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Abstract.    This paper provides a practical stochastic method by which the burial and scour depths of 
truncated cones exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. 
The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the 
Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves. 
Moreover, the formulas for the burial and the scour depths for regular waves presented by Catano-Lopera et 
al. (2011) for truncated cones are used.  An example of calculation is also presented. 
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1. Introduction 
 

The present work addresses the burial and scour of truncated cones beneath random waves  
including effects of second order wave asymmetry. Typical examples of truncated cones in such 
environments are sea mines on the seabed. Such bodies, which originally were installed, e.g., on a 
plane bed, may experience a range of seabed conditions, i.e., the bed may be flat or rippled; they 
may be surrounded by a scour hole, and they may be self-buried. This is caused by the complicated 
three-dimensional flow generated by the interaction between the incoming flow velocity (e.g., the 
relative magnitude between waves and current), the geometry of the bed, the bed material, the ratio 
between the near-bed oscillatory fluid particle excursion amplitude and the characteristic 
dimensions of the body. Moreover, real waves are stochastic, making the problem more complex. 

Further details on the general background and complexity of scour in the marine environment, 
as well as reviews of the problems are given in, e.g., Whitehouse (1998) and Sumer and Fredsøe 
(2002). To our knowledge, no studies are available in the open literature dealing with random 
wave burial and scour of truncated cones. The specifics related to scour around truncated cones as 
well as self-burial of such bodies exposed to steady currents and regular waves are addressed in 
Catano-Lopera et al. (2011). Catano-Lopera et al. (2011) carried out laboratory tests studying 
systematically the burial and scour of truncated cones. Examples of other studies are numerical 
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modelling (Jenkins et al. 2007) and field investigations (Guyonic et al. 2007, Mayer et al. 2007). 
Catano-Lopera et al. (2011) also gave a review of other works related to truncated cones. 

The purpose of this paper is to present a practical approach by which the burial and scour of 
truncated cones in nonlinear random waves can be derived. Here the empirical formulas based on 
data from laboratory tests for regular waves presented by Catano-Lopera et al. (2011) are used.  

The approach is based on assuming the waves to be a stationary narrow-band process, and 
adopting the Forristall (2000) wave crest height distribution representing both long-crested (2D) 
and short-crested (3D) nonlinear random waves. Examples of calculation are also given to 
demonstrate the application of the method. 

A review of the present stochastic method is given in Myrhaug and Ong (2011a). This 
stochastic method has recently been extended to provide a practical method for the scour due to 
2D and 3D nonlinear random waves; below pipelines (Myrhaug and Ong 2011b); below spherical 
bodies (Myrhaug and Ong 2012); around vertical piles (Myrhaug and Ong 2013 a, b, Ong et al. 
2013); burial and scour of short cylinders (Myrhaug et al. 2012). 
 

 
 

Fig. 1 Definition sketch of the burial depth (Bd), the scour width (Ws), and the scour length (Lsd, Lsu) of the 
scour hole around a truncated cone (reproduced from Catano-Lopera et al. 2011) 
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2. Burial and scour in regular waves  
 

2.1 Burial of truncated cones 
 

The burial of conical frustums, or truncated cones (hereafter referred to as cones) under 
combined regular waves and currents was investigated in laboratory tests by Catano-Lopera et al. 
(2011). For waves alone they obtained the following empirical formula for the equilibrium relative 
burial depth dB  of the cone with height ch , base diameter bD  and top diameter tD , with 

/ 0.5t bD D   (see Fig. 1) 

          )1.0 ,8.0 ,0125.0(),,( ;  srppKC
h

B sr

c

d                     (1) 

Here U is the undisturbed linear near-bed orbital velocity amplitude, and KC is the 
Keulegan-Carpenter number defined by 

