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1. Introduction 

 

Buckling restrained braces (BRBs) were developed as 

an enhanced alternative to conventional braces by 

restraining their global buckling, thus allowing 

development of a stable and quasi-symmetric hysteretic 

response. 

The companion paper (Stratan et al., in press) reports 

experimental tests aiming at seismic prequalification of 

buckling restrained braces (BRBs) with capacities 

corresponding to typical steel multi-storey buildings in 

Romania. Ten full-scale tests on BRBs, as well as uniaxial 

tests on base materials (steel and concrete) allowed 

identification of the optimal solution from the point of view 

of cyclic performance, technology and adjustability.  

Though experimental tests are indispensable in 

development and validation of a new structural component 

(Park et al. 2012, Razavi et al. 2018), numerical models are 

a powerful tool in understanding its response and 

development of improved solution (Korzekwa and 

Tremblay 2009). The Finite Element Method (FEM) was 

used since early 1990's to evaluate the behaviour and to  
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propose design recommendations for BRBs. Inoue et al. 

(1992) used the FEM method to create a two-dimensional 

model used for determining the size of the reinforced 

concrete panels depending on the width of the core (steel 

plate). Saeki et al. (1996a) developed and calibrated against 

experimental results a three-dimensional nonlinear model 

for BRBs made up of a steel core encased in mortar-filled 

rectangular steel tube. The FEM model was further used by 

Saeki et al. (1996b) to perform parametric studies for 

assessing the position of the BRB in a steel frame. 

Simplified BRB models were used by Matsui et al. (2008) 

to investigate the failure modes of the buckling restraining 

mechanism (BRM) due to local buckling. Korzekwa and 

Tremblay (2009) calibrated a FEM model for all-steel 

BRBs (BRM is a steel assembly) and concluded that the 

model could be further used for optimizations of BRB 

components.  All -steel  dismountable BRBs were 

numerically investigated by D'Aniello et al. (2014). 

Different solutions for the BRM were also investigated by 

Rahai et al. (2009), Tinker (2011), Rahai and Mortazavi 

(2014), Yazdi et al. (2018). Influence of the plastic to total 

length ratios of the core on the energy dissipation capacity 

were investigated using FEM by Pandikkadavath and Sahoo 

(2016). FEM method was also used to investigated possible 

failure modes of the BRBs (AlHamaydeh et al. 2016), or to 

evaluate the effect of the loading history and the restraining 

parameters on the cyclic performance of the BRBs (Ghowsi 

and Sahoo 2019). During the last decade, new conceptual  
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designs of BRBs were developed based on numerical 

simulations: reduced length BRBs (Razavi et al. 2012), 

ultra-lightweight BRBs (Dusicka and Tinker 2013); 

inspectable BRBs (Wu et al. 2014); self-centering BRBs 

(Xie et al. 2016), and others. As the FEM computer 

programs evolved in complexity, even coupled nonlinear 

thermal-stress analyses could be performed on three-

dimensional BRB models with either circular (Talebi et al. 

2014) or rectangular cross-section (Talebi et al. 2015). In 

comparison to the complex three-dimensional models 

presented above, simplified BRB models consisting of 

frame elements can be used for fragility assessment of 

frames equipped with BRBs under different levels of 

earthquake intensities (Ghowsi and Sahoo 2015). 

Based on the above-mentioned studies, it can be 

concluded that, if using proper modelling hypotheses, the 

FEM analyses can be used as a reliable method to 

investigate parameters that could not be evaluated or 

observed during the experimental tests on BRBs. 

Therefore, this paper presents the development of a 

finite element model of a buckling restrained brace in 

Abaqus (Dassault 2014) software package and its validation 

with experimental results. Calibration at both component  

 

 

and BRB level is presented in detail. The numerical model 

is used to investigate in detail the tested BRBs, to validate 

the design methodology of the buckling restraining 

mechanism, to determine the appropriate class of concrete 

to be used for the infill material, to determine the influence 

of the steel grade of the core, and to assess the influence of 

the frame effect on the BRB cyclic behaviour. 

 

 

2. Calibration of a finite element model of the 
buckling restrained brace 

 

2.1 Model description 
 

Throughout the years, FEM models of different levels of 

complexity have been proposed for BRBs. Two-

dimensional models were used by Eryasar (2009) and Gena 

and Gelfi (2012), while three-dimensional models were 

used by Budahazy and Dunai (2015), and AlHamaydeh et 

al. (2016), among others. To reduce computational time, 

quarter models were preferred by several researchers (Saeki 

et al. 1996a, Mustapha 2013, Montazerian and 

Mohammadreza 2015). To consider in plane bending of the 

 
(a) Buckling restrained brace of type A 

 
(b) Buckling restrained brace of type B 

1 - Core: mesh size 10 & 20 mm; C3D8I; steel – combined isotropic-kinematic hardening material. 

2 - Stopper: mesh size 10 mm; C3D8I; steel – combined isotropic-kinematic hardening material. 

3 - Stiffener: mesh size 20 mm; C3D8I; steel – combined isotropic-kinematic hardening material. 

4 - Core extension plate: mesh size 20 mm; C3D8I; steel – combined isotropic-kinematic hardening material. 

5 - Concrete: mesh size 20 mm; C3D8R; concrete – plastic (rectangular core BRBs) / elastic (square core BRBs) material 

model. 

6 - Tube: mesh size 20 mm; S4R; steel – kinematic hardening material. 

7 - Unbonding interface: gap + contact law (normal “Hard”; tangential “Penalty”, 0.1 friction coefficient). Core-to-concrete 

gap: through thickness/width direction, gt / gw; uniform gap, g.  

8 - Gap for compression stroke, LG = 70 mm. 

9 - Contact law: concrete-to-tube composite effect (normal “Hard”; tangential “Penalty”, 0.4 friction coefficient). 

10 - Fixed support-1: (Ux = Uy = Uz = URy = URz = URx = constrained). 

11 - Fixed support-2: (Ux = URy = URz = constrained; Uz / Uy / URx = applied longitudinal / transversal / rotational cyclic 

loading) 

Fig. 1 Finite element model 
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core, half-length models were used by Korzekwa and 

Tremblay (2009). The predictions of full and quarter models 

under cyclic loading was investigated by AlHamaydeh et al. 

(2016) and close matching was obtained. 

Half or quarter models offer the advantage of reduced 

number of finite elements and, consequently, smaller 

computational time. However, these models are not 

appropriate when the response of the BRB is not 

symmetrical, as might be caused by self-weight loading. 

Considering that one of the objectives of this study was 

assessment of the effect of self-weight loading on the 

response of a BRB, a three-dimensional full model was 

used. 

Finite element models were created for each BRB 

specimen that was experimentally tested (see Stratan et al., 

in press). All BRB models have several common features: 

types of finite elements, type of material models, boundary 

conditions, geometrical nonlinearities, contact laws. The 

differences between the models relate to the geometry and 

material input. Fig. 1 presents a summary of FEM 

modelling per BRB typology.  

A special interest was given to the discretization of the 

steel core since it is the only component supposed to 

undergo large plastic deformations under repeated cycles. 

Different finite elements were used by researchers to 

discretize the core: shell elements (Matsui et al. 2008, 

Eryasar 2009, Rahai et al. 2009), first order brick elements 

(Chou and Chen 2010, Hoveidae and Rafezy 2012) or 

second order brick elements (Korzekwa and Tremblay 

2009, Razavi et al. 2014). In this study the core was 

modelled using incompatible mode eight-node linear brick 

elements, C3D8I, which are appropriate to model bending 

with contact interactions and avoid shear locking or 

hourglass modes (Dassault, 2014). Two finite elements per 

thickness were used (as recommended by Korzekwa and 

Tremblay 2009) and, for the plastic zone, an aspect ratio of 

approximatively 1:1 was considered, thus resulting cubic 

finite elements (FE). A finer mesh was assigned to the 

plastic zone (FE size approx. 10 mm), while a coarser mesh 

for the elastic zones (FE size approx. 20 mm). 

