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Abstract.  It is a challenging problem of assessing the location and extent of structural damages with 
vibration measurements. In this paper, an improved Extended Kalman filter (EKF) with Tikhonov 
regularization is proposed to identify structural damages. The state vector of EKF consists of the initial 
values of modal coordinates and damage parameters of structural elements, therefore the recursive formulas 
of EKF are simplified and modal truncation technique can be used to reduce the dimension of the state 
vector. Then Tikhonov regularization is introduced into EKF to restrain the effect of the measurement noise 
for improving the solution of ill-posed inverse problems. Numerical simulations of a seven-story shear-beam 
structure and a simply-supported beam show that the proposed method has good robustness and can identify 
the single or multiple damages accurately with the unknown initial structural state. 
 

Keywords:  extended Kalman filter; structural damage identification; Tikhonov regularization; ill-posed 

inverse problem 

 
 
1. Introduction 
 

A large volume of model-based methods have been developed for damage identification of 

engineering structures in the last two decades. Damage location and severity can be indicated by 

the degradation of element stiffness in model-based methods. These damage evaluation methods 

can be classified as frequency domain methods and time domain methods loosely (Friswell and 

Mottershead 1995). The structural modal parameters are taken as the input of the identification 

algorithm in the frequency domain. However, measurement vibration signals are used to identify 

the model physical parameters and damages in the time-domain-based identification algorithm. 

The time series of structural dynamical response can provide more information for damage 

detection and prevent the errors from modal parameters extraction. The least-squares estimation 

(LSE) (Loh et al. 2000), restoring force method (REM) (Masri and Caughey 1979), extended 

Kalman filter (EKF) (Jazwinski 1970) are common damage identification algorithms in the time 

domain. The damage identification methods based on EKF have gained more attention during 

recent years since satisfactory performance in restrain the interference of input and output signal 

noise. 

The Kalman filter and its variants have been widely used to estimate the structural state and 
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identify system parameters (Hoshiya and Saito 1984, Corigliano and Mariani 2004, Gao and Lu 

2006, Zheng et al. 2004). When the external excitations are not measured or not available, Yang et 

al. (2007) proposed a parameter identification method by deriving the analytical recursive solution 

for EKF with unknown excitation. Adaptive tracking techniques based on EKF are proposed to 

identify the time-varying system parameters and track the abrupt changes of structural damages 

(Yang et al. 2006, Zhou et al. 2008). 

For complex structures, identification algorithms based on EKF confront some challenges 

(Straser and Kiremidjian 1996) about convergence and accuracy because of the tremendous 

increase of computational costs and intrinsic ill-posedness of inverse problem.  

Reduction of the structural degrees of freedom (dofs) is a major technique to solve the problem. 

Substructure method is one of efficient techniques to reduce dofs by dividing the initial problem 

into smaller problems of manageable size (Lei et al. 2012, Xing et al. 2014). Modal transformation 

and truncation is another effective one (Liu et al. 2009). The state vector of EKF is constructed by 

truncating instantaneous modal coordinates and damage parameters to replace actual displacement, 

velocity and acceleration.  

Recently, ELSheikh et al. (2013) introduces regularization method into the Kalman filter to 

improve the ill-posedness of inverse problems. The Kalman gain matrix is regularized by using 

truncated singular value decomposition (SVD) to filter out noisy correlations, and then the 

convergence rate of the algorithm is enhanced effectively.  

The motivation for the present study is to develop an improved EKF for reducing the 

computational costs and solving the ill-posed inverse problem. We use the initial values of 

truncated modal coordinates and the structural damage parameters to construct the state vector of 

EKF. Therefore linearization of state equations is omitted and the error of linearization is 

prevented. Moreover the Kalman gain matrix is regularized by Tikhonov regularization to restrain 

the interference of noise in the ill-posed problem. A seven-story shear-beam structure and a 

simply-supported beam are taken as numerical examples, and noisy synthetic data are utilized to 

detect structural parameters. The parameter identification results illustrate the efficiency and 

robustness of the proposed algorithm. 