 
D

UT
KC                   (2) 

where T is the wave period, and D is a representative diameter, defined as the average, i.e., 
( ) / 2b tD D D  . Eq. (1) is valid for live-bed scour, for which cr  , where   is the 

undisturbed Shields parameter defined by 

  
50)1( dg

w





               (3) 

where w  is the maximum bottom shear stress under waves,  is the density of the fluid, g is the 

acceleration due to gravity, /s    is the sediment grain density to fluid density ratio, s  is 

the sediment grain density, d50 is the median grain size diameter, and cr  is the critical value of 

motion at the bed, i.e., 05.0cr . One should note that the scour process attains its equilibrium 
stage through a transition period. Thus the approach is valid when it is assumed that the storm has 
lasted longer than the time scale of the scour.  

The main mechanism of the burial and scour process of a truncated cone were observed and 
described by Catano-Lopera et al. (2011). The major flow structures that cause the burial and scour 
around the truncated cone placed on the seabed are the complicated flow patterns surrounding the 
cone due to the back and forth motion of the waves governed by KC. During the first half wave 
cycle the flow field around a cone is characterized by a combination of upstream horseshoe 
vortices, streamline contractions around and over the cone, and vortex shedding in the wake. The 
vortex shedding brings the sediments into suspension carrying them away from the cone, and 
transported away by the outer flow. During the second half wave cycle the situation is reversed, 
and consequently the sediments are transported opposite to the wave propagation direction. For 
nonlinear waves the flow structures have higher intensity in the wave propagation direction due to 
asymmetry in the wave shape. More details are given in Catano-Lopera et al. (2011). 

The maximum bottom shear stress within a wave cycle is taken as 
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   w
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

 21

2
              (4) 

where wf  is the friction factor, which here is taken from Myrhaug et al. (2001), valid for waves 

plus current for wave-dominant situations (see Myrhaug et al. 2001, Table 3) 
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   200  /  20for  1) ,18(),( 0  zAdc      (6) 

  11000  /  200for  )52.0,39.1(),( 0  zAdc          (7) 

    /  11000for  )25.0,112.0(),( 0zAdc        (8) 

where /A U   is the near-bed orbital displacement amplitude, T/2   is the angular 
wave frequency, and zo = d50/12 is the bed roughness. The advantage of using this friction factor 
for rough turbulent flow is that it is possible to derive the stochastic approach analytically. Note 
that Eq. (7) corresponds to the coefficient given by Soulsby (1997) obtained as best fit to data for 

5
0 10/10  zA .  

One should notice that the KC number can alternatively be expressed as 

   
D

A
KC

 2
                (9) 

Moreover, A is related to the linear wave amplitude a by 

   
sinh

a
A

kh
             (10) 

where h is the water depth, and k is the wave number determined from the dispersion relationship 

khgktanh 2  . 

Eq. (1) is based on data for which 165.1  KC  and 34.004.0   . It should be noted that 
since Eq. (1) appears to be physically sound for KC > 0, i.e., Bd equals zero for KC = 0, the 
formula can be taken to be valid from KC = 0. This extension of Eq. (1) relies on the threshold of 
sediment motion to be exceeded, which for small values of KC may not be the case. 
 

2.2 Scour around truncated cones 
 
The scour around a cone in regular waves plus currents was investigated in laboratory tests by 

Catano-Lopera et al. (2011). They obtained the following empirical formulas for the geometric 
dimensions of the scour hole; the scour hole width sW , the relative downstream length sdL , and 

the total scour hole length stL  (see Fig. 1) 

 ; ( , , ) (1.03,0.1,0.05)r ssW
pKC p r s

D
                   (11) 

24



 
 
 
 
 
 

Burial and scour of truncated cones due to long-crested and short-crested nonlinear random waves 

 rL
pKC

D
                 (12) 

where L represents sdL  and stL . For the following representations of L  the coefficients p and 

r are given as 

 ; ( , ) (0.43,0.46)sdL L p r                        (13) 

 ; ( , ) (0.80,0.34)stL L p r                         (14) 