Several modelling approaches were used for the 

buckling restraining mechanism, BRM. A simplified shell 

or beam model was used by Matsui et al. (2008) and Tinker 

(2011), respectively. Other researchers explicitly modelled 

the concrete-infill with brick elements and the tube with 

shell elements (Rahai et al. 2009, Guo et al. 2017). In this 

study, the components of the BRM were modelled explicitly 

and discretized using a coarse mesh. The concrete part was 

modelled using eight-node linear brick elements with 

reduced integration and hourglass control, C3D8R, with a 

global mesh size of 20 mm. The steel tube and the caps 

were modelled using a four-node doubly curved shell with 

reduced integration and hourglass control, S4R, due to their 

reduced thickness, with a global mesh size of 20 mm. 

The unbonding material was not modelled explicitly due 

to its reduced thickness. Instead, a core-to-concrete gap and 

a contact law were used, as discussed in section 2.4. The 

polystyrene parts placed at the end of transition zones were 

modelled using a gap of length LG = 70 mm. 

 

A general contact was defined. The contact domain 

consists of two selected surface pairs having different 

contact properties, as follows. The core–to–concrete 

interaction was defined as having the tangential behaviour 

of "penalty" type with the friction coefficient set to 0.1 and 

the normal behaviour set to "hard" contact. The steel 

casing-to-concrete interaction had the same properties 

except the friction coefficient set to 0.4. In both cases, the 

metallic surfaces were considered “master” in the contact 

formulation to avoid excessive penetrations and numerical 

errors. Also, a coupling constraint was defined at each end 

of the core, by connecting a reference point to the end 

surface of the core using kinematic coupling. 

 
2.2 Boundary conditions and loading 
 

To the authors' knowledge, there are no numerical 

studies on BRBs that considers both the cyclic and the self-

weight loadings. Furthermore, if rigid (bolted or welded) 

BRB-to-gusset connections are used to insert the BRB in 

the (testing) frame, additional bending moments are 

transmitted to the BRB ends due to the frame effect 

(opening and closing of the beam-to-column angle). These 

additional moments were modelled by Saeki et al. (1996b) 

using an "obliquely loaded model", while Dusicka and 

Tinker (2013) used load eccentricity applied at each BRB 

end. As regarding the applied cyclic loading, most 

researchers used the displacement control applied to either 

one end (Dusicka and Tinker 2013) or to the both ends of 

the BRB (Chen et al. 2016).  

In this study the definition of the boundary conditions 

consisted in assigning fixed supports at the BRB ends (at 

the reference points) and applying the self-weight and the 

cyclic load to assure similar conditions as in the 

experimental tests. The supports have the translational (Ui) 

and rotational (URi) degrees of freedom constrained with 

respect to axis i.  

The self-weight load was applied taking into account the 

position of the specimen in the experimental setup. Special 

consideration was given to modelling the cyclic load due to 

the fact that the BRBs were experimentally tested using the 

BRB-column sub-assemblage setup. This setup causes 

frame effects due to opening and closing of the angle , 

Fig. 2(a), during the tension/compression phases. In the 

finite element model of the testing sub-assemblage, the 

column and the gusset-plate connections were not modelled, 

only the BRB in between the gussets. To simulate the frame 

effect due to rigid body rotation of the column, Fig. 2(a), 

transversal displacement Uy and rotations URx were applied 

at one of the BRB ends, in addition to the axial 

displacement Uz, Fig. 2(b). The axial displacement Uz, the 

transversal displacement Uy and rotation URx were 

determined by imposing the lateral drift of the test assembly 

b and considering rigid body rotation of the column-gusset 

assembly (Fig. 2(b)). 

As presented in the companion paper (Stratan et al. in 

press), the loading protocol used for experimental tests was 

based on ANSI/AISC 341-10 (2010) provisions, but with 

additional cycles. The loading sequence consisted of 2  
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cycles at each of the following amplitudes: by (depending 

on the specimen), 0.5bm (25.6 mm), 1.0bm (51.2 mm), 

1.5bm (76.8 mm), 2.0bm (102.4 mm), 2.5bm (127.9 mm, 

additional cycles), followed by cycles at 1.5bm  until 

failure was attained (by is the yield deformation of the 

BRB, bm is the design inter-storey drift). The same loading 

protocol was used for calibration of BRB models. 

 

2.3 Analysis and validation 
 

Different Abaqus procedures can be used to solve the 

nonlinear equations. Static procedures incorporating also 

numerical techniques to improve the convergence rate were 

used by Hoveidae and Rafezy (2012), Dehghani and 

Tremblay (2017), Yazdi et al. (2018). Explicit formulation 

was used by Hadianfard et al. (2018). 

Due to the high nonlinearity of the full three-

dimensional model, the FEM analyses were performed 

using the Dynamic Explicit solver. Three steps were 

defined: initial, self-weight, cyclic. In the initial step, the 

model and the initial geometrical imperfection (see section 

2.6) are defined. In the second step, the self-weight load is 

applied using a smooth step amplitude to avoid dynamic 

effects. In the third step, with the self-weight load kept 

constant, the cyclic load is applied using a smooth step 

amplitude function to assure a quasi-static analysis. For the 

last two steps, nonlinear effects considering large 

deformations and displacements were considered. 

Assessment of output energy balance must be performed 

to assure reliable FEM results (Korzekwa and Tremblay 

2009). The energy balance was monitored to check the 

analysis: kinetic energy was under 1% of the internal one, 

thus assuring a quasi-static analysis; artificial energy was 

also low, under 1% of the internal energy, thus validating 

the finite elements used (no shear locking of hourglass 

deformation modes of the elements). External work and 

internal energy had an almost similar path throughout the 

analysis, thus validating the results obtained. 

 

2.4 Unbonding material 
 

Due to the fact that the unbonding material has a 

relatively small thickness compared to the thickness of the  

 

 

core, in most cases it is not modelled explicitly. Instead, a 

gap and a contact law are used (Rahai et al. 2009, 

AlHamaydeh et al. 2016, Budahazy and Dunai 2015). 

However, Eryasar (2009) used planar shell elements with 

elastic mechanical properties to explicitly model the 

unbonding material. In this study the first approach was 

used. 

The acrylic tape was modelled by using a gap and a 

contact law. The size of the gap was set equal to the 

nominal thickness of the unbonding layer, which are 

described in Stratan et al. (in press). The definition of the 

contact law includes a normal “Hard” and a tangential 

“Penalty” behaviour. For the tangential behaviour different 

values of the friction coefficient (0.05, 0.1, 0.2, 0.3) were 

numerically tested on the BRB model corresponding to 

CS33-1. The BRB specimen CS33 was chosen for this 

calibration since the material used to model the core was 

calibrated based on uniaxial cyclic test data and does not 

represent an unknown variable. Good agreement with the 

experimental results (CS33-1) was obtained by using a 

friction coefficient equal to 0.1, see Fig. 3 (Guo et al. 2017). 

Also, the higher the friction (0.2 or 0.3), the higher is the 

compression overstrength and less ductile is the BRB. 

Using less friction (0.05) leads to lower compression 

overstrength and no fracture occurs, contrary to the 

experimental results. 