 

 

2 Mathematical model of the system and EKF 
 

2.1 Basic equation of motion 
 

Based on the finite element method, the equation of motion of a structure can be written as 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒒(𝑡) = 𝑭(𝑡)                       (1) 

where 𝑴, 𝑪 and 𝑲 are structural mass, damping and stiffness matrices, respectively. 𝒒(𝑡), �̇�(𝑡) 

and �̈�(𝑡)denote the vectors of displacement, velocity and acceleration response, respectively. 

𝑭(𝑡)  is the external force vector. The vector 𝒒(𝑡)  can be represented by general modal 

coordinates 𝒑(𝑡) 

𝒒(𝑡) = 𝜱𝒑(𝑡)                             (2) 

where 𝜱 is the mass normalized modal matrix and satisfy the following equations 

𝜱𝑇𝑴𝜱 = 𝑰       (3) 
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 𝜱𝑇𝑲𝜱 = 𝜦  (4) 

with 𝜦 = diag(𝜔1
2 … 𝜔n

2)  and 𝜔n  is the n
th
 eigen-frequency of the undamped system. 

Therefore, the motion Eq. (1) can be transformed into 

�̈� + 𝜞�̇� + 𝜦𝒑 = 𝜱𝑇𝑭                           (5) 

where 𝜞 = 𝜱𝑇𝑪𝜱.  

For a real structure, ambient vibration is the most accessible data that can be acquired since the 

measurement requires no expensive exogenous excitation. Many techniques such as the random 

decrement (RD) signature technique can be used to obtain decayed free vibration signals from 

random structure responses. Therefore, the damage identification method based on damped free 

vibration signal is studied in this paper. 

The ratio of damping is defined as 𝜉𝑛 = 𝐶𝑛/(2𝜔𝑛𝑀𝑛). Free vibration solution of Eq. (5) can 

be obtained as 

𝑝𝑛(𝑡) = 𝑒−𝜉𝑛𝜔𝑛𝑡 .𝑝𝑛0 cos(𝜔𝑑𝑛𝑡) +
�̇�𝑛0+𝜉𝑛𝜔𝑛𝑝𝑛0

𝜔𝑑𝑛
sin(𝜔𝑑𝑛𝑡)/              (6) 

where 𝜔𝑑𝑛 = 𝜔𝑛√1 − 𝜉𝑛
2 is the n

th
 eigen-frequency of the damped system, 𝑝𝑛0 and �̇�𝑛0 are the 

initial values of modal coordinates and velocity.  

 
2.2 Extended Kalman filter approach 
 

The Kalman filter is a linear optimal recursive estimator designed for linear time-varying 

dynamic systems, and then the extended Kalman filter is proposed for nonlinear system by using 

the linearized models around any working point. In the proposed EKF algorithm for structural 

damage identification, we choose the unknown initial values of general modal coordinate and 

velocity, the change of the element stiffness and damping ratio to construct the state vector 𝜽 in 

EKF. 

𝜽 = *𝑝10, �̇�10, ⋯ , 𝑝𝑁0, �̇�𝑁0, 𝛼1, ⋯ , 𝛼𝑚, 𝛽1, ⋯ , 𝛽𝑁+T          (7) 

where 𝑁 is the number of selected structural modal coordinates, 𝑚 is the number of damage 

parameters about stiffness. Since the structural vibration responses contain only few low order 

modal components usually, high order modal coordinates can be abandoned so that 𝑁 is much 

less than the number of structural dofs, In this paper the structural damages are represented as the 

reduction of element elastic modulus 𝛼𝑖 and the change of modal damping ratio 𝛽𝑖. 

𝛼𝑖 = (𝐸𝑖
0 − 𝐸𝑖) 𝐸𝑖

0⁄              (8a)  

 𝛽𝑗 = (𝜉𝑗 − 𝜉𝑗
0) 𝜉𝑗

0⁄                           (8b) 

where 𝐸i
0 and 𝐸𝑖 are the initial and current elastic modulus of i

th
 element, 𝜉i

0 and 𝜉𝑖 represent 

the initial and current j
th
 modal damping ratio.  

