncertainty level 

 

 

Fig. 6 shows the identified damaged elements in the second stage. It can be seen that the damage 

severity and locations can be obtained, for two different patterns in spite of modeling errors and 

noisy data. 
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Table 8 The obtained results in the first stage for cantilever plate 

 

Scenario 1 Scenario 2 

 

Measured  Unmeasured Estimated Measured  Unmeasured Estimated 

F
IR

S
T

 M
O

D
E

 

0.1587147 0.1625828 0.1625828 0.1562249 0.1594925 0.1594896 

0.0216016 0.0074607 0.0074607 0.0209635 0.0079472 0.0079751 

0.2964876 0.2958869 0.2958869 0.2925419 0.289717 0.2897538 

0.5410871 0.5402413 0.5402413 0.5358789 0.5375195 0.5375228 

0.0032924 0.0068526 0.0068526 0.007599 0.0038257 0.0038061 

0.4402829 0.4358805 0.4358806 0.4399617 0.4402305 0.4401827 

1 0.9972381 0.9972381 0.9982976 0.9998297 0.9998371 

0.0030135 0.0054521 0.0054521 0.0032748 0.0012433 0.0008458 

0.4685491 0.4669782 0.4669782 0.4732841 0.4730261 0.4730449 

0.1629444 0.157568 0.1575679 0.1601597 0.154185 0.1541671 

0.005406 0.0240511 0.0240512 0.0039338 0.0254015 0.0254518 

0.2966195 0.2944407 0.2944407 0.2934713 0.2842862 0.2841719 

0.5415561 0.5371275 0.5371275 0.5377021 0.5353225 0.5353442 

0.00109 0.0112638 0.0112638 0.0027708 0.0087145 0.0086401 

0.4371621 0.4371668 0.4371668 0.4390705 0.4428903 0.4429495 

0.99883 0.9952433 0.9952433 0.9992338 1 1.0000115 

0.0040559 0.0064787 0.0064787 0.002314 8.85E-05 0.0005025 

0.4669947 0.4682374 0.4682374 0.4723474 0.47527 0.4752832 

S
E

C
O

N
D

 M
O

D
E

 

0.452307 0.309814 0.309814 0.3058353 0.3561674 0.3561122 

0.2391599 0.1855148 0.1855154 0.0539261 0.0967617 0.096112 

0.4626645 0.3084385 0.3084386 0.3116405 0.3833814 0.3831923 

0.4932449 0.2274891 0.2274891 0.228464 0.3291348 0.3291793 

0.4561087 0.3475082 0.3475075 0.0913759 0.2046147 0.2034814 

0.4639169 0.5196231 0.5196232 0.5247805 0.4969716 0.4964054 

0.2923311 0.593475 0.593475 0.6147933 0.4952082 0.4951901 

0.4639429 0.4288504 0.4288505 0.1641252 0.2023413 0.20125 

0.9407582 0.9703894 0.9703894 1 0.9884993 0.9887563 

0.3765148 0.2525579 0.252558 0.3273329 0.3905398 0.3904776 

0.214281 0.1595515 0.1595511 0.0754331 0.1092886 0.1082815 

0.3856776 0.2494465 0.2494467 0.3342125 0.4350142 0.4352223 

0.3517346 0.1208383 0.1208382 0.2695345 0.4065778 0.4066238 

0.3977215 0.2900583 0.2900562 0.1526402 0.2657235 0.2677834 

0.4902768 0.5584064 0.5584066 0.5115562 0.4760299 0.4772386 

0.4460284 0.7328366 0.7328365 0.5585638 0.4241343 0.4240726 

0.454008 0.4125072 0.4125087 0.1775026 0.2178977 0.2176173 

0.9522097 1 1 0.9880886 0.9952051 0.9953998 
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Table 9 Two uncertainty levels considered for cantilever plate 

Uncertainty Level 1 (UL1) 

Noise level in frequencies (%) 

Perturbations (%) of 

stiffness at 

elements no. 2, 9 

Perturbations (%) of 

mass at 

elements no. 3, 8 

2 2 2 

Uncertainty Level 2 (UL2) 

Noise level in frequencies (%) 

Perturbations (%) of 

stiffness at 

elements no. 1, 3, 7 

Perturbations (%) of 

mass at 

elements no. 4, 5, 6 

1 1 1 

 

 

4. Experimental validation study 
 

In the previous section, the proposed method was demonstrated through some numerical 

examples. However, it is useful to examine the experimental performance of the proposed method, 

using measured data from an experimental study. Therefore, in this section, the performance of the 

proposed damage detection method is verified thorough the first two experimental mode shapes 

measured from an 8-DOF (degrees of freedom) spring–mass system tested by Duffey et al. (2001). 

This system was designed by Los Alamos National Laboratory to study the effectiveness of 

various vibration based damage identification techniques. The system is formed by eight 

translating masses connected by springs, as it is shown in Fig. 7. For the undamaged case, the 

stiffness of all springs is 56.7 kN/m. For the damaged case, the stiffness of the fifth spring 

(between masses 5, 6) has reduced by 14%. The weight of the first mass is 559.3 grams and the 

weight of Masses 2 to 8 is 419.4 grams. 

Based on the measured data, two first frequencies and mode shapes which are measured only in 

the last 5 DOFs, were utilized for damage detection and quantification. 

To generate the training patterns, a number of structures with different modal properties, using 

damage severity equal to 0, 15, 30% for all elements were considered. The total number of 

combinations of the assigned damage severities is 2187. Table 10 shows the value of MSE and R 

achieved using the proposed method. 

 

 

 

Fig. 7 Experimental 8 DOFs system with excitation shaker attached (Duffey et al. 2001) 
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Table 10 Statistics for training and testing for two story plane frame 

 First stage Second stage 

 Samples MSE R MSE R 

Training 1969 3.218E -3 0.6193 2.705E -3 0.8862 

Testing 218 0.04 0.6073 3.254E -3 0.8527 

 

 

 

Fig. 8 The obtained result for the experimental 8 DOFs system 

 

 

Fig. 8 shows the capability of the proposed method for detection and quantification of the 

damage in the experimental 8 DOFs system. The obtained results indicated that the proposed 

method can be characterized as a robust and viable method for damage detection and 

quantification of actual structures. 

 

 

5. Conclusions 
 

In this paper, a two stage damage detection and estimation method was introduced. For this 

purpose, an algorithm using incomplete modal data and LS-SVM was presented. Least squares 

support vector machine (LS-SVM) is used to predict the unmeasured mode shapes data and detect 

damage location and severity using the complete modal data from the first-stage. In numerical 

examples, the proposed method is applied to a three-story irregular frame and cantilever plate. 

Also, an experimental validation using a mass-stiffness system has been done. The results show 

that the presented method is sensitive to the location and severity of structural damage.  
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