 

 

Fig. 3 Calibration of the value of the friction coefficient 

 

-800

-600

-400

-200

0

200

400

600

800

-150 -100 -50 0 50 100 150

N
 [

k
N

]

D [mm]

CS33-1 fc=0.05 fc=0.1 fc=0.2 fc=0.3

 
 

(a) Rigid-body movement of the BRB-column assembly (b) Corresponding components applied to the BRB model 

Fig. 2 Modelling of cyclic loading 
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2.5 Material models 
 
2.5.1 Steel 
Built-in material models are generally used to model 

both the elastic and plastic behaviour of BRB steel 

components. The combined isotropic-kinematic hardening 

model is used by most researchers to model the steel core as 

it allows good representation of the Bauschinger and cyclic 

hardening phenomena (Korzekwa and Tremblay 2009, 

Chen et al. 2016). However, for closer predictions user 

material subroutines were developed and implemented in 

Abaqus and Ansys finite element computer programs by 

Piedrafita et al. (2015) and Budahazy and Dunai (2015), 

respectively. In this study Abaqus built-in models were 

used. 

Two different material models were used for steel parts 

of BRBs: kinematic and combined. Both models have the 

same definition of the elastic component (steel elastic 

modulus, Es = 210000 N/mm2 and Poisson’s ratio   = 0.3), 

but different definitions of the plastic component. 

In the case of steel tubes, the plastic hardening 

behaviour was defined using the kinematic option, since the 

tubes are not expected to experience cyclic plastic 

deformations. Thus, a simple bilinear model (elastic-plastic 

with strain hardening) was appropriate for FEM modelling 

of the tubes. Based on the data from the quality certificates, 

the kinematic material inputs expressed as true yield stress,  

 

 

 

 

 

 

0, and true plastic strain, pl, were obtained, and are 

presented in Table 1. 

A more complex material model, with combined 

isotropic-kinematic hardening, was used to model the steel 

core. The model consists of a nonlinear kinematic 

component and a multilinear isotropic (cyclic) hardening 

component. Based on the von Misses yield criterion and 

Chaboche (Lemaitre and Chaboche 1990) plastic hardening 

model, the combined model can simulate the Bauschinger 

effect due to cyclic loading (Dassault 2014). The multilinear 

definition of the cyclic hardening allows for the simulation 

of the yield plateau and the increase (or decrease) of the 

yield surface under repeated cycles at constant strain. 

Further details regarding the calibration of the input 

parameters of the core material are available in (Zub et al. 

2018). 

 

  
(a) Cyclic response (b) Monotonic response 

Fig. 4 Calibrated FEM response of core material C30 for the specimens CS33-1 and CR33-2 

  
(a) Kinematic component (b) Isotropic component 

Fig. 5 Calibrated inputs of core materials 

Table 1 Material inputs for steel tubes 
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mm/mm 
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The combined model is loading-history dependent from 

the point of view of isotropic hardening definition (Zub et 

al. 2018). Therefore, calibration of the isotropic model must 

be performed using experimental results from a uniaxial 

coupon test having a loading history similar to the one used 

for testing the BRBs, with respect to the strain evolution 

recorded during BRB cyclic testing. Based on these 

observations, the calibration of the core material C30 used 

for BRB FEM model CS33 was focused on predicting the 

cyclic behaviour under variable amplitude loading. The 

capability of the combined model to reproduce with a 

certain level of accuracy both the cyclic and monotonic 

behaviour of mild carbon steel with respect to experimental 

data is presented in Figs. 4(a) and 4(b). 

For the other BRB cores, where no cyclic material test 

data were available, the calibration of the material model 

was performed using a trial-and-error procedure using the 

force (N) – displacement (D) cyclic curve of the BRBs. 

Having as fixed parameter the yield stress and zero plastic 

strain, 0, the trial and error procedure was focused on 

determining the appropriate values of the kinematic 

hardening moduli, Ck, and their corresponding decreasing 

rate, k, with respect to increasing plastic deformation. 

In Fig. 5 calibrated core material inputs are graphically 

presented for both kinematic, see Fig. 5(a), and isotropic 

component, see Fig. 5(b). The calibrated kinematic and 

isotropic hardening parameters are presented in a tabular 

form in Tables 2 and 3, respectively. 

 

2.5.2 Concrete 
The concrete material model proved to have an 

important role when calibrating the specimens CR71-1 and 

CR71-2 that buckled during tests. Therefore, the 

performance of two approaches for modelling the concrete  

 

 

infill were assessed on the FEM model of the CR71-1 

specimen. 

For modelling infill concrete, test results on cubes cured 

in room conditions were used. The mean value of 

compressive cube strength of concrete is fc,cube = 47.3 

N/mm2 (Stratan et al. in press). Using the provisions from 

EN 1992-1-1 (2004) the other mechanical properties were 

determined and are summarized in Table 4. The mean value 

of the compressive cylinder strength of concrete was 

obtained as fcm = 0.8fc,cube. The linear elastic compressive 

limit was set to 0.4fcm. The mean value of axial tensile 

strength of concrete, fctm, was computed based on the 

characteristic compressive cylinder strength of concrete, fck, 

using the equivalent formula, fctm = 0.3fck
2/3, where fck = fcm – 

8 N/mm2. The value of the secant modulus of elasticity of 

concrete was determined as Ecm = 22[(fcm)/10]0.3, with fcm in 

N/mm2. The value of the compressive strain in concrete at 

the peak stress fcm was computed as c1 = 0.7fcm
0.31 ≤ 2.80/00. 

The plasticity number was determined as k = 1.05Ecm|c1|/fcm 

= 1.96. 

The first approach consists in modelling the concrete 

parts using an elastic material (Chou and Chen 2010, Guo et 

al. 2017), see Fig. 6 Secant modulus of elasticity of 

concrete, Ecm = 32795 N/mm2, and Poisson’s ratio,  = 0.2, 

define the isotropic elasticity. 

 

 

Table 4 Mechanical properties of concrete infill 

fc,cube
 

N/mm2 

fcm
 

N/mm2 

0.4fcm
 

N/mm2 

fck
 

N/mm2 

fctm
 

N/mm2 

Ecm
 

N/mm2 

c1
 

- 

47.3 37.8 15.2 29.8 2.9 32795 0.00216 

 

 

 

Table 2 Calibrated parameters describing the kinematic hardening of the core material models 

Material 
0 

N/mm2 

C1
  

N/mm2 
1 

- 

C2
  

N/mm2 
2 

- 

C3
  

N/mm2 
3 

- 

C4
  

N/mm2 
4 

- 

C5
  

N/mm2 
5 

- 

C14 407.77 45000 850 12600 245 1900 35 630 1.3 210 1 

C20 359.46 40000 900 10000 195 2000 67 950 3.5 350 1 

C30 367.08 41513 697 15152 137.5 600 4.6 255 2.2 195 0 

C45 282.13 95000 1300 40500 680 5000 120 500 2.5 200 2 

 

Table 3 Calibrated parameters describing the isotropic hardening of the core material models 

C14 
0, N/mm2 407.8 256.7 289.6 324.6 340.0 350.0 370.0 395.3 412.3 419.5 356.6 38.2 

−pl, - 0.0 0.0237 0.0488 0.0962 0.166 0.250 0.500 1.000 2.00 4.256 4.476 5.226 

C20 
0, N/mm2 359.5 239.2 284.0 312.0 320.0 333.0 358.0 376.0 390.0 401.0 349.4 37.5 

−pl, - 0.0 0.0149 0.0488 0.1035 0.150 0.250 0.500 1.000 2.00 4.256 4.476 5.226 

C30 
0, N/mm2 367.1 206.1 278.4 313.5 326.8 339.1 368.9 393.4 404.6 410.2 348.7 37.4 

−pl, - 0.0 0.0139 0.0464 0.0966 0.150 0.235 0.424 0.990 2.00 4.256 4.476 5.226 

C45 
0, N/mm2 282.1 112.0 185.0 211.7 220.5 245.0 274.0 311.0 329.5 349.8 297.3 31.9 