Then the relative upstream length of the scour hole is given as su st sdL L L  . Eqs. (11) to (14) 

are valid for the same conditions as described in Section 2.1. 
The sinking of the cone is primarily caused by the combination of the tunnelling underneath the 

cone and the continuous reduction of the span shoulder, which is located underneath the centre of 
the cone and is reduced towards the center. As the scour develops, the bearing capacity of the soil 
will be exceeded, causing the soil to fail; the cone will sink. The whole process will continue until 
the failure of the soil stops, and subsequently the sinking ends. More details about the mechanisms 
and the time evolution of the process are described in Catalano et al. (2011). 

 
2.3 Summary of burial and scour of truncated cones 
 
The results presented in Sections 2.1 and 2.2 can be summarized and is presented in Table 1. 

All the formulas can be represented by 

 r sY
pKC

D
                              (15) 

where p,r,s are given in Table 1 for the different responses Y and the object dimensions D. 
 
 

3. Burial and scour in nonlinear random waves  
 

3.1 Theoretical background 
 
Under nonlinear waves the nonlinearity is primarily caused by the asymmetric wave velocity, 

i.e., that the near-bed orbital velocity is larger in the wave propagation direction than in the 
opposite direction. Catano-Lopera and Garcia (2007) addressed the effect of wave asymmetry on 
the scour depth around a finite length cylinder placed horizontally on a plane bed. In their 
experiments in regular waves plus currents they observed that normally the downstream length of 
the scour gap is larger than its upstream counterpart. Under waves alone this is primarily caused by 
the asymmetric wave velocity. Examples of wave asymmetry are shown in their Figs. 2(b) and 3(b). 
However, the effect of this asymmetry on the geometry of the scour hole was not elaborated further. 
In the present paper the effects of wave asymmetry are considered by using Stokes second-order 
wave theory. 
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Table 1 Summary of the scour responses Y and the object dimensions D for waves alone and the coefficients 
in Eq. (15) as well as the coefficient t in Eqs. (34) to (37) 

Y D p r s t 

Bd 

Ws 

Lsd 

Lst 

hc 

(Db+Dt) / 2 

(Db+Dt) / 2 

(Db+Dt) / 2 

0.0125 

1.03 

0.43 

0.80 

0.8 

0.1 

0.46 

0.34 

0.1 

0.05 

0 

0 

0.975 

0.1875 

0.46 

0.34 

 
 
For Stokes second-order waves the nonlinearity is primarily caused by the larger velocity under 

the wave crest (crest velocity) than under the wave trough (trough velocity). Based on the results 
by Catano-Lopera and Garcia (2007) referred to earlier, it seems that it is the largest velocity in the 
wave cycle (i.e., the crest velocity) which is responsible for the scour, rather than the mean of the 
crest velocity and the trough velocity (i.e., equal to the linear wave velocity). Thus the scour 
response characteristics for individual random Stokes second-order waves are obtained from Eq. 
(15) by replacing U with mU , i.e., the maximum near-bed orbital velocity under the wave crest. 

This will be elaborated upon further in the forthcoming section. 
At a fixed point in a sea state with stationary narrow-band random waves consistent with 

Stokes second-order regular waves in finite water depth h, the non-dimensional nonlinear crest 
height, /c c rmsw a , and the non-dimensional nonlinear maximum horizontal particle velocity 

evaluated at the seabed, ˆ /m m rmsU U U , are (Dean and Dalrymple 1984) 

  ˆc p rmsw a O k a                               (16) 

  ˆ ˆm p rmsU a O k a                               (17) 

Here ˆ / rmsa a a  is the non-dimensional linear wave amplitude, where the linear wave 

amplitude a is made dimensionless with the rms (root-mean-square) value rmsa , and 

 
sinh

p rms
rms

p

a
U

k h


                                (18) 

