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1. Introduction 

 

Several previous studies (Kala et al. 2015, Janas et al. 

2014, Kralik 2014, Janas et al. 2017, Randyskova and Janas 

2011) focus on nonlinear solutions of structures. It is 

necessary for each structure to fulfill certain functions and 

to be specific and unique. Geometric nonlinear tasks are 

typically used for relatively small deformations (that is, for 

second-order tasks). A few studies have considered physical 

nonlinear tasks or geometric nonlinear tasks with 

deformations, which are significant with respect to the 

structure size. Other studies describe tasks with large 

deformations where changes in the profile shape of a 

structure and shape of a cross-section account for physical 

nonlinearities. Such types of structures are typically 

unacceptable and undesirable because the structure cannot 

be used. Fig. 1 shows an example of the deformation of a 

mining steel arch support from special profiles with abilities 

to create plastic hinges with changes in the shape of the 

cross-section. 

Several extant studies focus on nonlinear analyses of 

arches. Pi et al. (2002) focused on the in-plane stability of 

arches. A study presented by Pi and Trahair (2000) 

investigated inelastic lateral buckling strength and design of 

steel arches under general loading using an advanced 
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nonlinear inelastic finite element analysis method. Another 

study presented by Bradford (2006) considered nonlinear 

in-plane behavior of a circular arch subjected only to 

thermal loading. A nonlinear formulation of the strain-

displacement relationship was used to apply the principle of 

virtual work to produce differential equations of in-plane 

equilibrium as well as static boundary conditions that 

govern structural behavior under thermal loading. An extant 

study presented by Pi and Bradford (2010) examined the 

effects of prebuckling response on buckling load 

determination of pin-ended elastic circular arches that were 

subjected to a uniform radial load. A generic non-linear 

inelastic mechanical-based formulation for a steel arch 

subjected to uniformly distributed loads at elevated 

temperatures was developed by Heidapour et al. (2010). 

Additionally, a study presented by Pi and Bradford (2013) 

discussed nonlinear elastic in-plane analysis and buckling 

of pin-ended arches with elastic rotational end restraints of 

unequal stiffness under a uniform radial load. 

 

 

 

Fig. 1 Deformed mining support (Janas 2008) 
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Several studies conducted nonlinear analyses of 

concrete filled steel tube (CFT) structures. The mechanical 

behaviors of CFT structures were investigated by nonlinear 

FEM analysis in a study presented by Xu et al. (2010). 

Furthermore, two and three-dimensional nonlinear finite 

element models were developed to study force transfer 

between a steel tube and a concrete core in a previous study 

presented by Starossek et al. (2010), and a nonlinear finite 

element program (ABAQUS) was used. Material and 

geometric nonlinearities of concrete and steel were 

considered in this analysis. The CFT components were 

widely used as the arch ribs of the long span arch bridges. 

With respect to nonlinear finite element model analysis, 

hysteretic behaviors of CFT arch ribs under the action of 

reduplicative load were investigated by extant research (Ma 

et al. 2015). 

The present study considered geometric and physical 

nonlinear models and also described the use of virtual unit 

moments for tasks in which displacement was negligible 

with respect to dimensions of the structure. With respect to 

these tasks, the cross-section of the profile also changed its 

shape. The model was based on derived curves of effective 

flexural rigidity for a used open steel profile (Markopoulos 

et al. 2010). 

The open rolled profiles were mainly used for arch 

supports, which are widely used in long workings in coal 

and ore mines (Krejsa et al. 2013) and in driven tunnels and 

galleries. They are designed to possess a sufficient plastic 

reserve and withstand large displacements. These profiles 

are significantly more complex from a geometric viewpoint 

when compared with profiles applied in steel constructions 

of buildings and civil engineering structures. The yield 

point of a material often exceeds when mining reinforce-

ments are used. Hence, with respect to these cases, it is 

necessary to consider physical nonlinearity and the change 

of the shape of the profile, which occurs due to the action of 

bending moments and axial forces (eventually due to the 

torsion moments). Finite element method can be used to 

solve for entire sets of the mining arch (including geometric 

and physical nonlinearities as well as changes in the shape 

of the applied rolled profile). However, this task is 

relatively large for modeling a series of possible status that 

may occur in conditions in situ. Therefore, the modeling 

was explored on two levels. The values of effective flexural 

rigidity were obtained by FEM modeling in the first level. 

In the second level, beams and arch supports were 

 

 

 

Fig. 2 Profile P-28 supplied by ArcelorMittal Ostrava 

a.s., Czech Republic 
 

 

Fig. 3 The original rod and deformed rod, approximation of 

the rod by line segments 
 

 

solved using effective flexural rigidity and the procedure 

described in the present study. 