−pl, - 0.0 0.0134 0.0488 0.0974 0.140 0.250 0.500 1.000 2.00 4.256 4.476 5.226 
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Fig. 6 Stress-strain relationships of concrete 

 
 

 

Fig. 7 BRB cyclic predictions using different concrete 

material models 

 
 

The second modelling approach uses the Abaqus "built-

in" Concrete Damaged Plasticity model, CDP 

(AlHamaydeh et al. 2016, Rahai and Mortazavi 2014). The 

following parameters define the concrete plasticity 

(Dassault 2014): dilation angle,  = 36; eccentricity,  = 

0.1; ratio of initial equibiaxial compressive yield stress to 

initial uniaxial compressive yield stress, b0/c0 = 1.16; 

ratio of the second stress invariant on the tensile meridian to 

that on the compressive meridian, Kc = 0.667; viscosity 

parameter,  = 0. The constitutive stress-strain curves used 

to describe the compressive and tensile behaviour of the 

CDP model are based on a simplified version of the EN 

1992-1-1 (2004) definition of the nonlinear behaviour of the 

concrete material. As graphically presented in Fig. 6, the 

compressive behaviour has the elastic limit set to 0.4fcm, 

while the plastic stress-strain relationship is parabolic up to 

the peak stress fcm and constant afterwards. The tensile 

behaviour is defined as elastic-perfectly plastic, with the 

elastic limit set to fctm. 

Abaqus requires true stress-strain relationship to define 

the plastic behaviour of a material model. Therefore, yield 

stress and inelastic/cracking strain data pairs must be 

provided for compressive/tensile behaviour (Dassault 

2014). To obtain the material input, the nominal stress-

strain data pairs (resulted following the provisions from EN 

1992-1-1 2004) were transformed into true stress and 

logarithmic strain using the following formulas:  = nom(1 

+ nom),  = ln(1 + nom). After deducting the elastic part, the 

compressive behaviour is expressed as yield stress and 

inelastic strain data pairs (c
i; in

i), with the first pair (i = 1) 

defined as (c
1; ), where c

1  0.4fcm(1 + 0.4fcm/Ecm) is 

the initial compressive yield stress. The tensile behaviour is 

defined by only one yield stress and cracking strain data 

pair (t
1; ), with t

1 = fctm(1 + fctm/Ecm). 

As it can be observed in Fig. 7 the elastic concrete 

model overpredicts the cyclic response of the specimen 

CR71-1 at large core deformations, since no plastic 

deformations take place in the concrete part and, therefore, 

the material fully recovers when unloading. Instead, the 

CDP model leads to close prediction with the experimental 

response of specimen CR71-1 at global buckling, since 

irreversible plastic deformation can take place in the 

concrete part, reducing the stiffness. Nevertheless, an elastic 

concrete model is a reasonable simplification if the BRM is 

not susceptible to global buckling.  

Based on the above observations, the CDP model was 

considered appropriate to model CR71 specimens (CR71-1, 

CR71-2) since they experimentally buckled and, which led 

to plastic deformations in the concrete parts of the FEM 

model. The same concrete model was used in the case of the 

other BRB models of type A (CR33-1 /-2 and CR73-1 /-2) 

due to consistency reasons (the case of the CR33 model) 

and due to the fact that the influence of concrete class is 

numerically investigated on the CR73 model. As regarding 

the other BRBs that did not fail by global buckling, the 

response of the concrete parts is expected to be mostly 

elastic. Therefore, an elastic concrete model was used for 

finite element models of BRBs of type B (CS33-1 /-2, 

CS73-1 /-2), which proved to be efficient in reducing the 

numerical errors caused by excessive penetrations of the 

core into the concrete parts in the elastic zone. 

 
2.6 Geometrical imperfections 
 

The initial geometrical imperfections of BRBs can be 

classified as those due to the deviation from the rectilinear 

shape of the steel core (misalignment of the core 

components, core off-centring relative to steel tube) and 

those of the steel tube (bow imperfections and 

misalignment of connections). Core imperfections were not 

determined due to the difficulties in assuring reliable 

measurements: the core is very slender and has large initial 

deflections; after concrete casting, the position of the core 

relative to the tube cannot be determined precisely. Instead, 

tube imperfections were measured and a bow shape 

imperfection was obtained with a maximum amplitude of 

e0,max = LBRB/14036 = 0.28 mm, with respect to BRB length 

(LBRB). 

According to EN 1993-1-1 (2005), equivalent 

geometric imperfections must be used in structural 

analyses with values that reflect the possible effects of all 

types of imperfections (geometrical misalignments, loading 

eccentricities). Consequently, an initial equivalent 

geometrical bow imperfection (e0) was introduced in the 

BRB FEM model by using the first buckling mode, whose  
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deformed shape was in the YZ plane of the self-weight load 

(Fig. 8). 
Since it was not possible to measure all possible 

geometrical imperfections, an equivalent bow imperfection 

e0 was determined by performing cyclic FEM analyses on 

CR71 models and comparing the predictions with the 

experimental results. Different values for e0 (0, LBRB/3000, 

LBRB/2000, LBRB/1000, LBRB/750, LBRB/500) were considered. 

As it can be observed in Fig. 9(a), in the case of BRB model 

CR71-1 close predictions are obtained using an initial bow 

imperfection of LBRB/1000. In the case of BRB model 

CR71- 2, see Fig. 9(b), an imperfection of LBRB/750 leads to 

closer agreements with the experimental results. As an 

imperfection of LBRB/750 caused premature buckling in the 

case of BRB model CR71-1, an initial equivalent bow 

imperfection of e0 = LBRB/1000 (Hoveidae and Rafezy 2012, 

Guo et al. 2017) was applied for all other BRB models. 

 
2.7 Model calibration 

 

Using the above-mentioned FEM modelling hypotheses 

(material models, initial imperfections, contact laws), 

geometrically and materially nonlinear analyses including 

imperfections (GMNIA) were performed on FEM models 

of BRBs under cyclic loading. The predictions in terms of 

reaction force (N) and end displacement (D) are presented 

in Fig. 10 in comparison with experimental results. As a 

general remark, the BRB FEM models reproduce the 

experimental hysteresis loops with a good level of accuracy. 

The failure of the core in tension due to excessive necking 

is captured for all models. Except for the models that failed 

by global buckling (CR71-1 and CR73-2), in the case of all  

 

 

 

 

the other BRB models the failure mode is by fracture of the 

core in the plastic zone during tensile loading. It is to be 

mentioned that the failure of the material due to low-cycle 

fatigue was not explicitly included in the material model. 

For the CR71 specimens (CR71-1, CR71-2), the model 

predictions are quite accurate. The FEM model was able to 

capture both the cyclic behaviour and the failure mode by 

global buckling of the BRBs. 

In the case of CR73 specimens, the predicted cyclic 

response has an acceptable level of accuracy, since between 

the two experimental responses (CR73-1 and CR73-2) there 

were minor differences. For the first model, CR73-1, the 

failure occurred prematurely during the tensile phase of the 

11th additional cycle at 1.5bm. Thus, the model was able to 

perform only 23.25 out of 25.0 cycles, as experimentally 

recorded. In the case of FEM model CR73-2, the failure 

occurred also prematurely during the tensile phase of the 9th 

additional cycle at 1.5bm. Thus, the model was able to 

perform only 21.5 out of 25.5 cycles, as experimentally 

recorded. In both cases, the FEM models developed larger 

compression hardening during the additional cycles at 

1.5bm due to material input. 

Close predictions were also obtained for both CR33 

specimens (CR33-1, CR33-2). The FEM models were not 

able to fully capture the excessive hardening during 

compression cycles corresponding to 2.5Dbm. This might be 

caused by the material input used for the core, for which no 

experimental data was available for calibration. 

