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Abstract.  In this study, the lift coefficient and wave deformations for a two-dimensional flat-plate in non-
cavitating condition were computed using a closed-form (analytic) solution. This plate moves at a constant 
speed beneath a free surface in water of finite depth. The model represents the flat-plate using a lumped vortex 
element within the constraints of potential flow theory. The kinematic and dynamic free surface conditions 
were combined and linearized. This linearized free surface condition was then applied to get the total velocity 
potential. The method of images was utilized to account for the effects of finite depth in the calculations. The 
lift coefficient of the flat-plate and wave elevations on the free surface were calculated using the closed-form 
solution. The lift coefficients derived from the present analytic solution were validated by comparing them 
with Plotkin’s method in the case of deep water. Wave elevations were also compared with those obtained 
from a numerical method. A comprehensive discussion on the impact of Froude number, submergence depth 
of flat-plate from the calm free surface, the angle of attack and the depths of finite bottom on the results – 
namely, lift coefficients and free surface deformations – is provided. 
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1. Introduction 

 

The hydrodynamic characteristics of two-dimensional non-cavitating (or even cavitating) 

hydrofoils, moving at a constant speed beneath a free surface have been extensively studied in 

previous studies (Bai and Han 1994, Bal et al. 2001, Faltinsen and Semenov 2008, Bal 2011, Chen 

2012). More advanced methods have also been developed to solve this issue with contemporary 

methods (Gretton et al. 2010, Roohi et al. 2013). However, to the best of author’s knowledge, no 

study has been addressed the effects of both free surface and finite bottom on non-cavitating flat-

plates, represented by lumped vortex elements. The current study aims to bridge this gap by 

developing an analytic (closed-form) solution specifically addressing this problem.  

Historically, various numerical methods were developed to analyze flows around cavitating and 

non-cavitating hydrofoils moving under a free surface. The Boundary Element Methods were (and 

still are) known as their computationally efficient and robust models to solve this problem under the 

conditions and restrictions of potential flow theory. For example, a previous study numerically 

investigated two-dimensional cavitating and/or non-cavitating hydrofoils moving steadily under a 
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free surface using an iterative boundary element method (Bal and Kinnas 2002, Bal 2011). An 

integral equation was derived by applying Green’s theorem to the hydrofoil surface and free surface, 

subsequently divided the full problem into two parts (cavitating hydrofoil and free surface). These 

two parts were solved separately with iterative consideration of their effects. The iterative method 

was applied before for hydrofoils placed within a cavitation tunnel (Choi and Kinnas, 1998) and 

later modified and extended for the surface-piercing hydrofoils and ships (Bal 2008). It was also 

applied for both two- and three-dimensional wings flying over free water surface (Bal 2016). A novel 

adjoint optimization method, based on a boundary element technique, was proposed for analyzing 

partially cavitating hydrofoils moving at a constant speed beneath the free surface (Anevlavi and 

Belibassakis 2022, Anevlavi and Belibassakis 2021, Vrinos et al. 2021). In a recent study, the effects 

of free surface on the flow field around a line sink were computed analytically for small Froude 

numbers and numerically for nonlinear problems (Mansoor et al. 2022). A comparison of Neumann-

Kelvin (linearized free surface condition) and Rankine source (nonlinear free surface condition) 

methods was done for wave drag calculations of ships in (Yu and Falzarano 2017). Advanced 

methods such as CFD (Karim et al. 2014, Celik et al. 2014) also offer realistic solutions but come 

with higher computational costs in terms of computational memory and time. In contrast, lumped 

vortex element serves as a simplified representation of flat-plate (Katz and Plotkin 2001), inherently 

satisfying the Kutta condition at the trailing edge of flat-plate and providing an exact solution (Katz 

2019). This representation can be extended to include thin cambered hydrofoils and multi-element 

lifting bodies, as well as applied to bi-foil and tandem hydrofoils. The hydrodynamic characteristics 

of cavitating flat-plate were also studied in the previous work (Kinnas 1992). The slotted cavitating 

hydrofoil design for an amphibious aircraft was examined by a numerical method in (Conesa and 

Liem 2020). In this study, it was aimed to minimize the cavitation on hydrofoil surface. On the other 

hand, the finite depth effects on hydrodynamic motion and load response on offshore structures were 

considered by a numerical method of the corresponding Green function in (Xie et al. 2017). 

In this study, a non-cavitating flat-plate moving steadily under a free surface in water of finite 

depth is modeled using a lumped vortex element. Closed-form solutions for the lift coefficient and 

free surface deformation are developed based on these equations. Section 2 explains the 

mathematical modelling, including the governing equation and boundary conditions. Section 3 

presents the solution using the method of images. In Section 4, the analytical results are compared 

with those obtained from other numerical methods, followed by concluding remarks in Section 5. 