Supports of those and similar open profiles with 

different weights per meter were supplied in shapes 

required by customers such as ArcelorMittal Ostrava a.s. or 

by other manufacturers (Fig. 2). Complete sets of mine 

supports from open profiles were tested in special test 

facilities. Results of theoretical analyses presented in the 

study could replace these tests to a considerable extent. 
 

 

2. Application of the virtual unit moments 
 

For purposes of simplification, it was assumed that rods 

were fabricated from a linearly elastic material. In this case, 

the modeling involved a physically linear and statically 

determinate task. The steps were described with respect to a 

simple fixed rod (Fig. 3). 

Based on finite deformation theory, equilibrium 

conditions were specified for a deformed structure. The 

model accounted for the influence of displacement and 

angular rotation on the magnitude of the force variable. In 

terms of the order of magnitude, the deformation was 

comparable with the rod lengths. The calculation was based 

on virtual unit moments and iteration. 

The length of a rod was divided into n identical line 

segments. If the angular shift of the centre of each segment 

was known, then the gradual displacement of each point in 

the segment (including the end point of the segment) could 

be calculated, and in turn, the strain in the entire rod could 

be calculated. In order to calculate the angular rotation of 

the centre of each ith segment (i = 1, …, n), it was necessary 

to define the moment and normal force caused by the 

specified load: M0,i, N0,i. Next, a unit virtual moment was 

placed in the centre of each segment. The unit moment M1,j 

= 1 loaded the centre of the jth segment, and indicated the 

moment M1,i,j and normal force N1,i,j in each ith segment. The 

moments and normal forces were counted for the deformed 

rod. The angular rotation for the centre of the jth segment is 

given by numerical integration as follows 
 

𝜑𝑗 = ∫
𝑁1,𝑗𝑁0

𝐸𝐴
𝑑𝑠 +

𝑙

0

∫
𝑀1,𝑗𝑀0

𝐸𝐼
𝑑𝑠

𝑙

0

 

      = ∑
𝑁1,𝑖,𝑗𝑁0,𝑖

(𝐸𝐴)𝑖

𝑛

𝑖=1

𝑑𝑠𝑖 + ∑
𝑀1,𝑖,𝑗𝑀0,𝑖

(𝐸𝐼)𝑖

𝑛

𝑖=1

𝑑𝑠𝑖 , 

(1) 

756



 

Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity 

where EI denotes flexural rigidity of the rod and A denotes 

cross-section area of the rod. The influence of shearing 

forces on the deformation of the rod was ignored. 

Additionally, it was assumed that torsion moments did not 

exist. Eq. (1) can be modified for the unchanging cross-

section as follows 
 

𝜑𝑗 = ∑
𝑁1,𝑖,𝑗𝑁0,𝑖

𝐸𝐴

𝑛

𝑖=1

𝑑𝑠𝑖 + ∑
𝑀1,𝑖,𝑗𝑀0,𝑖

𝐸𝐼

𝑛

𝑖=1

𝑑𝑠𝑖 (2) 

 

When the angular rotation of each segment was derived, 

it was possible to calculate the normal force Ni and use 

Hooke's law to calculate the new length of each segment 

dsi. Following the 1st iteration, the angular rotation and 

length were derived for each ith segment. Thus, the new 

coordinates could be specified. 

The starting point corresponded to the point where the 

rod was fixed (that is, where the angular displacement 

corresponded to zero), and the final point corresponded to 

the free end. Using goniometric functions, it was possible to 

specify the coordinates of the centre of each ith segment xi 

and zi as well as the coordinates for its ends, that is, xe,i and 

ze,i, as follows 
 

𝑥𝑖 = 𝑥𝑒,𝑖−1 +
𝑑𝑠𝑖

2
⋅ 𝑠𝑖𝑛 𝜑𝑖 , 

𝑥𝑒,𝑖 = 𝑥𝑒,𝑖−1 + 𝑑𝑠𝑖 ⋅ 𝑠𝑖𝑛 𝜑, 
(3a) 

 

𝑧𝑖 = 𝑧𝑒,𝑖−1 +
𝑑𝑠𝑖

2
⋅ 𝑐𝑜𝑠 𝜑𝑖 , 

𝑧𝑒,𝑖 = 𝑧𝑒,𝑖−1 + 𝑑𝑠𝑖 ⋅ 𝑐𝑜𝑠 𝜑, 
(3b) 

 