From FEM results it was observed that the excessive 

hardening response at large deformations in compression is 

caused by increasing of the cross-sectional area of the core 

as a result of the Poisson’s effect. The increase took place  

 

Fig. 8 Equivalent geometric bow imperfection 

  

(a) CR71-1 (b) CR71-2 

Fig. 9 Effect of initial geometrical imperfections on BRB FEM models CR71 
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mainly in the through-width direction of the plastic segment 

of the core, which is located near the transition zones. 

Therefore, the stress flow finds a new path, through the 

concrete part, leading to higher compression forces and un-

symmetric cyclic response. Further investigations are 

required to properly determine the thickness of the 

unbonding material with respect to the Poisson’s effect 

under large strains. 

In the case of CS33 specimens, since cyclic material test 

data were available for calibration, the BRB models were 

able to predict with a very good level of accuracy both the 

cyclic response and the failure mode. As in the case of 

CR73 specimens, there are minor differences between the 

response of two experimental specimens (CS33-1, CS33-2). 

 

 

Regarding CS73 specimens, there are some differences 

between the experimentally obtained hysteresis loops due to 

the manufacturing imperfections (misalignment of the core 

components). When comparing the experimental and FEM 

results, it can be noticed that the cyclic performance of the 

specimen CS73-1 was considerably reduced due to 

misalignments of the components. The FEM model CS73-1 

was able to sustain an extra complete cycle at 2.5bm prior 

fracture in tension. In the case of CS73-2 specimen, 

excessive hardening response at the first compression cycle 

corresponding to 2.5bm was recorded. The FEM BRB 

model is not able to capture this phenomenon and therefore 

is considered to be caused by manufacturing imperfections 

 

   

   
(a) CR71 (b) CR73 (c) CS73 

  

  
 (d) CR33 (e) CS33  

Fig. 1 Calibration of FEM BRB models based on experimental results 
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(misalignment of polystyrene parts). Also, close prediction 

of the fracture was obtained for CS73-2 specimen. Based on 

the above observations, the numerical BRB models were  

 

 

 

able to capture the cyclic behaviour of the specimens CS73-

1 and CS73-2 with an acceptable level of accuracy. 

 

 

 

 
(a) BRB Type A: specimen CR73-2 

 

 
(b) BRB Type B: specimen CS73-2 

Fig. 2 Deformed shape of BRB core: experimental vs. FEM 
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(a) BRB Type A: specimen CR73-2 
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(b) BRB Type B: specimen CS73-2 

Fig. 3 Friction zones on concrete infill: experimental vs. FEM 
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In Figs. 11(a) and 11(b) are presented both the 

experimental and FEM deformed shape of the cores for two 

BRBs, CR73-2 and CS73-2. It can be observed that fracture 

positions are relatively close to the stopper, as in the 

experimental cases. Also, the core of CR73-2 model is more 

deformed about the minor axis of inertia, while the core of 

CS73-2 is more uniformly deformed with respect to the 

principal axes of inertia. 

In Figs. 12(a) and 12(b) are presented the friction zones 

on the concrete infill in FEM model in comparison to the 

experimental specimens, CR73-2 and CS73-2. A larger 

number of friction zones can be observed in the case of the 

CR73-2 model since the cross-section is rectangular and has 

a small axis of inertia, while in the case of CS73-2 model 

the core has a compact square cross-section shape. 

 

 

3. Parameters influencing BRB performance 
 

The numerical study aims at understanding some 

phenomena related to BRB cyclic behaviour and at 

extending the experimental database by performing 

parametric FEM analyses on the calibrated BRBs models. 

Therefore, the influence of the following parameters was 

numerically investigated: the strength of the buckling 

restraining mechanism, the class of the concrete infill, the 

steel grade of the core material, the effect of the self-weight 

loading. 

The cyclic analyses were performed using the loading 

protocol presented in Fig. 13. It is limited to the first 10 

cycles as required by ANSI/AISC 341-10 (2010), since the 

cumulative inelastic deformation, CID, for this loading 

history exceeds the minimum requirement of 200 times the 

yield deformation of the BRB, by. 

 

3.1 BRM strength 
 

Early studies on bucking-restrained braces suggested 

that global buckling of the BRB can be prevented if the 

elastic critical force Ncr of the bucking-restraining 

mechanism (BRM) is at least 1.5 times the nominal 

resistance of the core Np (Watanabe et al. 1988). However, 

some studies (Iwata and Murai 2006) suggested that Ncr/Np 

≥ 3 is necessary to obtain cumulative inelastic deformations 

in excess of 200 times the yield deformation, as required by 

ANSI/AISC 341-10 (2010).  

 

 

Fig. 13 Loading protocol used for parametric FEM 

analyses 

Takeuchi and Wada (2017) proposed the following 

expression for design of the buckling restraining 

mechanism 

𝑁𝑐𝑟

𝐶𝑚𝑎𝑥

> 1 + (
2𝐸𝑠

2𝑓𝑦

·
𝑒0

𝐿𝐵𝑅𝐵

) / (
𝐿𝐵𝑅𝐵

𝐷𝑒

) (1) 

where: Cmax is the maximum compression force developed 

by the BRB; fy is the yield strength of the steel tube; e0 is 

the amplitude of the initial bow imperfection, taking into 

account geometrical imperfections of core, the brace, and of 

the connections (load eccentricity); De is the exterior 

diameter of the steel tube. 

The initial bow imperfection used in Eq. (1) is difficult 

to be established. Moreover, Eq. (1) addresses monotonic 

compression case since there are no factors to take into 

account the strength degradation of BRM due to cyclic 

loading. 

The influence of the strength of the buckling restraining 

mechanism (BRM) on the BRB performance was evaluated 

by assessing the response of five finite element models 

under monotonic and cyclic loading conditions. The 

numerical models are based on the calibrated model CR71-

1. For each BRB model, the buckling restraining 

mechanism was designed for different rations between the 

elastic critical load of the steel tube, Ncr, and the plastic 

resistance of the core, Np. The following ratios were 

considered: Ncr/Np = 1.50, 1.75, 2.0, 2.5, 2.79. The thickness 

of the steel tube, t, was offset to the exterior, thus the 

concrete section did not change from one model to the 

other.  

The critical buckling load was computed based on 

Euler’s formula 

𝑁𝑐𝑟 = 2𝐸𝑠𝐼𝑠/𝐿𝑐𝑟
2  (2) 

where: Es and Is are the elastic modulus and the moment of 

inertia of the steel tube, respectively; Lcr = LBRB = 3930 mm 

is the buckling length of the BRM, considered for this study 

equal to the length of the BRB. 

To check the design Eq. (1), monotonic compression 

analyses were performed on the BRB models. FEM models 

of specimens CR71-1 and CR71-2 with different values of 

the initial geometrical imperfection (LBRB/1000, LBRB/500, 

LBRB/450, LBRB/250) were analysed. The value of the initial 

imperfection that resulted in best match with the 

experimental buckling load under cyclic loading was 

e0/LBRB = 1/450 (Fig. 14). 

Using the calibrated equivalent imperfection for 

monotonic loading (e0 = LBRB/450), monotonic compression 

analyses were performed on the other BRB models with 

varying ratios of Ncr/Np. The maximum compression force 

developed by the brace prior to buckling represents the 

design axial resistance (NRd,f) of the BRM obtained using 

the FEM method.  