 

 

2. Mathematical modelling 
 

A boundary value problem is formulated to address the steady uniform flow passing a two-

dimensional non-dimensional flat-plate located beneath a free surface in water of finite depth. The 

flow field is assumed to be incompressible, inviscid and irrotational, thereby applying potential flow 

theory. The x-axis is oriented positively in the direction of uniform inflow (U), and the z-axis is 

positive upwards as illustrated in Fig. 1. The flat-plate is positioned beneath the calm free surface at 

z = - h. The governing equation dictates that the perturbation potential,  and the total potential,  

( = Ux + ) must satisfy the Laplace’s equation (continuity equation) within the fluid domain 

∇2Φ(x, z) =  ∇2(x, z) = 0                                                      (1) 

Additionally, the perturbation potential function , must satisfy the following boundary conditions:  
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Fig. 1 Definition of problem, lumped vortex element, its images and coordinate system 

 

 

1-) Linearized free surface condition: The kinematic free surface condition which means that the 

fluid particles should follow the free surface, must be satisfied 

DF(x,z)

Dt
= 0 on z = ζ(x)                                                            (2) 

Here, F(x,z)=z-ζ(x), see Fig. 1. The dynamic free surface condition which means that the pressure 

on the free surface should be equal to atmospheric pressure, must also be satisfied. After applying 

Bernoulli's equation on the free surface, the following equation can be written 

1

2
[(∇ + U)2 − U2] + gζ = 0 on z = ζ(x)                                    (3) 

When the Eqs. (2) and (3) are combined and made linearized, the following free surface equation 

can be written: 

∂2ϕ

∂x2 + k0
∂ϕ

∂z
= 0 on 𝑧 = 0                                                     (4) 

where, k0=g/U2 is the wave number, and g is the gravitational acceleration. The corresponding 
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linearized wave elevation, derived from the Bernoulli equation, Eq. (3), is expressed as 

ζ = −
U

g

∂ϕ

∂x
                                                                   (5) 

2-) Radiation condition: This condition prevents upstream waves. The potential function must 

satisfy the following equations: 

 lim
x→−∞

ϕ → 0   and  lim
x→∞

ϕ → M                                                 (6) 

Here M is a finite number. 

3-) Finite depth condition: The normal derivative of perturbation potential on the surface of finite 

bottom should be zero 

∂ϕ

∂z
= 0 on z = −d                                                      (7) 

Other conditions, the Kutta condition and kinematic condition on flat-plate, are explained below. 

 

 

3. Method of solution 
 

The flat-plate has been represented using a lumped vortex element (Katz and Plotkin 2001). In 

this model, the cumulative effect of distributed vortices on the flat-plate is replaced by a simple 

single vortex with strength Γ, placed at the quarter-chord point and the kinematic boundary condition 

(zero normal velocity condition) is satisfied at the three-quarter chord point (Katz 2019). The Kutta 

condition at the trailing edge of flat-plate is automatically fulfilled within this model (Katz and 

Plotkin 2001). The method of images was employed to address the linearized free surface condition. 

First, the study focuses on the non-cavitating flow case without finite depth effects. The potential 

function 1 for a single vortex with strength Γ, located at z = - h is expressed as follows (Katz and 

Plotkin 2001) 

ϕ1(x, z) = −
Γ

2π
tan−1 (

z+h

x
)                                                       (8) 

By utilizing the following integral equation (Gradshteyn and Ryzhik 1965): 

∫ e−k(z+h) sin(kx) dk =
x

x2+(z+h)2

∞

0
                                               (9) 

and taking the derivative of Eq. (8) with respect to z, 1 can be re-written as: 

ϕ1(x, z) =
Γ

2π
∫

e−k(z+h) sin(kx)

k
dk

∞

0
                                                   (10) 

It is assumed that the perturbation potential is the summation of (x, z) = 1 + 2 + 3. Here, 2 

is the potential function due to the mirror image of single vortex with the same strength 𝝘 and in the 

opposite direction of rotation, and 3 is the gravitational wave potential and can be calculated by 

using free surface condition, Eq. (4), as follows 

ϕ2(x, z) = −
Γ

2π
tan−1 (

h−z

x
) =

Γ

2π
∫

e−k(h−z) sin(kx)

k
dk

∞

0
                                      (11) 
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ϕ3(x, z) = −
Γ

π
∫

e−k(h−z) sin(kx)

k−k0

∞

0
dk                                                 (12) 

For the evaluation of definite integral I, in Eq. (12), the method of solution given in (Hess and 

Smith 1966) has been adopted here. The integral, "I" can now be written as 

I = ∫
e−k(h−z) sin(kx)

k−k0
dk

∞

0
=

b.c−a.d

c2+d2 + Cπe−k0(h−z) cos(k0x)                              (13) 

Here, C is two (2) for x→+∞ and it is zero (0) for x→-∞, ensuring satisfaction of the radiation 

condition given in Eq. (6). The calculated a, b, c and d coefficients are provided in the Appendix 

(Hess and Smith1966). 