According to the definition (7) of the state vector, the general solution of motion equations is 

used to form the observation equation in EKF, and the identification problem of structural damage 

parameters can be expressed as 

 �̇� = 𝟎                                (9) 

117



 

 

 

 

 

 

Chun Zhang, Jie-Zhong Huang, Gu-Quan Song, Lin Dai and Huo-Kun Li 

 

 𝒛(𝑥, 𝑡) = 𝑓(𝜽, 𝑥, 𝑡) + 𝒆                            (10) 

where 𝒛 is the observation vector, 𝒆 is zero-mean white noises with covariance matrix 𝑹, the 

function 𝑓(𝜽, 𝑥, 𝑡) is the theory solution of structural response at the measure point 𝑥. When the 

free vibration response is taken as the input data to detect damages, the theory expression of the 

response function 𝑓(𝜽, 𝑥, 𝑡) can be simplified as 

𝑓(𝜽, 𝑥, 𝑡) = ∑*𝜙𝑛(𝑥)+𝑝𝑛(𝑡)

𝑁

𝑛=1

= 

∑ *𝜙𝑛(𝑥)+ (𝑒−𝜉𝑛𝜔𝑛𝑡 .𝑝𝑛0 cos(𝜔𝑑𝑛𝑡) +
�̇�𝑛0+𝜉𝑛𝜔𝑛𝑝𝑛0

𝜔𝑑𝑛
sin(𝜔𝑑𝑛𝑡)/)𝑁

𝑛=1        (11) 

where 𝜙𝑛(𝑥) is n
th
 modal vector. 

For parameter identification system consisted of Eqs. (9) and (10), the standard EFK algorithm 

can be simplified as  

 𝜽𝒋+𝟏 = 𝜽𝒋 + 𝑲𝒋+𝟏(𝒛𝒋+𝟏 − 𝑓(𝜽𝒋))                     (12) 

 𝑷𝒋+𝟏 = (𝑰 − 𝑲𝒋+𝟏𝑯𝒋+𝟏)𝑷𝒋+𝟏                    (13) 

 𝑲𝒋+𝟏 = 𝑷𝒋𝑯𝒋+𝟏
T (𝑯𝒋+𝟏𝑷𝒋𝑯𝒋+𝟏

T + 𝑹𝒋+𝟏)−1                  (14) 

where 𝑷𝒋 is the covariance matrix of the estimation error at time j, 𝑲𝒋+𝟏 is called the Kalman 

gain matrix, 𝑰 is the unit matrix, and 𝑯𝒋+𝟏 is the Jacobian matrix of the nonlinear function 

𝑓(𝜽, 𝑥, 𝑡) 

 𝑯𝑗+1 = 𝜕𝑓(𝜽𝑗+1, 𝑥, 𝑡𝑗+1) 𝜕𝜽𝑗+1⁄                     (15) 

and then the sensitivity of nature frequencies and modes to damage parameters, 𝜕𝜔𝑛 𝜕𝛼𝑖⁄  and 

𝜕𝜙𝑛 𝜕𝛼𝑖⁄ , in Eq. (15) can be calculated according to the undamaged or initial finite element model 

(Weber et al. 2009). Of course, the updated finite element model is suggested to be used to 

compute more accurate sensitivity which contributes to obtain more ideal identification results. 

Because the state vector 𝜽 is constant vector, and only the nonlinear observation Eq. (10) need 

to be linearized, the proposed EKF may reduce the error from the linearized state and observation 

equations simultaneously in classical EKF.  
 