The difference between the new coordinates, namely xi 

and zi, and the original coordinates, namely x0,i and z0,i, 

could be used to derive horizontal and vertical 

displacements of centers of the ith segments ui and wi, 

respectively, and their corresponding end points, ue,i and 

we,i, as follows 
 

𝑢𝑖 = 𝑥𝑖 − 𝑥0,𝑖 ,       𝑤𝑖 = 𝑧𝑖 − 𝑧0,𝑖 , (4a) 

 

𝑢𝑒,𝑖 = 𝑥𝑒,𝑖 − 𝑥0,𝑒,𝑖 ,       𝑤𝑒,𝑖 = 𝑧𝑒,𝑖 − 𝑧0,𝑒,𝑖 , (4b) 

 

Following the first calculation, new coordinates, namely 

xi and zi, represented the first approximation of the correct 

 

 

values corresponding to the load. It was necessary to 

perform the calculation several times for the deformed 

structure until the geometry of the loaded rod became 

stable. The measure of correctness for the calculation 

corresponded to the specified accuracy ε, which was based 

on the relative change of deformation parameters, namely 

ui,k  and wi,k, in the kth iteration and in the previous (k - 1)th 

iteration as follows 
 

𝜀 =
𝑢𝑖,𝑘 − 𝑢𝑖,𝑘−1

𝑢𝑖,𝑘
,        resp.        𝜀 =

𝑤𝑖,𝑘 − 𝑤𝑖,𝑘−1

𝑤𝑖,𝑘
. (5) 

 

In this case, it was recommended that the changes at the 

point where the effect of the forces was maximized should 

be monitored. The progress of the iteration is shown in Fig. 

4. 

In the angular rotation calculation φi,k, the calculation 

could be accelerated (i.e. the number of iterations could be 

reduced) by means of a relaxation coefficient η. Thus, the 

modified angular rotation of the ith segment in the kth 

iteration φmod,i,k is obtained as follows 
 

𝜑𝑚𝑜𝑑,𝑖,𝑘 = 𝜂 ⋅ 𝜑𝑚𝑜𝑑,𝑖,𝑘−1 + (1 − 𝜂) ⋅ 𝜑𝑖,𝑘 (6) 

 

As shown in Fig. 4, the number of iterations reduces 

considerably if the relaxation coefficient η is not zero. If η = 

0, then the full value of deformation is calculated in the kth 

iteration, and u & w approach a certain value. However, the 

convergence is very slow. For η = 0.5, the values of u and w 

stabilized rapidly at the final value. 

The optimum value of the relaxation coefficient η was 

different in each case. The coefficient η ranged between 0 

and 1. The value of the relaxation coefficient was optimized 

using software for more complex tasks. 

The application of virtual unit moments was used in 

several cases as described in book presented by Kolar 

(1985) (NODEF2 method based on FEM). An accurate 

 

 

Table 1 Results 

 u [m] w [m] φ [rad] 

Accurate value 0.90516 0.16929 0.46135 

NODEF2, k = 2 0.90300 0.17100 0.46600 

VUM, k = 7 0.90346 0.16833 0.45936 
 

 

 

 

Fig. 4 Number of iterations versus the coefficient η (η1 = 0.5, η2 = 0) 

757



 

Lenka Koubova, Petr Janas, Alexandros Markopoulos and Martin Krejsa 

solution was obtained by K. Mattiasson by using the elliptic 

integral. The same solution was also explored by  

Mattiasson (1981), where the fixed rod was loaded with 

only a single horizontal force Fx with the same direction at 

the free end (Fig. 3). Table 1 shows the deformation at the 

free end of the rod for a rod length of l = 3 m, flexural 

rigidity of EI = 1749.93 kNm2, and horizontal force of Fx = 

194.436 kN. The deformation calculated for the free end of 

the bracket as shown in Table 1 proved that modeling with 

virtual unit moments (“VUM” - as also shown in Table 1) 

could be considered accurate. The rod was divided into 10 

segments. The minimum required accuracy corresponded to 

ε = 10-5. In Table 1, k denotes the number of iterations. 

 

 

3. Effective flexural rigidity 
 

In the following chapters, it was not assumed that the 

rods were made from a linearly elastic material. Thus, 

modeling was physically nonlinear in these cases. The 
changes in the shape of a rod cross-section accounted for 

the physical nonlinear solution. These changes occurred due 

to the action of bending moments and normal forces and 

potentially even due to the torsion moments. 
The values of the effective flexural rigidity were 

obtained by using the finite element method (FEM). The 

 

 

 

 

values of the effective flexural rigidity were a function of 

internal forces. These values were used in the solution of 

beams and potentially even in the solution of mining steel 

arch supports in the following chapters. 