Moreover,  p rmsO k a  denotes the second-order (nonlinear) terms which are proportional to 

the characteristic wave steepness of the sea state, p rmsk a , where pk  is the wave number 

corresponding to p (the peak frequency of the wave spectrum) given by the dispersion 

relationship for linear waves (which is also valid for Stokes second-order waves) 

 2 tanhp p pgk k h                             (19) 

Now Eq. (16) can be inverted to give  ˆ c p rmsa w O k a  , which substituted in Eq. (17) gives 
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 ˆ
m c p rmsU w O k a  . Thus it appears that â  can be replaced by cw  in the linear term of ˆ

mU , 

because the error involved is of second order. Consequently, by neglecting terms of  p rmsO k a  

the maximum near-bed orbital velocity under the wave crest in dimensional form can be taken as 

 
sinh

p c
m

p

U
k h

 
                               (20) 

Moreover, /m m pA U   is the maximum near-bed orbital displacement under the wave crest, 

ˆ /m m rmsA A A  is the non-dimensional maximum near-bed orbital displacement where 

 
sinh

rms
rms

p

a
A

k h
                             (21) 

Furthermore 

 m rms
p

m rms

U U

A A
                               (22) 

by combining Eqs. (18) and (21). 
Now the Forristall (2000) parametric crest height distribution based on simulations using 

second-order theory is adopted. The simulations were based on the Sharma and Dean (1981) 
theory; this model includes both sum-frequency and difference-frequency effects. The simulations 
were made both for 2D and 3D random waves. A two-parameter Weibull distribution with the 
cumulative distribution function (cdf) of the form 

   1 exp ; 0
8

c
c c

w
P w w





       
   

                   (23) 

was fitted to the simulated wave data. The Weibull parameters   and β were estimated from 
the fit to the simulated wave data and are based on the wave steepness S1 and the Ursell parameter 
UR defined by 

 1 2
1

2 sH
S

g T


                             (24) 

and 

 
2 3

1

s
R

H
U

k h
                     (25) 

Here Hs is the significant wave height, T1 is the spectral mean wave period, and k1 is the wave 

number corresponding to T1. It should be noted that rmss aH 22 when a is Rayleigh distributed. 
The wave steepness and the Ursell number characterize the degree of nonlinearity of the random 
waves in finite water depth. At zero steepness and zero Ursell number the fits were forced to match 

27



 
 
 
 
 
 

Dag Myrhaug and Muk Chen Ong 

the Rayleigh distribution, i.e., 3536.08/1   and β=2. Note that this is the case for both 
2D and 3D linear waves. The resulting parameters for the 2D-model are 

 
2 1

2
2 1

0.3536 0.2892 0.1060

2 2.1597 0.0968

D R

D R

S U

S U





  

  
                    (26) 

and for the 3D-model 

 
3 1

2
3 1

0.3536 0.2568 0.0800

2 1.7912 0.5302 0.284

D R

D R R

S U

S U U





  

   
    (27)  

Forristall (2000) demonstrated that the wave setdown effects were smaller for short-crested 
than for long-crested waves, which is due to the fact that the second-order negative 
difference-frequency terms are smaller for 3D waves than for 2D waves. Consequently the wave 
crest heights are larger for 3D waves than for 2D waves. 

 
3.2 Outline of stochastic method 
 
For scour below pipelines and around vertical piles in random waves Sumer and Fredsøe (1996, 

2001) determined the statistical quantities of wave height H and wave period T to be used in the 
regular wave formulas for the scour depth and the scour width below pipelines and the scour depth 
around slender vertical piles. By trial and error they found that the use of Hrms (rms wave height) 
and TP (peak period of the wave spectrum) gave the best agreement with data. Here a tentative 
stochastic approach will be outlined. The highest among random waves in a stationary 
narrow-band sea-state is considered, as it is reasonable to assume that it is mainly the highest 
waves which are responsible for the scour response. It is also assumed that the sea-state has lasted 
long enough to develop the equilibrium scour depth. The highest waves considered here are those 
exceeding the probability 1/n, wc1/n (i.e., )/1)(1 /1 nwP nc  . The parameter of interest is the 
expected (mean) of the maximum equilibrium scour characteristics caused by the (1/n) th highest 
wave crests, which is given as 