2.3 Extended Kalman filter with Tikhonov regularization 
 

In recursive formulas (12)-(14) of the EKF algorithm, Kalman gain matrix 𝑲𝑗+1 decides the 

influence of measurement innovation on state estimation values. The value of 𝑲𝑗+1 depends on 

three factors: the precision of previous estimate values (𝑷𝒋), the accuracy of the measurement 

innovation (𝑹𝒋+𝟏), and the relationship between observation and state vector (𝑯𝒋+𝟏). Since the 

inverse matrix of (𝑯𝒋+𝟏𝑷𝒋𝑯𝒋+𝟏
T + 𝑹𝒋+𝟏) is needed to compute the gain matrix 𝑲𝑗+1, we consider 

that the ill-posedness of inverse problem may lead to the singularity of the matrix (𝑯𝒋+𝟏𝑷𝒋𝑯𝒋+𝟏
T +

𝑹𝒋+𝟏). Therefore, the correction item 𝑲𝒋+𝟏(𝒛𝒋+𝟏 − 𝑓(𝜽𝒋)) is affected easily by measurement 

noise, and the accuracy of damage identification is degraded remarkably. The Tikhonov 

regularization will be introduced to estimate the Kalman gain matrix. 

For the solution of ill-posed problems with the form 𝑨𝒛 = 𝒃, Tikhonov regularization is a 
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best-known regularization scheme. By adding a penalty term on the norm of the update parameters, 

Tikhonov regularization translates the calculation of 𝑨𝒛 = 𝒃 into the solution of following 

functional minimum problem 

𝐽 = ‖𝑨𝒛 − 𝒃‖2
2 + 𝜆‖𝒛‖2

2                  (16) 

where ‖ ‖2
2 is the square of vector 2-norm, and 𝜆 is the regularization parameter used to 

balance the residual function and the penalty function. The least-square solution of functional (16) 

is  

 𝒛 = �̃� −1𝒃 = (𝑨𝑇𝑨 + 𝜆𝑰)−1𝑨𝑇𝒃                     (17) 

where  

 �̃� −1 = (𝑨𝑇𝑨 + 𝜆𝑰)−1𝑨𝑇                       (18) 

is the pseudo-inverse of the matrix 𝑨  with Tikhonov regularization. Using singular value 

decomposition, the matrix 𝑨 can be decomposed 

 𝑨 = 𝑼𝑺𝑽𝑇                            (19) 

where 𝑼 and 𝑽 are orthogonal matrices, the diagonal matrix 𝑺 contains the singular values, and 

the diagonal elements is a non-negative entries 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑘 ≥ 0. Substituting the Eq. (19) 

into Eq. (17), the solution can be shown as 

𝒛 = (𝑽𝑺𝑼𝑇𝑼𝑺𝑽𝑇 + 𝜆𝑽𝑽𝑇)−1𝑽𝑺𝑼𝑇𝒃 = 𝑽(𝑺2 + 𝜆𝑰)−1𝑺𝑼𝑇𝒃 = ∑
𝜎𝑖𝒖𝑖

𝑇𝒃

𝜎𝑖
2+𝜆

𝒗𝒊
𝜂
𝒊=𝟏        (20) 

where 𝒖𝒊 and 𝒗𝒊 are the column vector of orthogonal matrices 𝑼 and 𝑽, respectively, and 𝜂 is 

the order of matrix 𝑨. In ill-posed problems, small singular values 𝜎𝑖 may amplify significantly 

the measurement errors in vector 𝒃 if the regularization parameter 𝜆 is zero. 
𝜎𝑖

𝜎𝑖
2+𝜆

 cannot be 

infinity by selecting appropriate regularization parameter, and the effects of the small singular 

values on the solution vector 𝒛 can be reduced. When the EKF is used to detect structural 

damages, the regularizing the inverse of the matrix (𝑯𝒋+𝟏𝑷𝒋𝑯𝒋+𝟏
T + 𝑹𝒋+𝟏) in the Kalman gain 

matrix is essential to avoid the small singular values dominate the update process. According to the 

Eq. (18), the Kalman gain matrix with Tikhonov regularization can be expressed as  