The FEM modeling of the P-28 and TH-29 profiles was 

based on the dimensions of these profiles that were 

commonly available in prospectuses provided by the 

manufacturers of mining reinforcement. A three-

dimensional model was created using ANSYS software (see 

in Fig. 5(a)). A standard 3D brick element with eight nodes 

was used (see in Fig. 5(b)). The computer modeling allowed 

the inclusion of material non-linearity and the changes in 

the shape of the profile in the calculation. 

The simple tri-linear kinematic hardening model was 

used for the calculation. The deformation characteristic was 

replaced by the polyline as shown in Fig. 6. The parameters 

of the tri-linear model of plasticity were derived from the 

results of the tensile test of the applied steel. 

A unilaterally fixed beam was chosen for the analysis of 

the flexural rigidity. This fixed beam was loaded by a pair 

of forces on the free end. Additionally, the beam could also 

be loaded by a normal force and eventually by the torsion 

moment (as shown in Fig. 7). 

The rotation angle of the free end Φ is given by the 

following equation 
 

𝛷 =
𝑀 ⋅ 𝑙

𝐸𝐼
 (7) 

 

where M denotes the bending moment, l denotes the length 

of the beam, E denotes the modulus of elasticity in tension, 

 

 

 

Fig. 6 The tri-linear model of plasticity 

 

 

 

Fig. 7 The bending of a perfectly fixed beam 
 

 

 

(a) The model of the profile 
 

 

(b) The standard 3D brick element (8 nodes) 

Fig. 5 The model of the profile and the standard 3D brick 

element (8 nodes) 

 

Fig. 8 Loading of the beam with a pair of forces 
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0and I denotes the moment of inertia. 

The bending moment M could not be directly introduced 

in the “finally-elementary” model. Therefore, a cube with 

high rigidity was added to the free end of the profile model. 

A pair of forces acted at the edges of the cube. This pair of 

forces in an arm produced the bending moment (as shown 

in Fig. 8). 

The forces on the upper and lower edges of the cube did 

not directly enter the calculation, but their displacements 

were part of the calculation. The forces were subsequently 

detected as a response. This was due to the convergence of 

the solution despite overcoming the top characteristics 

when the “softening” occurred (see in Fig. 9(a)). The output 

of the calculation corresponded to the gradually increasing 

rotation angle Φ and the corresponding bending moment M. 

The dependence of bending moment M on the rotation 

angle Φ represents the bending characteristics. An initial 

linear section could be observed (this corresponded to the 

linear theory of beams). A slow increase in the bending 

moment was then observed (as a result of plastication and 

later as a result of changes in the profile). A significant 

opening of the profile was observed at the rotation angle 

approximately at Φ = 17 degrees, and it thereby reduced the 

stiffness. Less bending moment is then required to further 

the bending of the profile. This point represented the loss of 

stability of the profile shape. The next bending-rotation was 

possible only at lower loads. The same loading could result 

in the collapse of the construction. 

This phenomenon was associated with the change 

(reduction) of the flexural rigidity. The effective flexural 

 

 

 
 

 

rigidity of the cross section could be determined from Eq. 

(7). The effective flexural rigidity EI was a function of the 

bending moment and is given as follows 
 

𝐸𝐼(𝑀) =
𝑀 ⋅ 𝑙

𝛷
 (8) 

 

The effective flexural rigidity was constant when the 

loading corresponded to a certain value (see in Fig. 9(b)), 

and it corresponded to the product of the modulus of 

elasticity (denoted as E) and the moment of inertia (denoted 

as I). The effective flexural rigidity decreased as a result of 

the plastication, and later as a result of reductions in the 

moment of inertia of the profile. The transition point 

represented the loss of stability of the profile shape. It was 

also clear from Fig. 9(b) that two values of the effective 

flexural rigidity corresponded to a value of the bending 

moment (even though the normal force corresponded to 

zero). 

The introduced calculation referred to the beam stressed 

with only the bending moment. If the normal force also 

acted on the beam, then the bending moment was not 

generally linear along the beam. In this case, it was 

advantageous and practically necessary to divide the 

analyzed beam along the cuts with an equidistant step. 