 
1

1[ (w ) ] ( ) ( )
c / n

c c c / n c c c
w

E Y | w w n Y w p w dw


                   (28) 

where Y represents the scour characteristics, and ( )cp w  is the probability density function (pdf) 

of cw . More specifically, the present approach is based on the following assumptions: (1) the free 

surface elevation is a stationary narrow-band process with zero expectation, and (2) the scour 
response formulas for regular waves plus current given in the previous section (Eq. (15)), are valid 
for irregular waves as well. These assumptions are essentially the same as those given in e.g. 
Myrhaug et al. (2009), where further details are found. 

For a narrow-band process pT T  where 2 / 2 /p p rms rmsT A U     and where Eq. (22) 

has been used. By taking mU U , mA A  and substituting this in Eq. (15) using Eqs. (2) to (5), 

and using from Eq. (22) that / /m rms m rmsA A U U , Eq. (15) can be re-arranged to give the scour 
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characteristics by individual narrow-band nonlinear random waves as (and using that ˆ
m cU w  

by neglecting terms of ( )p rmsO k a ) 

   ( )/ r s d
cr s

rms rms

Y D
y w

pKC 
   2              (29) 

where  

   rms p rms
rms

U T A
KC

D D


 

2
           (30) 
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c rms

d

rms

rms 












                             (31) 

It should be noted that rmsKC  and rms  are uniquely defined for given values of rmsU , rmsA  

and Tp.  
Now the mean of the maximum scour characteristics caused by the (1/ )thn  highest wave 

crests follows from Eqs. (28) and (29) as 

  
1/

(2 )
1/( ) | ( )

c n

r s d
c c c n c c c

w

E y w w w n w p w dw


                  (32) 

where ( ) ( ) /c c cp w dP w dw  with ( )cP w  as given in Eq. (23), and by using that 

 1/

1/ 8 lnc nw n
             (33) 

The result is (see the Appendix) 

   1/| 8 1 ,ln ; (2 )
t

c c c n

t
E y w w w n n t r s d


 

          
 

      (34) 

where  ( , )    is the incomplete gamma function. 

 The results for linear waves ( )2 ,8/1   ,  are obtained from Eq. (34) as 

  1/| 1 , ln ; (2 )
2c c c n

t
E y w w w n n t r s d             

        (35) 

 
 

 
4. Results and discussion 

 
For random wave-induced scour around cones due to 2D and 3D nonlinear waves no data 
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currently exist in the open literature. Therefore, the results in this section should be taken as 
tentative, and data for comparisons are required before any conclusion can be made regarding the 
validity of the approach. A recent review of the authors’ previous studies on random wave-induced 
equilibrium scour characteristics around marine structures including comparison with data from 
random wave-induced scour experiments is given in Myrhaug and Ong (2011a). This supports that 
the method should be useful as an engineering approach.  

First, the main results are presented. Second, the appropriate Shields parameter to use to 
determine the conditions corresponding to live-bed scour for 2D and 3D nonlinear random waves 
is discussed. Third, an example is given to demonstrate the use of the method. Finally, a brief 
discussion of the results is provided.  