Following the analytical approach from Takeuchi and 

Wada (2017), the design resistance NRd,a of the BRM can be 

obtained with Eq. (3), which is the ratio between the critical 

elastic force Ncr and the safety factor α defined by Eq. (4) 

𝑁𝑅𝑑,𝑎 = 𝑁𝑐𝑟/ (3) 
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where 

 = 1 + (
2𝐸𝑠

2𝑓𝑦

·
𝑒0

𝐿𝐵𝑅𝐵

) / (
𝐿𝐵𝑅𝐵

𝐷𝑒

) (4) 

 

 

 

 

Fig. 14 Calibration of the equivalent imperfection of 

BRB model under monotonic compression loading 

 

 

 

 

Fig. 15 Cyclic response of BRB models with BRMs of 

different strength 

 

 

 

 

The analytical and the FEM results are summarized in 

Table 5. By analysing the ratio between the FEM and the 

analytical prediction of the design critical load (NRd,f/NRd,a), 

it can be noticed that the formula is less conservative for 

stronger BRM. This happens due to the fact that the 

influence of the concrete infill, imperfection and other 

modelling assumptions to the buckling resistance of the 

FEM model becomes less important with larger thickness of 

the steel tube, thus the steel tube becomes the main 

component responsible for the strength of the buckling 

restraining mechanism. 

In the second phase, cyclic analyses were performed on 

the BRB models with BRMs of different strength. As 

presented in Fig. 15, the cyclic response is stable for all 

models during the entire loading protocol (NEd/NRd,f ≤ 1). 

However, considering the maximum compression force 

Cmax = 1219 kN developed by the models under cyclic 

loading as the design force NEd,BRM, from Table 5 it can be 

observed that only the models with Ncr/Np ≥ 2.50 are 

satisfying the design check NEd,BRM / NRd,a ≤ 1.0 proposed in 

Takeuchi and Wada (2017). It means that the analytical 

design approach is conservative. Nevertheless, the mid-span 

deflection (Uy,mid) of the steel tube increases at a larger rate 

for small Ncr/Np ratios. In the case of the model with 

Ncr/Np = 1.50, Uy,mid reached 37.63 mm, during the 

compression phase of the second cycle at 2.0bm. Moreover, 

the maximum compression force under cyclic loading for 

the model with Ncr/Np =1.5 amounts to 1208 kN, which is 

larger than the resistance under monotonic loading, NRd,f = 

1180 kN. For larger Ncr/Np values this "anomaly" is not 

observed. 

As presented in section 2.6, the calibrated FEM model 

(Ncr/Np = 1.53) buckled during the first compression phase 

of the 2.5bm cycle under a force Cmax = 1260 kN, which is 

slightly larger than the maximum compression force 

recorded using the standard loading protocol from Fig. 13, 

with Cmax = 1202 kN.  

Fig. 16 presents the state of stress in the steel tube at 

peak compression during the second cycle at 2.0bm. It can 

be observed that in the case of BRB model with Ncr/Np = 

1.50 the maximum stress max
tube = 462 N/mm2 is beyond 

the true yield strength of the tube, 0
tube = 460 N/mm2. For 

the other models, the maximum stress decreases as 

increasing the thickness of the tube. 
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Table 5 Performance evaluation of BRB models with different Ncr,s/Np,m ratios 

De x t 

mm 

Ncr 

kN 

Ncr/Np  

- 
  

- 

NRd,a 

kN 

NRd,f 

(mon.) 

kN 

Cmax 

(cyclic) 

kN 

NRd,f/ 

NRd,a  

- 

Uy,mid 

mm 

NEd,BRM/ 

NRd,a  

- 

NEd,BRM/ 

NRd,f  

- 

177.77x3.90 1081 1.50 1.227 881 1180 1208 1.340 37.63 1.384 1.033 

179.01x4.52 1266 1.75 1.229 1031 1427 1200 1.384 22.06 1.183 0.854 

180.21x5.12 1450 2.00 1.230 1178 1477 1199 1.253 15.94 1.034 0.825 

182.51x6.27 1811 2.50 1.233 1469 1746 1219 1.189 10.64 0.830 0.698 

183.81x6.92 2022 2.79 1.235 1637 1885 1216 1.151 9.11 0.745 0.646 
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Based on these facts, the model designed for 

Ncr/Np = 1.50 is considered sensitive to global buckling. 

This fact is also confirmed by analysing the NEd,BRM / NRd,f 

ratios from Table 5. In the case of BRB model with 

Ncr/Np = 1.50, the ratio NEd,BRM / NRd,f is equal to 1.033, 

while for all the other models subunit ratios are obtained. 

It can be concluded that the analytical procedure 

proposed by Watanabe et al. (1988), with a minimum ratio 

Ncr/Np > 1.5, shows to be too simplistic and sometimes 

unconservative, since it does not take into account the 

maximum compression force, Cmax = Np, that could be 

developed by the BRB during cyclic loading. The analytical 

design procedure proposed by Takeuchi and Wada (2017) 

takes into account Cmax and also second order effects (α). It 

is found that their design formula is more conservative than 

the one proposed by Watanabe et al. (1988), leading to 

Ncr/Np  ratios considerable larger than 1.5. Also, the design 

formula proposed by Takeuchi and Wada (2017) is less 

conservative for stronger buckling restraining mechanisms. 

To pass the design check NEd,BRM /NRd,a ≤ 1.0, a minimum 

ratio Ncr/Np > 2.5 is needed to be used for the design of the 

BRM. 

 

3.6 Concrete class 
 

The influence of the class of concrete infill on the cyclic 

performance of BRB was investigated by assessing the 

response of four BRB models corresponding to CR73-2. 

The models are similar except for the concrete mechanical 

properties, which were modelled using the concrete 

damaged plasticity material (CDP), as described in section  

 

 

 

3.4.2. In addition to the concrete class used for the 

calibrated BRB model, C30/37, the following concrete 

classes were chosen for this numerical study: low strength 

concrete C12/15, normal strength concrete C20/25, high 

strength concrete C50/60. The mechanical properties of the 

concrete material models used in these simulations are 

summarized in Table 6. 

 

 

Table 6 Concrete material inputs 

Class fcm 

N/mm2 

fcm/ 

fcm(exp) 

Ecm 

N/mm2 
  

- 

fctm 

N/mm2 

C12/15 20 0.50 27088 0.2 1.6 

C20/25 28 0.75 30303 0.2 2.2 

C30/37 

(exp.) 
37.8 1.00 33503 0.2 2.9 

C50/60 58 1.50 38629 0.2 4.1 

 

 

 

S, Mises 

N/mm2 
Steel Tube (0

tube = 460 N/mm2) 

 

 

Ncr/Np = 1.50 (max
tube = 462 N/mm2) 

 
Ncr/Np = 1.53 (max

tube = 457 N/mm2) 

 
Ncr/Np = 1.75 (max

tube = 449 N/mm2) 

 
Ncr/Np = 2.00 (max

tube = 342 N/mm2) 

 
Ncr/Np = 2.50 (max

tube = 261 N/mm2) 

 
Ncr/Np = 2.79 (max

tube = 266 N/mm2) 

 

Fig. 16 State of stress in steel tube at peak compression during the second cycle at 2.0Dbm  

 

Table 7 Performance parameters of BRB models with 

different concrete classes 

Concrete Steel core Tube BRB 

Class PE 

- 

PEEQ 

- 

PE 

- 

PEEQ 

- 
Uy,mid 

mm 
  

- 

C12/15 0.0309 0.0239 0.058 1.323 9.00 1.14 

C20/25 0.0283 0.0177 0.063 1.449 8.64 1.13 

C30/37 0.0169 0.0105 0.071 1.516 7.98 1.15 

C50/60 0.0139 0.0085 0.071 1.487 8.27 1.16 
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Fig. 17 Cyclic response of BRB models with the 

concrete infill of different classes 

 

 

The axial force (N) - displacement (D) responses are 

presented in Fig. 17. It can be observed that there are no 

significant differences in the N-D responses.  