Thus, the change in the rotation of the cut i is given as 

follows 
 

Δ𝜑𝑖 =
𝑀𝑖𝛥𝐿𝑖

(𝐸𝐼)𝑖
 (9) 

 

 

 
 

  

(a) The bending characteristics (TH-29) (b) Effective flexural rigidity as a function of M 

Fig. 9 The bending characteristics (TH-29) and effective flexural rigidity as a function of M 

    

Fig. 10 The deformation of the bending profile, the load is applied to the profile as shown on the left and the root 

profile as shown on the right 
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The equivalent flexural rigidity (EI)i of the cut i 

corresponded to the length of the cut of the beam ΔLi and 

the change in the rotation Δφi when a known bending 

moment Mi is as follows 
 

(𝐸𝐼)𝑖 =
𝑀𝑖𝛥𝐿𝑖

𝛥𝜑𝑖
 (10) 

 

If this ratio is marked, then it results in the following 

equation 

𝑑𝜑𝑖 =
𝛥𝜑𝑖

𝛥𝐿𝑖
 (11) 

 

The effective flexural rigidity of the beam in the cut i is 

given as follows 
 

(𝐸𝐼)𝑖 =
𝑀𝑖

𝑑𝜑𝑖
 (12) 

 

The solved profiles were symmetrical, but they were 

also open. As a result, they transmitted different bending 

characteristics when the loading with the bending moment 

corresponded to “to the profile” or “on the root of the 

profile” (as shown in Fig. 10). The solved TH-29 profile 

was more stable and could carry a greater bending moment 

when the loading corresponded to “on the root of the 

profile”. The character of deformation of the TH-29 profile 

was evident from Fig. 10 when the loading corresponded to 

“to the profile” (left) and “on the root of the profile” (right). 

The values of effective flexural rigidity could be 

expressed graphically as functions of the bending moment 

for a variety of normal forces (as shown in Fig. 11) or in the 

form of a data file. The effective flexural rigidity EI is on 

the vertical axis and the bending moment M is on the 
 

 

 

 

horizontal axis as shown in Fig. 11. The values of the 

bending moment were positive for the load acting on the 

profile and negative for the load acting on the root of the 

profile. As clearly shown in Fig. 11, the tensile normal 

forces stabilized the profile. The pressure (negative) normal 

forces reduced the stability of the profile and its effective 

flexural rigidity contrary to expectations. 

The disadvantage of a data file corresponding to the Fig. 

11 was that two values of effective flexural rigidity of the 

profile corresponded to a value of the bending moment for a 

given value of normal force. This fact complicated the 

calculation in the algorithm by using the introduced data. 

Hence, the data files were processed such that the effective 

flexural rigidity was expressed as a function of the relative 

rotation (curvature) of the profile (as shown in Fig. 12). 

Only one value of effective flexural rigidity corresponded to 

a value of relative rotation for a given normal force. Hence, 

using effective flexural rigidity was advantageous for the 

nonlinear solution. 

The profile of mining reinforcement could also be 

loaded by torsion moments. The course of a curve of the 

effective flexural rigidity was practically the same in the 

flexible area and in the partial plastication of the profile 

when the load was applied to the profile despite the 

existence of the torsion moments (as shown in Fig. 13). 

However, the value of the maximum bending moment that 

the profiles can transfer while the load torsion moments, 

decreases. The effective flexural rigidity practically did not 

change with the existence of the torsion moments when the 

load was applied on the root of the profile. The value of the 

effective flexural rigidity for a given value of relative 

rotation dφ was lower when a mixed loading with bending 

and torsion moments was applied as shown in Fig. 13 (the 

 

 

 

 

 

 

 

Fig. 11 The effective flexural rigidity of TH-29 profile manufactured from H500M steel as a function of the bending 

moment for a variety of normal forces 

 

Fig. 12 The effective flexural rigidity of TH-29 profile manufactured from H500M steel as a function of relative 

rotation for a variety of normal forces 
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Fig. 14 The beam and profile P-28 

 

 

load was applied to the profile). From this standpoint, it was 

advisable to design the steel arch support such that the 

possibility of the origin of torsion moments was minimized. 
 

 

4. Application of virtual unit moments for the 
validation of flexural test results 
 

Virtual unit moments could be used after a bending test 

of a beam to model physical nonlinear tasks with changes in 

the shape and thereby to model the rigidity of the profile. 

The beam had a length of 1 m and had a P-28 profile (as 

shown in Fig. 14). The beam was divided along its length 

into n segments. The beam was loaded and deformed. In the 

middle of the beam, the specified vertical displacement 

corresponded to ws, and it was necessary to find the 

 
 

 

 

corresponding loading force, namely F. Until the maximum 

force Fmax was reached, the loading force increased with 

increases in the displacement ws. Subsequently, the loading 

force decreased with increases in the displacement ws due to 

the physical nonlinear behavior of the material and the 

changes in the profile shape. The deformation load was 

selected such that the force F could be derived even after 

Fmax was reached. 