Now, if the kinematic boundary condition (zero normal velocity) is applied at three-quarter chord 

point of flat-plate, the following equation holds 

∂ ( x= c
2  

cosα, z=−h−c
2

 sinα)

∂z
= −U(sinα)(cosα)                                   (14) 

and if the circulation value for lumped vortex element in an unbounded flow domain (no free surface 

case) 𝝘∞ is utilized 

Γ∞ = πUc(sinα)                                                            (15) 

the following equation for circulation ratio can be obtained as 

Γ

Γ∞
= (

cosα

c
) [

1

2

x

x2+(z+h)2 +
1

2

x

x2+(h−z)2 + k0I]
−1

at (x = c

2
cosα, z = −h − c

2
sinα)    (16) 

Note that 

Γ

Γ∞
=

CL

CL∞
                                                                (17) 

Here, CL is the lift coefficient of flat-plate with free surface effect and CL∞ is the lift coefficient of 

flat-plate in unbounded flow domain (no free surface effect), and CL∞=2π(sinα). The lift coefficient 

is defined as follows 

CL =
L

1
2

ρU2c
                                                                                    (18) 

In this equation, L represents the lift force of flat-plate. 

Furthermore, the wave elevation on the free surface can be calculated from Eq. (5) as follows 

ζ(x; z = 0)

c
= (

(sinα)(cosα)

c
) [

1

2

x

x2 + (z + h)2
+

1

2

x

x2 + (h − z)2
+ k0I]

−1

 

at (x; z = 0)                                            (19) 

where  

J =
a.c+b.d

c2+d2 − Cπe−k0(h) sin(k0x)                                                        (20) 

Next, the effects of finite depth on the lift coefficient of flat-plate and free surface deformations 
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are modeled. The lift coefficient and free surface deformations are determined using the method of 

images (see Fig. 1) and the following equation for circulation ratio can be obtained as 

Γ

Γ∞
= (

cosα

c
) [

1

2

x

x2 + (z + h)2
+

1

2

x

x2 + (h − z)2
+ k0I 

−
1

2

x

x2 + (z + 2d − h)2
−

1

2

x

x2 + (z + 2d + h)2
+ k0IIm]

−1

  

at (x = c

2
cosα,   z = −h −  c

2
sinα)                          (21) 

The integral, "IIm" can be written as similar to "I" integral given in Eq. (13) 

IIm = ∫
e−k(z+h+2d) sin(kx)

k−k0
dk

∞

0
IIm =

b.c−a.d

c2+d2 + Cπe−k0(z+h+2d) cos(k0x)                       (22) 

Here, C is two (2) for x→+∞ and it is zero (0) for x→-∞, ensuring satisfaction of the radiation 

condition given in Eq. (6). The calculated a, b, c and d coefficients are given in the Appendix (Hess 

and Smith, 1966). 

Moreover, the wave elevation on the free surface with the effects of finite depth can be calculated 

as similar to Eqs. (19) and (20) 

ζ(x;z=0)

c
= (

(sinα)(cosα)

cxK
) {I −

1

2

1

ck0
[

2d−h

x2+(2d−h)2 +
2d+h

x2+(2d+h)2]}                      (23) 

where 

K =
x

x2+h2 + k0I −   
0.5x

x2+(2d−h)2 −
0.5x

x2+(2d+h)2 + k0IIm                                 (24) 

 
 

 

4. Numerical results 

 
Initially, the method has been validated using results from Plotkin’s method (Plotkin 1976), with 

an angle of attack of α=5⁰ chosen for this verification. As depicted in Fig. 2, the ratios of lift 

coefficients obtained through the present method demonstrate a very good agreement with those 

taken from Plotkin’s method. When the submergence depth of flat-plate decreases, the influence of 

the free surface becomes more significant. The effect of the free surface on the lift coefficients of 

the flat-plate is summarized as follows: 

i-) For lower Froude numbers (Fr =
U

√gc
), the presence of the free surface leads to an increase 

in lift coefficients compared to an unbounded flow domain (without free surface) 

ii-) For higher Froude numbers (Fr> 1), there is a decrease compared to the unbounded flow 

domain (no free surface). 