Table 7 presents the values of the plastic strain (PE) and 

cumulative plastic strain (PEEQ) in the concrete and the 

steel core obtained at the end of analysis. The table also 

gives the maximum values of the mid-span deflection of the 

steel tube (Uy,mid) in the vertical plane YZ, see Fig. 23(a), 

and the compression strength adjustment factor (). 

In the case of all BRB models the maximum value of 

plastic deformation occurred in the mid-zone of the 

concrete part, near the stopper. In the case of the BRB 

model C12/15, concentrations of plastic deformations 

occurred also at the top end of the concrete part, where the 

load is applied. Based on the results from Table 7 it can be 

noticed that the concrete part undergoes larger plastic and 

cumulative plastic strains if its class is lower (C12/15 and 

C20/25) in comparison to higher concrete classes (C30/37 

and C50/60), with a level of magnitude of almost twice.  

The mid-span deflection (Uy,mid) of the steel tube has 

slightly larger values in the cases of lower concrete classes. 

On the other side, the PE and PEEQ values in the steel core 

are slightly increasing as the concrete class increases. This 

might be a consequence of increasing the elastic modulus of 

the concrete model, thus the concrete part is stiffer and less 

deformable, forcing the plastic deformations to develop in 

the core and not in the concrete part. The  factor is in the 

range of 1.13-1.16, with the lowest value recorded in the 

case of C20/25 (= 1.13). 

Based on the above numerical results, it can be 

concluded that the concrete class has little influence on the 

global performance of the BRB. However, in order to keep 

low levels of damage in concrete, it is prudent to use a 

concrete class of at least C30/37. 

 

3.3 Steel properties 
 

The dissipative component of a BRB is the steel core. 

Therefore, its properties are expected to have a major 

influence on the performance of the complete BRB. Four 

materials were considered such that to have a low (1.2) and 

a high (1.6) value of the tensile to yield strength ratio (fu/fy), 

and a small (0.22 mm/mm) and a larger (0.36 mm/mm) 

value of the rupture strain, r. All materials have the same 

yield stress (fy = 394 N/mm2), and the same strain at the 

onset of strain hardening, sh (0.015 mm/mm). The strain 

corresponding to the tensile strength, u, was considered as 

55 % of r based on experimental observations, while the 

rupture strength was considered as 80 % of fu. The 

mechanical properties are summarized in Table. 

Having the target properties set, the corresponding input 

material for Abaqus software was based on the calibration 

procedure described in Hu et al. (2016). Using the 

Abaqus/Explicit built-in combined isotropic-kinematic 

material model requires some modifications to the 

procedure for obtaining the material input data. The 

procedure uses tensile coupon test results to calibrate the 

input parameters which can be further used for either 

monotonic or cyclic FEM analyses. 

The numerical stress-strain curves of the four materials 

under monotonic uniaxial tensile loading are presented in 

Fig. 18(a). They were obtained on numerical model of a 

standard specimen for tensile tests, with a proportional 

initial gauge length (𝐿0 = 5.65√𝐴0, where A0 is the initial 

cross-sectional area), discretized using C3D8I finite 

elements. 

The cyclic stress-strain response of steel presented in 

Fig. 18(b) was obtained using a variable loading protocol 

with amplitudes that will generate similar strain levels as in 

the case of analyses on BRBs. A unit cube discretized with 

one finite element C3D8I was the numerical model for 

cyclic analyses since the strain range does not exceed u  

and therefore no necking is expected to occur. 
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Table 8 Mechanical properties of steel used for cores 

Parameter mat-1 mat-2 mat-3 mat-4 

fy, N/mm2 394 394 394 394 

fu, N/mm2 473 630 473 630 

fr, N/mm2 378 504 378 504 

fu/fy 1.20 1.60 1.20 1.60 

sh, - 0.015 0.015 0.015 0.015 

u, - 0.121 0.121 0.198 0.198 

r, - 0.220 0.220 0.360 0.360 

ur 0.55 0.55 0.55 0.55 

Table 9 Performance parameters of BRB models with 

different steel properties for the core 

Material 

model 
, 
- 

 

- 
 

- 

CID/

by 

Cycles 

completed 
dis, 
kNm 

mat-1 1.15 1.24 1.43 145 7 312 

mat-2 1.49 1.25 1.86 265 9 688 

mat-3 1.19 1.25 1.49 196 8 430 

mat-4 1.54 1.28 1.98 334 10 845 
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The four materials were assigned to the core of the BRB 

model corresponding to CR33-1 specimen. Cyclic analyses 

were performed using the protocol from Fig. 13 and the 

axial force-displacement response of the four BRB models 

are presented in Figs. 19(a) and 19(b). It can be observed 

that only the BRB model having the material mat-4 

assigned to the core could sustain the entire loading 

protocol (10 cycles) without premature necking or fracture. 

The other models failed prematurely due to lack of ductility 

or low tensile to yield strength ratio. 

The cyclic response of the BRB models is also evaluated 

with respect to the performance parameters presented in 

Table 9. As expected, the value of the strain hardening 

adjustment factor () is larger in the cases of BRB models 

having fu/fy = 1.6 (mat-2 and mat-4), with a maximum value 

of  = 1.54 for mat-4 model. Also, the  factor is higher 

for BRB models mat-2 and mat-4. This increase leads to 

higher values of the maximum compression force which is 

used to design the non-dissipative components of the BRB 

(elastic segments of the core, BRM, connections). 

Consequently, larger sections might be needed. 

 

 

 

 

On the other hand, the compression strength adjustment 

factor, , (Table 9) is affected to a very low extent by the 

material properties (tensile to yield strength ratio and 

ultimate strain).  

The cumulative inelastic deformation, CID, exceeded 

200 times the yield deformation, by,, only in the case of the 

models with fu/fy = 1.6 (mat-2 and mat-4). Thus, the models 

mat-1 and mat-3 could not satisfy the ANSI/AISC 341-10 

(2010) requirement for qualification. 

With respect to the energy dissipated by the BRB, dis, 

computed as the area inside the hysteretic loops prior to 

necking, major differences can be observed between the 

BRB models. The larger value of dis = 845 kNm was 

obtained in the case of BRB model mat-4 which has the 

material defined by fu/fy = 1.6 and r = 0.36 mm/mm. Using 

a steel material of similar tensile to yield strength ratio 

(fu/fy = 1.6) but less ductile (r = 0.22 mm/mm) causes the 

dissipated energy to reduce with almost 19 % (case of BRB 

model mat-2). In the case of BRB models with fu/fy = 1.2 

(mat-1 and mat-3), the dissipated energy is almost 50 % less 

in comparison to the models with fu/fy = 1.6. 

  

(a) Monotonic loading (b) Cyclic loading 

Fig. 18 Response of steel models under different loadings 

 

  
(a) fu/fy = 1.2 (b) fu/fy = 1.6 

Fig.19 Influence of plastic properties of steel on BRB response under cyclic loading 
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It can be concluded that characteristics of the steel core 

are critical for the performance of BRBs. The tensile to 

yield strength ratio is by far the most important. Larger fu/fy 

values allow for redistribution of plastic strains over a 

longer portion of the core (Fig. 20), increasing the overall 

ductility of the BRB. They also lead to a significant 

improvement of energy-dissipation capacity. As a downside, 

larger fu/fy values of steel requires stronger non-dissipative 

components. Based on numerical simulations, but also on 

experimental results, values of fu/fy  1.3 and r  0.30 are 

required to fulfil the qualification protocol from Fig. 13. It 

has to be reminded that the protocol is quite "severe", the 

design inter-storey drift bm being equal to 2% of the storey 

height. Further studies are needed to generalise this 

conclusion for other BRB geometries, capacities, and 

loading protocols. 