 𝑲𝒋+𝟏 = 𝑷𝒋𝑯𝒋+𝟏
T �̃� −1                          (21) 

where �̃� −1 = (𝑸𝑇𝑸 + 𝜆𝑰)−1𝑸𝑇 , 𝑸 = 𝑯𝒋+𝟏𝑷𝒋𝑯𝒋+𝟏
T + 𝑹𝒋+𝟏 , and the value of regularization 

parameter 𝜆 is determined by L-curve method (Hansen and O'Leary 1993) in this paper. Since the 

Kalman gain matrix K is time dependent, the optimal value of regularization parameter timed 

dependent too, and it is time consuming if the L-curve method is used in each time step. In fact, 

the regularization parameter can be determined only by using the Kalman gain matrix K in last 

time step. The value of regularization parameter obtained in this way may not be optimal, but it is 

enough to achieve satisfactory identification results. Thus the damage identification algorithm 

based on EKF with Tikhonov regularization can be achieved by the Eqs. (12)- (13) and (21). 
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3. Application of EKF with Tikhonov regularization 

 
3.1 Seven-story shear-beam structure 
 

An idealized seven-story linear shear-beam type building is taken as a numerical example to 

illustrate the proposed algorithm. The structure model is represented as a linear 

spring-mass-damper system with floor masses 𝑚𝑖, inter-story stiffnesses 𝑘𝑖, and modal damping 

ratios 𝜉𝑖(𝑖 = 1, ⋯ ,7), where the first spring is connected to the ground. 

For numerical simulations, structural damage is introduced by the change of partial spring 

stiffness and modal damping ratio shown in Table 1. To simulate measurements, free vibration 

responses of seven masses during 5s with sampling frequency 1000 Hz are calculated and random 

noise with a normal distribution is added. Three noise levels, 5%, 10%, and 15% are considered, 

where the noise levels denote the standard deviation of the noise.  

The identification results presented in Table 2 show that the changes of inter-story stiffness and 

modal damping ratios can be detected correctly even the noise level is high. With the increase of 

measurement noise, errors of detecting the stiffness and damping grow more slowly. Relative 

errors of identified stiffness and damping ratio are less than 1% and 3%, respectively. In Fig. 1, the 

convergence curves for each variable in the state vector of EKF are given when the noise level is 

15%. Both structural parameters and initial values of modal coordinates converge very fast. 

Moreover, the identified structural response compares well with the simulated noisy response (the 

time segment from 1s to 3s is intercepted only for clear displaying), as shown in Fig. 2. 

Consequently, tracking the change of the identified stiffness and damping can detect structural 

damage with good accuracy and robustness by the proposed algorithm.  
 

3.2 Simply supported beam 
 

The efficiency of the proposed algorithm is proved in the previous example, and then a more 

complex simply-supported beam with the I-steel section is illustrated to show the superiority of the 

algorithm.  

In the finite element model shown in Fig. 3, the beam is divided into 10 elements with equal 

length. Each element has two nodes, and each node has three dofs in the horizontal, vertical and 

rotational directions, respectively. The properties of the beam are as follows: mass density 

𝜌 = 7850 kg/m3, elastic modulus 𝐸 = 210GPa, cross section area 𝐴 = 67.05 cm2 and length 

of the beam 𝑙 = 10 m.  

 

 
Table 1 Stiffness reduction and damping parameters of seven-story shear-beam structure 

 
𝑘1(kN/m) 𝑘2(kN/m) 𝑘3(kN/m) 𝜉1 𝜉2 𝜉3 

undamaged 

structure 
350 350 350 0.020 0.020 0.020 

damaged 

structure 
280 245 315 0.022 0.024 0.021 

 
𝛼1 = 20% 𝛼2 = 30% 𝛼3 = 10% 𝛽1 = 10% 𝛽2 = 20% 𝛽3 = 5% 
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Fig. 1 Convergence curve of state variables (noise level is 15%) 

 

 

 