 
4.1 Main results 

 
A feature of interest is to compare the nonlinear results in Eq. (34) with the corresponding 

linear results for both 2D and 3D waves in Eq. (35). 
For waves alone, the nonlinear to linear ratio based on Eqs. (34) and (35) is obtained as 

  1

1 , ln

8 ; (2 )
1 , ln

2

t

t
n

R t r s d
t

n




 
  
    
   
 

                (36) 

Another interesting feature is to compare the 3D and 2D results. The ratio between the 
maximum equilibrium scour characteristics for 3D waves and the maximum equilibrium scour 
characteristics for 2D waves based on Eq. (34) is obtained as 

 33
2

2

2

1 , ln

; (2 )

1 , ln

t

DD

D

D

t
n

R t r s d
t

n






 
               
 

               (37) 

It should be noted that R1 and R2 are both independent of KCrms; only dependent of S1 and UR. 
The results are exemplified by calculating the ratios R1 and R2 for the equilibrium burial depth 

dB , i.e., using the results for r =0.8, s=0.1  (see Eq. (1) and Table 1) and 0.25d   (see Eqs. (5) 

and (8)). The results for the other scour characteristics, i.e. Ws, Lsd, Lst and Lsu will be qualitative 
similar to those for Bd. Moreover, the results are given for 10n  . This is justified by referring to 
some of the authors’ previous studies (see e.g., Myrhaug and Ong (2011a)). They found that the 
scour depth and the scour width below pipelines caused by the (1/10)th highest waves represent 
the upper values of the random wave-induced scour data, and thus suggesting that these values can 
be used for design purposes. Thus the following example of results for the burial depth will be 
given for n =10. 
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Table 2 Example calculation with h =10 m , d50 =1 mm, hc =0.5 m, (Db +Dt) /2 =0.75 m , n =10 

rmsa  (m) 1.06 

kp (rad/m) 0.0900 
S1 0.0308 
UR 0.370 

27)) and (26 (Eqs. 2,2 DD   0.4017, 1.9467 

27)) and (26 (Eqs. 3,3 DD   0.3911, 1.7875 

Arms(m) 1.03 
Urms(m/s) 0.819 
Arms / z0 12360 
c, d, Eq. (8) 0.112, 0.25 
KCrms, Eq. (30) 8.6 

rms , Eqs. (31) 0.220 

  
Burial depth (Eqs. (29) and (34), Table 1)  
Bdlin (m) 0.0533 
Bdnonlin, 2D (m) 0.0613 
Bdnonlin, 3D (m) 0.0630 
  
Scour hole width (Eqs. (29) and (34), Table 1)  
Ws lin (m) 0.990 
Ws nonlin,2D (m) 1.017 
Ws nonlin,3D (m) 1.023 
  
Downstream scour hole length (Eqs. (29) and (34), Table 1)  
Lsd lin (m) 1.135 
Lsd nonlin (2D) (m) 1.212 
Lsd nonlin, 3D (m) 1.227 
  
Total scour hole length (Eqs. (29), (34), Table 1)  
Lst lin (m) 1.520 
Lst nonlin, 2D (m) 1.595 
Lst nonlin, 3D (m) 1.611 
  
Shields parameter; rmscm     

clin ,   Eq. (40) 2.83 

mlin  0.623 

Dcnonlin 2, ,  Eq. (39) 3.65 

Dcnonlin 3, ,  Eq. (39) 3.84 

Dcnonlinm 2,,   0.803 

Dcnonlinm 3,,   0.845 
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(a) (b) 

(c) 

Fig. 2 Isocurves for the ratios R1 (Eq. (36)) and R2 (Eq. (37)) for the burial depth Bd versus S1 and UR for n 
= 10, d = 0.25: (a) R1 for 2D waves, (b) R1 for 3D waves and (c) R2. Note that t = 0.975 (Table 1)

 
 
Fig. 2 shows the isocurves for the ratios R1 and R2 for the burial depth plotted against the wave 

steepness S1 and Ursell number UR. Overall, both for 2D (Fig. 2(a)) and 3D (Fig. 2(b)) waves it 
appears that: for a given value of UR, namely at a given water depth, the nonlinear to linear ratio R1 
increases as S1 increases; for a given value of S1, R1 increases as UR increases (i.e., as the water 
depth decreases). Those features appears to be physically sound. 