The displacement was calculated iteratively. The initial 

values for the vertical force Fk were selected for k = 0 and k 

= 1 for each specified displacement ws. In the case of the 

iterations that corresponded to the zeroth and first iterations, 

the calculation described in the above chapter was used for 

the angular displacement and thereby for the coordinates of 

each segment. The secant method was applied for the 

calculation of the next vertical force, i.e. beginning with k = 

2 (generally, after the kth iteration, the force corresponded to 

Fk+1). The vertical force was a function of the vertical 

displacement of the beam centre in the kth iteration ws,k and 

in the (k-1)th iteration ws,k-1 as follows 
 

𝐹𝑘+1 = 𝐹𝑘 − (𝑤𝑠,𝑘 − 𝑤𝑠)  ⋅
𝐹𝑘 − 𝐹𝑘−1

𝑤𝑠,𝑘 − 𝑤𝑠,𝑘−1
. (13) 

 

The steps were repeated until the relative change in Fk+1 
 

 

 

Fig. 13 The effective flexural rigidity of TH-29 profile manufactured from H500M steel as a function of relative 

rotation (curvature) for a variety of torsion moments 

 

Fig. 15 A 3D graph of effective flexural rigidity in the P-28 profile 
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reached the specified accuracy as denoted by ε1. 

Simultaneously, the specified displacement (denoted as ws) 

was compared with the calculated vertical displacement 

(denoted as ws,k+1) in the middle of the beam as follows 

 

|
𝐹𝑘+1 − 𝐹𝑘

𝐹𝑘+1
| ≤ 𝜀1,     resp.     |

𝑤𝑠,𝑘+1 − 𝑤𝑠

𝑤𝑠
| ≤ 𝜀1. (14) 

 

The modeling was both geometrically nonlinear and 

physically nonlinear, and thus, the calculated force Fk+1 did 

not correspond to the final result for the specified 

deformation ws even after ε1 was reached. Once F reached 

the specified accuracy, it was important to check and 

modify the flexural rigidity of the segments (EI)i. 

Fig. 15 shows a 3D graph of the effective flexural 

rigidity EI of the profile P-28. The curves denote a function 

of the relative angular displacement dφ and depended on the 

normal force N. As previously mentioned, FEM was used 

(Markopoulos et al. (2010)). Similar curves were obtained 

from experimental flexural tests for the zero normal force 

(Randyskova and Janas 2010). 

The relative angular displacement dφi of the centre of 

each segment (denoted as i) was determined to deduce the 

flexural rigidity of each segment. 

 

𝑑𝜑𝑖 =
𝜑𝑖+1 − 𝜑𝑖−1

2 ⋅ 𝑑𝑠𝑖
 (15) 

 

If the normal force corresponded to zero, then this value 

corresponded to the effective flexural rigidity of each 

segment (EI)i. The values of the effective flexural rigidity 

 

 

 

 

were processed in a table where they were deducted directly 

or they were obtained through interpolation. A shift of 

centre of the beam ws altered the effective rigidity of the 

segment and thereby altered the loading force F. The exact 

value was again obtained by iterations for the specific 

effective flexural rigidity. If Eq. (14) was satisfied 

following the change in the flexural rigidity, then the 

calculation was completed for the specified ws. Otherwise, 

the steps were repeated to improve the accuracy of the force 

F and thereby improve the flexural rigidity. When the 

specified accuracy ε1 was reached and the flexural rigidity 

was altered for the segments for ws, the calculation 

continued with the increased value of ws. 

Fig. 16 shows the loading results from the internal and 

external sides of the profile and compares the same with the 

data obtained from the flexural test of the P-28 profile 

(Grochol 1996). The charts indicated good correlation 

between the flexural tests and calculations as based on the 

virtual unit moments and effective flexural rigidity. The 

calculations were performed with the specified accuracy 

corresponding to ε1 = 10-5. 

 

 

5. Application of the virtual unit moments that load 
the arch support with a vertical force 
 

The solved two-joint circular arch corresponded to a 

once statically indeterminate structure. The system of 

coordinates was chosen pursuant to Fig. 17 in which the 

origin corresponded to the top of the unloaded arch. The 

arch was divided along its length into n line segments. Each 

 

 

 

 

 

Fig. 16 The situation after the deformation is applied on the internal and external sides of the profile 

 

Fig. 17 The arch and the segment i 
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segment was defined by its length dsi, slope ψi, and 

coordinates of nodal points, that is, the end points of each 

segment. 

The arch was loaded and deformed. If the specified 

vertical displacement at the arch top corresponded to ws, 

then it was necessary to find F and the responses Ra, Rb, Ha, 

and Hb, as shown in Fig. 17. 