 
Table 2 Estimation results of seven-story shear-beam structure 

 

real value identified value 

  

noise relative 

error 

noise relative 

error 

noise relative 

error 
  

5% 10% 15% 

𝑘1(kN/m) 280.0  280.0  -0.01% 278.4  -0.57% 279.4  -0.20% 

𝑘2(kN/m) 245.0  245.3  0.13% 245.2  0.06% 244.8  -0.06% 

𝑘3(kN/m) 315.0  313.9  -0.35% 314.1  -0.29% 313.4  -0.52% 

𝑘4(kN/m) 350.0  351.5  0.44% 352.6  0.73% 352.2  0.63% 

𝑘5(kN/m) 350.0  349.1  -0.27% 349.8  -0.05% 349.6  -0.13% 

𝑘6(kN/m) 350.0  349.5  -0.13% 351.1  0.33% 349.2  -0.24% 

𝑘7(kN/m) 350.0  351.3  0.38% 349.8  -0.05% 353.2  0.90% 

𝜉1 0.022  0.0217  -1.49% 0.0217  -1.16% 0.0217  -1.21% 

𝜉2 0.024  0.0237  -1.13% 0.0238  -0.99% 0.0237  -1.45% 

𝜉3 0.021  0.0211  0.51% 0.0212  0.90% 0.0214  2.00% 
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Fig. 2 Comparison of actual and identified displacement response at mass1 (noise level is 15%) 

 

 

 

Fig. 3 Simulated simply-supported beam 

 

 

In the numerical example, only free vibration responses in the vertical direction of each node 

are measured and the damping is neglected. To consider measurement noise pollution, all the input 

time series are simulated by superimposing the structural responses computed by ANSYS software 

with the corresponding stationary Gauss white noise.  

Based on the presented algorithm, damage identification of the beam with single and multiple 

damages are analyzed respectively. Three noise levels, 0%, 5% and 10%, are considered in the 

numerical cases. In order to reduce the dimension of state variables, only first three modal 

coordinates are used to identify the structural damages. 

 

3.2.1 Identification of single damage 
The single damage is simulated by a reduction of 30% in the elastic modulus of the 5

th
 element. 

Identified local damage under different noise level is shown in Fig. 4. Similar identification results 

are obtained although the different noises are added into the simulated input signal. Even the noise 

level reaches 10%, the relative errors of the identified elastic modulus of damage element are less 

than 1.8%. 

The convergence curves of the initial values of modal coordinates in the state vector of EKF are 

shown in Fig. 5. Fast convergences of identified initial values mean the proposed EKF algorithm 

has obtained the initial state of the whole structure and relieves the difficulty in estimating the 

unknown initial state. 

Next, the effect of regularization is taken into account in damage identification. Fig. 6 

compares the identified results between the classical EKF and the proposed regularized EKF. 

Because classical EKF do not combine the regularization process to suppress noise interference, 

the corresponding identified results obtained by EKF alone show obvious oscillation and cannot 

indicate the location and severity of damage.  

When more and smaller elements are divided in the finite element model, the sensitivity of 

structural responses to elemental damage is decreased, and then the ill-posedness of identification 
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problems is strengthened. Therefore, the identified results degrade obviously due to the 

interference of noise. Combined with Tikhonov regularization, the improved EKF suppresses noise 

interference successfully and provides an effective method to solve ill-posed inverse problem. 

 

 

-0.1

0.0

0.1

0.2

0.3

0.4
d
a
m

a
g
e
 p

a
ra

m
e
te

r 


Element Number

 exact value

 no noise

 5% noise

 10% noise

0 1 2 3 4 5 6 7 8 9 10

 

 

Fig. 4 Single damage identification results under different noise levels 
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Fig. 5 Convergence curve of the initial values of modal coordinates in the state vector of EKF 
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Fig. 6 The influence of Tikhonov regularization to damage identification results 
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Fig. 7 Multi-damage identification results under different noise levels 

 

 

3.2.2 Identification of multiple damages 
Three local damages are simulated by the elastic modulus reduction of 30%, 20%, 10% in the 

2
nd

, 5
th
 and 8

th
 element, respectively. As shown in Fig. 7, multiple damages of the structure can be 

identified by the proposed method accurately. Errors of identified results may increase slightly 

with the increment of noise level, and the ideal precision of identified parameters is maintained 

even in the case with 10% noise. The maximal relative error of the elastic modulus of damage 

elements is only 2.87%. Fig. 8 shows that the convergence curves of damage parameters in 

damage elements in the noise level 5%. It is observed that the proposed algorithm can detect and 

locate the structural damages from the degradation of element stiffness parameters accurately.  