Moreover, it appears that R1 ranges up to about 1.5 for 2D waves (Fig. 2(a)) and up to about 1.6 
for 3D waves (Fig. 2(b)). Thus it appears that R1 is only slightly larger for 3D waves than for 2D 
waves, except for smaller values of UR. These features are demonstrated in Fig. 2(c), which shows 
the isocurves for the 3D results to 2D results ratio, R2, plotted against S1 and UR; except for smaller 
values of UR (i.e., for UR smaller than 0.1 to 0.2 depending on S1), it appears that the maximum 
burial depth is always larger beneath 3D waves than beneath 2D waves; R2 increases as UR 
increases (i.e., as the water becomes shallower). This behaviour is caused by the smaller wave 
setdown effects for short-crested waves than for long-crested waves as mentioned previously in 
Section 3.1. However, it should be noted that the difference between the results for 2D waves and 
3D waves is very small; R2 ranges up to about 1.06. 
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4.2 Shields parameter 
 
For random waves it is not obvious which value of the Shields parameter to use to determine 

the conditions corresponding to live-bed scour. However, it seems to be consistent to use 
corresponding statistical values of the scour depth and the Shields parameter. That is, if e.g., the 

value   1/|c c c nE Y w w w    of the scour depth is considered, then the corresponding value of 

the Shields parameter should be used. Some details of how this value of the Shields parameter for 
2D and 3D nonlinear random waves can be calculated will be elaborated in the following. 

First, it is noted that the non-dimensional maximum Shields parameter under the wave crest for 
individual random waves, /c m rms   , is equal to the non-dimensional maximum bottom shear 

stress under the wave crest for individual random waves, /c m rms   . Here rms  is defined as 

in Eq. (31) and rms  is defined as in the denominator in Eq. (31). Moreover, m  is defined in Eq. 

(3) by replacing w  with m , i.e., the maximum bottom shear stress under the wave crest for 

individual random waves. By using this and following Myrhaug and Holmedal (2011), c  is 

given as 

 2 d
c cw                                (38) 

Then the Shields parameter of interest in the present context is obtained by using the results in 
the Appendix as 

    2

1/

2
| 8 1 ,ln

d

c c c c n

d
E w w w n n 


  

       
 

             (39) 

For linear waves  1/ 8, 2    the result is 

   1/| 2 , ln
2c c c c n

d
E w w w n n           

                 (40) 

More discussion of the bottom friction beneath 2D and 3D nonlinear random waves are given 
in Myrhaug and Holmedal (2011). 

 
4.3 Example calculation 
 
This example is included to demonstrate the application of the method. The given flow 

conditions are: 
 Significant wave height, Hs =3 m 
 Spectral peak period, Tp =7.9 s, corresponding to rad/s 795.0p  

 Water depth, h =10 m 
 Median grain diameter (coarse sand according to Soulsby 1997, Fig. 4) 50 1d  mm 

 65.2 (as for quartz sand) 
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 Cone height, 0.5ch  m 

 Base diameter, Db = 1.0 m 
 Top diameter, 0.5tD  m 

The calculated quantities are given in Table 2. It should be noted that S1 and UR are obtained by 
replacing T1 and 1k  with PT  and Pk , respectively, since the wave process is assumed to be 

narrow-banded. The results are exemplified for n =10. Here the rms wave amplitude is given 

according to the Rayleigh distribution by 22/srms Ha  . Now Arms/z0 (i.e., )12/500 dz   

exceeds 11000; thus (c,d) = (0.112,0.25). Moreover, rms exceeds the critical Shields parameter 