The horizontal response Ha = Hb was a function of the 

displacement ub in the right support, which corresponded to 

zero if the joint support b did not shift (the displacement 

corresponded to zero) as follows 
 

𝐻𝑎,𝑘+1 = 𝐻𝑎,𝑘 − (𝑢𝑏,𝑘 − 𝑢𝑏) ⋅
𝐻𝑎,𝑘 − 𝐻𝑎,𝑘−1

𝑢𝑏,𝑘 − 𝑢𝑏,𝑘−1
 

              = 𝐻𝑎,𝑘 − 𝑢𝑏,𝑘 ⋅
𝐻𝑎,𝑘 − 𝐻𝑎,𝑘−1

𝑢𝑏,𝑘 − 𝑢𝑏,𝑘−1
. 

(16) 

 

The vertical force F was calculated in a manner similar 

to that in the previous section pursuant to Eq. (13). 

The iteration was repeated until Ha and F reached the 

specified accuracy ε1 as follows 
 

|
𝐻𝑎,𝑘+1 − 𝐻𝑎,𝑘

𝐻𝑎,𝑘+1
| ≤ 𝜀1,      |

𝐹𝑘+1 − 𝐹𝑘

𝐹𝑘+1
| ≤ 𝜀1 (17) 

 

When the required condition was fulfilled, it was 

important to check and/or modify the flexural rigidity of the 

segments (EI)i. The rigidity of each segment was obtained 

only after calculating the relative angular displacement φi, 

the normal force Ni in each segment, and the corresponding 

length of each segment dsi. The formulae are as follows 

 

𝑁𝑖 =
𝐹𝑘

2
⋅ 𝑠𝑖𝑛(𝜓𝑖 + 𝜑𝑖) − 𝐻𝑎,𝑘 ⋅ 𝑐𝑜𝑠(𝜓𝑖 + 𝜑𝑖) (18) 

 

𝑑𝜑𝑖 =
𝜑𝑖+1 − 𝜑𝑖−1

2 ⋅ 𝑑𝑠𝑖
, (19) 

 

𝑑𝑠𝑖 = 𝑑𝑠0,𝑖 ⋅ (1 +
𝑁𝑖

𝐸𝐴𝑖
) (20) 

 

These values were required to calculate the effective 

flexural rigidity of each arch segment (EI)i. Fig. 15 shows 

the curves of effective flexural rigidity EI for the P-28 

profile for different values of the normal force. The values 

were obtained using FEM by Markopoulos et al. (2010). 

 

 

For the purposes of calculation, the values were arranged in 

a table. The effective flexural rigidity of the ith segment 

(EI)i was calculated directly as a function of Ni a dφi or by 

interpolation. 

If it was necessary to change the rigidity in at least one 

segment, then the calculation was repeated until the rigidity 

was obtained for each segment. Next, the new values of the 

response Ha and force F were obtained and, if necessary, the 

rigidity of segments was modified. 

The calculation was completed for the specified 

displacement ws, if the displacement ub was close to zero 

and the accuracy corresponded to ε2, pursuant to the 

following 
 

|𝑢𝑏,𝑘| ≤ 𝜀2,          |𝑤𝑠,𝑘 − 𝑤𝑠| ≤ 𝜀2, (21) 

 

Next, the process continued with increases in the 

displacement ws. The entire process was repeated until the 

specified maximum displacement ws,max was reached. 

 

5.1 Example 
 

The load was applied in the above-described manner to 

a steel arch support used for mines. The arch support 

consisted of three overlapping circular arches composed of 

the P-28 profile. Table 2 shows the dimensions and 

overlapping length of the arches. 

The support was divided into n = 80 segments. The 

geometry of the support was determined following the 

approach described by Janas et al. (2016). The analysis was 

performed using the minimum accuracy ε1 = 10-4 (the 

accuracy for determining the forces F , Ha, and Hb) and ε2 = 

10-4 [m] (the accuracy for determining the displacement ub,k 

and ws,k). As indicated by Fig. 18(a), the calculated F first 

increased with the increases in the deformation load until 

Fmax was reached. Subsequently, F began decreasing, and 

this was primarily due to the decrease in the flexural rigidity 

at the top of the arch (as shown in Fig. 18(b)). 
 