 

3.2.3 Influence of the number of measurement points 
More measurements offer more structure information for damage identification, but limited 

acceleration responses are measured in real structures because of limited acceleration sensors, so 

the influence of the number of measurement points to identification results is analyzed in this 

section.  
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Fig. 8 Convergence curve of the damage parameters under 5% noise level 
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Table 3 Identification success rates with different numbers of measurement points 

Number of measurement points Measurement points Identification success rates 

9 all 99% 

8 2,3,4,5,7,8,9,10 93% 

7 2,3,4,6,8,9,10 87% 

6 2,3,4,8,9,10 78% 

5 2,3,6,9,10 30% 

4 2,3,9,10 9% 

3 2,6,10 0% 

 

 

Considering the example in section 3.2.1, we select different numbers of measurement points 

and use 100 groups random noise-contamined structural responses to detect damages with 5% 

noise level. The result with identified damage parameter 𝛼5 ∈ ,0.25,0.35- in the damage element 

and 𝛼𝑖 ∈ ,−1.0,1.0- in undamaged elements is taken as successful identification. The statistical 

results of identification success rates with different numbers of measurement sensors are listed in 

Table 3. The success rates of damage identification in this case decrease slowly with the reduction 

of the numbers of measurement points when the sensors are enough, and there is a significant 

reduction in success rates when the number of measurement points is less than 6. It means that the 

number of required sensors has a minimum value to obtain the correct results and more 

measurements provide more accurate results. 

 

3.2.4 Effect of modal truncation 
Modal truncation technique is used in proposed method to improve the efficiency of 

identification algorithm. The proper number of modal reduction needs to be determined by actual 

structure and dynamical responses. In Fig. 9, the success rates of damage identification are 

displayed as a function of the number of modal truncation, when the example in section 3.2.1 in 

10% noise level is considered. Because the dynamical responses mainly include the first three 

modes in this case, it can be observed that the structural damages can be identified accurately only 

when the number of modal truncation is greater than or equal to 3. However, retaining more modes 

will enlarge the dimension of state variables and increase the computational complexity. Fig. 10 

shows the computational time of the identification algorithm versus the number of modal 

truncation. Hence, we can know the main vibration modes by frequency spectrum analysis of the 

structural responses, and then determine the proper number of modal reduction. 

 

 

4. Conclusions 
 

The problem of damage detection and localization has been treated by the proposed EKF with 

Tikhonov regularization in time domain. Using the damage parameters and the initial values of 

modal coordinates to construct the state vector of EKF, the recursive formulas of EKF are 

simplified and the linearization error of the state equation is avoided. Moreover the dimension of 
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the state vector in EKF can be reduced by modal truncation technique effectively. For ill-posed 

damage identification problems, the Kalman gain matrix is filtered using Tikhonov regularization 

to restrain the interference of the measurement noise. Several numerical examples validate that the 

proposed algorithm can accurately estimate structural initial state, dynamical response and the 

structural parameters with limited response output measured. Then the structural damage can be 

identified by tracking the degradation of elemental elastic modulus with satisfactory accuracy and 

robustness.  

The proposed method can be combined with substructure technique to investigate structural 

damage identification of large size structural systems, and can be combined with load 

identification method to consider the general forced vibration responses. Relevant work will be 

presented in future. 

 

 

 

Fig. 9 Success rate of identification versus the number of modal truncation 

 

 

 

Fig. 10 Computation time versus the number of modal truncation 
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