05.0cr , i.e., live-bed conditions. 
The maximum equilibrium relative burial depth, the maximum equilibrium scour hole width, 

the maximum equilibrium downstream scour hole length, and the maximum equilibrium total 
scour hole length are considered; the effect of nonlinearity is to increase these scour characteristics. 
The nonlinear to linear ratios for 2D and 3D waves are: 1.15 and 1.18, respectively, for the burial 
depth; 1.027 and 1.033, respectively, for the scour hole width; 1.068 and 1.081, respectively, for 
the downstream scour hole length; 1.049 and 1.060, respectively, for the total scour hole length. 
Consequently, 3D waves give slightly larger values than 2D waves; the 3D to 2D ratios are 1.028 
for the burial depth; 1.006 for the scour hole width; 1.012 for the downstream scour hole length; 
1.010 for the total scour hole length. It should be noted that these results for the maximum 
equilibrium relative burial depth, dB , are consistent with the results in Fig. 2. This is a result of 

the smaller wave setdown effects for 3D than for 2D waves in finite water depth, as discussed 
before in the paragraph after Eq. (27). 

 Finally, for the Shields parameter it is noted that for both linear and nonlinear waves m  

exceeds cr  implying live-bed conditions. Short-crested waves give a slightly larger value than 
long-crested waves. 

 
4.4 Discussion 
 
Catano-Lopera et al. (2011) discussed several issues regarding how the sediment properties and 

the presence of ripples in the vicinity of the scour hole around the truncated cone influence the 
scour characteristics; see their paper for more details. 

Experimental errors were also addressed. In particular, the experimental error plays an 
important role in the validity of Eq. (1), “implying that the use of Eq. (1) should be made with 
caution”. 

Scale effects associated with such as bedform size, cone size, sediment size, water depth and 
time-dependent burial depth were also discussed. However, overall the results indicate no 
significant scale effects. But as stated by Catano-Lopera et al. (2011): “Nevertheless, the use of 
any of the empirical relations developed in the study should be exercised with caution”. This 
statement is still valid when using the results based on the present stochastic method. 

Although simple, the present approach should be useful as a first approximation to represent 
the stochastic properties of the maximum equilibrium scour characteristics around truncated cones 
exposed to random waves. However, comparisons with data are required before a conclusion 
regarding the validity of this approach can be given. In the meantime the method should be useful 
as an engineering tool for design purposes. 
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5. Conclusions 
 

A practical stochastic approach for estimating the maximum equilibrium scour characteristics 
around truncated cones due to long-crested (2D) and short-crested (3D) nonlinear random waves is 
given.  

An example calculation demonstrates the effects of nonlinear waves. The scour characteristics 
are only slightly larger beneath 3D nonlinear waves than beneath 2D nonlinear waves. This 
behaviour is attributed to the smaller wave setdown effects for 3D than for 2D waves in finite 
water depth. 

Although simple, the present approach should be useful as a first approximation to represent 
the stochastic properties of the maximum equilibrium scour characteristics around truncated cones 
exposed to 2D and 3D nonlinear random waves. However, comparisons with data are required 
before a conclusion regarding the validity of this approach can be given. In the meantime the 
method should be useful as an engineering tool for the assessment of scour and in scour protection 
work. 
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Appendix 

 
Let x be Weibull distributed with the pdf 

    1 exp ; 0, 0p x x x x          (A1) 

The expected value of the (1/ n )th  largest values of x is given as 

     
1/

1/

n

n

x

E x n xp x dx


                           (A2) 

where 1/nx  is the value of  x which is exceeded by the probability 1/ n . 

Moreover, from Abramowitz and Stegun (1972, Ch. 6.5, Eq. (6.5.3)) it is given that 

    1, t a

x

a x e t dt


                                (A3) 

By utilizing this, the following result is obtained 

   
1 1

1
1exp 1 ,m m

x x

m
x p x dx x x x dx x  



 
  

     
 

            (A4) 

by using Eq. (A1), and  where  ,  is the incomplete gamma function:    ,0x x    

where   is the gamma function. The result in Eq. (A4) is obtained by substituting t x  in the 
second integral in Eq. (A4) and using Eq. (A3). 
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