 

Table 2 Parameters of the mine support made from the P-28 

profile 

Length of the segment Ld [m] 3.65 2.65 3.65 

Diameter of the segment Rd [m] 3.15 2.78 3.15 

Overlapping of the segments pd [m] 0.4 0.4 - 
 

 

 

  

(a) The force-displacement diagram (b) Flexural rigidity vs. displacement ws 

Fig. 18 The force-displacement diagram and diagram of flexural rigidity vs. displacement ws 
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6. Applying the virtual unit moments that load the 
arch support with passive forces 
 

The loading of steel arch supports in long workings can 

be (in principle) active or passive. The active load was the 

result of the weight of loose ground, and it could result from 

the active deformation of a rock. It could also develop from 

the weight of the technology plant. The active loading 

caused the arch to deform. If the steel arch support was in 

contact with the rock, then the passive load was deformed 

due to the active loads of the arch. Typically, the passive 

forces very positively influence the load-carrying capacity 
 

 

 

Fig. 19 The scheme of loading for steel arch support SP 

16/4 
 

 

 

Fig. 20 The scheme of the steel arch support 
 

 

 

of the arch support. This stabilizes the arch by inducing 

more positive components of the internal forces. 

A test of the mining steel arch supports was conducted 

in GIG Katowice in 2012 (Paczesniowski 2012). The arch 

SP16/4 with an open TH-29 profile and H500M steel in the 

unyielding implementation was tested as shown in Fig. 19. 

The testing equipment enabled the simulation and 

measurement of a static loading of arch supports due to the 

pressure of the surrounding rocks. The unyielding steel arch 

support was exposed to both forces, namely active and 

passive forces. The active forces were made up of a uniform 

continuous load. The active forces were induced by the 

hydraulic presses that operated near the top of the arch 

perpendicular to the centerline at a length of 3 m. The 

passive forces acted from the right side respectively from 

the left side of the arch (Koubova et al. 2016). 

The statically indeterminate horizontal response Hb was 

a function of the displacement ub in the right support (see 

Eq. (16)). The uniform continuous load q was a function of 

the vertical displacement ws. The secant method was also 

used to calculate the passive forces. The passive force Xi 

was a function of the displacement δi (it corresponded to the 

displacement in the direction of passive force) 
 

𝑋𝑖,𝑘+1 = 𝑋𝑖,𝑘 − [𝛿𝑖,𝑘 − (−
𝑋𝑖,𝑘

𝑐 ⋅ 𝑏 ⋅ 𝑑𝑠𝑖
)] ⋅

𝑋𝑖,𝑘 − 𝑋𝑖,𝑘−1

𝛿𝑖,𝑘 − 𝛿𝑖,𝑘−1
. (22) 

 

In this equation, c denotes modulus of compressibility, b 

denotes width of the arch profile, and ds denotes the length 

of the adjacent arch segment. 

It was necessary to check whether the resulting passive 

forces were not in tension. This was because the tension 

forces cannot generally occur in the support contact points. 

The tension passive forces are neglected in solution as 

follows. The results of numerical modeling indicated a very 

good agreement with the results obtained by the 

experimental load tests in the case of limited deformations 

(as shown in Fig. 21). The results of the numerical 

modeling could not be compared with the results of the 

experiment in the case of larger deformations. The value of 

the displacement almost reached 200 mm. It was limited by 

methodological procedures applied on the test set-up. 

This study discussed examples of the nonlinear analyses 

of structures using a method of virtual unit moments and 

effective flexural rigidity. The method was first used with 

respect to a fixed rod with ideal elastic behavior. The results 

were compared with the accurate data. The findings 

 

 

 

 

Fig. 21 Comparison of the test results and the results of numerical modeling 
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indicated that a high correlation existed. 

The method was next applied to geometric and physical 

nonlinearities in open rolled profiles. The approach 

included the distribution of the modeling on two levels. The 

values of effective flexural rigidity were obtained by FEM 

modeling by ANSYS software at the first level. In the 

second level, the beams and arch supports were solved 

using effective flexural rigidity, virtual unit moments, and 

secant method. It should be noted that Visual Basic (which 

is a part of Microsoft Excel) was used for the analysis. The 

results of the bending test experiments were derived with 

respect to the known effective flexural rigidity of the open 

P-28 profile. The mining steel arch support loaded with a 

vertical force and the unyielding steel arch support exposed 

to active and passive forces were specifically focused on the 

study. 

The use of the proposed method made it possible to 

obtain the solution for the “after-critical” condition when 

deformation increased with decreasing loads. The analysis 

was performed for statically determinate and indeterminate 

structures. The results proved that the virtual unit moments 

could be used for the geometric and physical nonlinear 

tasks in which displacement with respect to the size of the 

structure could not be ignored. These outcomes were 

possible if the effective flexural rigidity of the profile rod 

was known. 
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