 

3.4 Self-weight loading 
 

This numerical study aims at investigating the influence 

of self-weight load on the evolution of the plastic 

deformations in the plastic segments of the core. The top 

segment corresponds to the BRB end where the cyclic 

loading is applied, while the bottom segment to the fixed 

end.  

For this investigation, four BRB models corresponding 

to specimens CR73-2 and CS73-2 were cyclically tested 

with and without self-weight load. The cyclic response of 

the tested BRBs expressed as reaction force (N) and 

coreend displacement (D), are presented in Fig. 21(a) for 

CR73-2 models and in Fig. 21(b) for CS73-2 models. No 

significant differences can be observed for the cases where 

the of self-weight load was included.  

However, if analysing the time-history of the 

displacements between the tube and the top/bottom end of 

the core, Dbt / Dbb, in comparison to the core deformation, 

Dc, significant differences between the models can be 

observed. In the case of both CR73-2 and CS73-2 models, 

see Figs. 22 (a) and 22(c), the presence of self-weight load 

causes the top segment of the core to undergo larger 

deformations during the tensile loading in comparison to the  

 

 

bottom segment, which undergoes larger deformations 

during the compressive loading. Therefore, the evolution of 

the plastic deformations in the plastic segments of the core 

under the presence of self-weight load is unsymmetrical.  

In the case of the BRB models where the self-weight 

load was not included, see Figs. 22(b) and 22(d), the 

evolution of the plastic deformations in the plastic segments 

of the core is more uniform in comparison to the models 

with self-weight load. In the case of CR73-2 model, the 

asymmetry is still more pronounced with respect to CS73-2. 

To quantify this effect, maximum deformation ratios in 

the top (Rt) and bottom (Rb) parts of the core were 

determined for the 2.0bm cycles 

𝑅𝑡 = 𝐷𝑏𝑡/𝐷𝑐 (2) 

𝑅𝑏 = 𝐷𝑏𝑏/𝐷𝑐 (6) 

Maximum deformation ratios Rt and Rb are summarized 

in Table 10. Ideally, for a symmetrical response, both 

rations would be equal to 0.5. For all except one model 

(CR73- 2- noG), the deformation ratios in the top segment 

of the core are larger in tension (Rt = 0.52-0.64), while in 

the bottom part of the core the deformation ratios are larger 

in compression (Rb = 0.52-0.63). 

In the case of CR73-2 models (with self-weight, CR73-

2-G, and without self-weight, CR73-2-noG) the asymmetry 

is more pronounced in comparison to CS73 models, with 

deformation ratios varying between Rt = 0.44-0.64 and 

Rb = 0.37-0.63. 

  

 

Table 10 Maximum deformation ratios Rt and Rb  

BRB model 
Rt Rb 

Tens. Compr. Tens. Compr. 

CR73-2-G 0.64 0.44 0.37 0.63 

CR73-2-noG 0.44 0.56 0.56 0.45 

CS73-2-G 0.59 0.47 0.45 0.55 

CS73-2-noG 0.52 0.51 0.51 0.52 

 

PEEQ 

mm/mm 
BRB model 

 

 

mat-1 (PEEQ = 0.4234 mm/mm) 

 

mat-2 (PEEQ = 0.4384 mm/mm) 

 

mat-3 (PEEQ = 0.4063 mm/mm) 

 

mat-4 (PEEQ = 0.4117 mm/mm) 

 

Fig. 20 State of cumulative plastic strain in core at peak compression during the first cycle at 1.5Dbm  
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In the case of CS73-2 models (CS73-2-G and CS73-2-noG), 

a more uniform distribution of plastic deformations is 

obtained, with deformation ratios varying between 

Rt = 0.47-0.59 and Rb = 0.45-0.55.  

The absence of self-weight load causes the deformation 

ratios Rt and Rb to approach to 0.5. 

 

 

 

 

 

 

3.5Frame effect 
 

The influence of the frame effect, in addition to the 

uniaxial cyclic loading (see section 2.2), on the BRB cyclic 

performance was investigated on two models corresponding 

to specimen CR71-1. The models are similar, except for the 

loading scheme, see Fig. 23(a). In the case of the first model  

  
(a) CR73-2 (b) CS73-2 

Fig. 21 Influence of self-weight loading on the cyclic response of BRB models 

  
(a) CR73-2 with self-weight (b) CR73-2 no self-weight 

  
(c) CS73-2 with self-weight (d) CS73-2 no self-weight 

Fig. 22 FEM relative displacements: tube-to-core (Dbt, Dbb) vs. core end-to-end (Dc) 
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(Uniaxial), only the axial load Uz was applied. For the 

second model (Uniaxial + Frame eff.) axial Uz, transversal 

Uy, and rotational URx loads were applied. Based on the 

results presented in Fig. 23(b), it can be observed that the 

additional frame effect leads to slightly lower resistance to 

overall buckling. In comparison to the maximum 

compression force experimentally recorded for CR71-1, 

Cmax = 1258 kN, a closer prediction is obtained in the case 

of modelling both uniaxial and the frame effect, 

Cmax = 1260 kN, while in the case of the uniaxially loaded 

model the maximum compression force is slightly larger, 

Cmax = 1296 kN.  

Accounting for the frame effect in addition to axial BRB 

loading leads to slightly better prediction of the 

experimental response in case when global buckling occurs. 

However, for the analysed connection detail, frame effect 

has little influence on the BRB response when it behaves as 

intended (no overall buckling). 

 

 

4. Conclusions 
 

A complex nonlinear numerical model of the buckling 

restrained brace was developed in the finite element 

environment Abaqus. The calibration against experimental 

data was performed at both component level (material 

models: steel, concrete, unbonding material) and BRB level 

(loading, geometrical initial imperfections). Geometrically 

and materially nonlinear analyses including imperfections 

(GMNIA) were performed on BRB models under cyclic 

loading. Close predictions were obtained for all FEM 

models. The calibrated models were further used to perform 

a parametric study aiming at understanding some 

phenomena related to BRB cyclic behaviour. Five main 

aspects were numerically investigated by running cyclic 

analyses and assessing the performance of the BRB models: 

the strength of the buckling restraining mechanism, 

concrete class of the infill material, mechanical properties 

of steel used for the core, self-weight loading and frame 

effect. 

 

 
 

The design procedure of the buckling restraining 

mechanism was validated based on FEM results. The 

analytical procedure proposed by Watanabe et al. (1988), 

with a minimum ratio of the critical elastic force of the 

BRM to the plastic resistance of the core, Ncr/Np > 1.5, 

showed to be too simplistic and sometimes unconservative. 

It was found that the analytical design procedure proposed 

by Takeuchi and Wada (2017) is more appropriate.  

Concrete class of the infill has little influence on the 

global performance of the BRB. However, to keep low 

levels of damage in concrete, it is prudent to use a concrete 

class of at least C30/37. 

Characteristics of the steel core are critical for the 

performance of BRBs. Based on numerical simulations, but 

also on experimental results, values of fu/fy  1.3 and 

r  0.30 are required to fulfil the qualification protocol. 

Further studies are needed to generalise this conclusion for 

other BRB geometries, capacities, and loading protocols. 

The presence of self-weight loading leads to 

unsymmetrical evolution of deformations in the plastic 

segments of the core. This phenomenon is more pronounced 

in the case of BRB model of type A (core with a rectangular 

cross-section) in comparison to BRB model of type B (core 

with square cross-section). 

If BRB-column sub-assemblage setup is used for 

experimental tests, when performing FEM analyses the 

cyclic loading applied to the BRB model should consider 

both uniaxial and frame effect loading to achieve close 

predictions. 
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(a) Cyclic loading scheme (b) BRB response 

Fig. 23 Influence of the loading scheme on the response of the BRB model 
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