In Fig. 3, the wave elevations using analytical method have been compared wtih those calculated 

from a previously developed numerical method, known as the Iterative Boundary Element Method 

(IBEM) (Bal and Kinnas 2002). In IBEM method, a very thin (NACA0002) profile was applied in 

the calculations. It is worth noting that the differences between the results obtained from the two 

methods are very close to eachother. In Fig. 4, the relationship between wave elevation and Froude 

number is depicted for a fixed submergence depth ratio. As the Froude number increases, both the 
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Fig. 2 Variation of lift coefficient ratio versus Froude number at different submergence depths 

 

 

 

Fig. 3 Comparison of wave elevation with numerical method in deep water, Fr=1.12, α=5⁰ 
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Fig. 4 Variation of wave elevation with Froude number, h/c=1.0, α=5⁰ 

 

 

 

Fig. 5 Variation of wave elevation with submergence depth ratio, Fr=0.7, α=5⁰ 

 

 

wave height and wave length become larger. Fig. 5 demonstrates the influence of submergence depth 

on wave elevation while now maintaining a constant Froude number. Notice that as the submergence 

depth decreases (indicating the flat-plate approaches the free surface), the wave height increases  
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Fig. 6 Angle of attack effect on wave elevation Fr=0.7, h/c=1.0 

 

 

 

Fig. 7 Angle of attack effect on wave elevation Fr=0.7, h/c=1.0 

 

 

while the wave length remains unchanged. Fig. 6 illustrates the impact of the angle of attack on 

wave elevations. Notice also that when the angle of attack increases, while keeping the Froude 

number and the submergence depth ratio constant, the wave height increases. However, there is no 

change in the wave length, as it remains constant. 
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Fig. 8 Variation of wave elevation with depth ratio, Fr=1.12, h/c=1.0, α=5⁰ 

 

 

Next, the findings related to the effects of finite depth are presented. Fig. 7 shows how the lift 

coefficient ratios vary with the Froude number at different finite depth ratios. It is observed that the 

finite depth increases the lift coeffcients at all Froude numbers. In other words, as the depth ratios 

(d/c) decrease, the loading on flat-plate increases. Figure 8 illustrates the wave elevations at different 

finite depth ratios for a fixed submergence depth ratio of h/c=1.0 and a fixed Froude number of 

Fr=1.12. This figure also supports the observation that a decrease in finite depth ratio increases the 

loading (circulation) on the flat-plate. Note that the wave height increases as the finite depth ratios 

decrease. The finite depth ratio d/c=100 corresponds to the deep water (infinite depth) case. 

 

 

5. Conclusions 
 

A hydrodynamic analysis was conducted to examine the lift coefficient of a non-cavitating flat-

plate moving at a constant speed under a free surface. Wave deformations due to the flat-plate on 

the free surface were also calculated. All calculations were based on an analytic approach. The flat-

plate was represented by a lumped vortex element, which, to the author's knowledge, has not been 

previously studied in the literature. The analysis resulted in obtaining closed-form solutions for lift 

coefficients and wave elevations. The accuracy of the method was confirmed by comparing the 

results with Plotkin’s method and with an advanced numerical method (IBEM). The following 

findings were observed: 

• The presence of a free surface leads to an increase in the lift coefficients of the flat-plate at lower 

Froude numbers. However, for higher Froude numbers, (greater than 1), the lift coefficients decrease. 

• An increase in Froude number causes an increase in wave height and wave length. 

• A decrease in submergence depth ratio from the free surface result in an increase in wave height. 

• Increasing the angle of attack for a fixed Froude number and fixed submergence depth from free 
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surface leads to an increase in wave height, while wave length remains unaffected. 

• The finite depth increases the lift coefficient of the flat-plate. 

• The finite depth also causes an increse in wave height but not in wave length. 
 

 
References 
 
Anevlavi, D. and Belibassakis, K.A. (2022), “Analysis of partially cavitating hydrofoils under the free surface 

using BEM-based adjoint optimization”, Appl. Math. Model., 112, 415-435.

 https://doi.org/10.1016/j.apm.2022.07.033. 

Anevlavi, D. and Belibassakis, K.A. (2021), “An adjoint optimization prediction method for partially 

cavitating hydrofoils”, J. Mar. Sci. Eng., 9, 1-18. https://doi.org/10.3390/jmse9090976. 

Bai, K.J. and Han, J.A. (1994), “A localized finite-element method for nonlinear steady waves due to a two-

dimensional hydrofoil”, J. Ship Res., 58, 42-51. https://doi.org/10.5957/jsr.1994.38.1.42. 

Bal, S., Kinnas, S.A. and Lee, H. (2001), “Numerical analysis of 2-D and 3-D cavitating hydrofoils under a 

free surface”, J. Ship Res., 45, 34-49. https://doi.org/10.5957/jsr.2001.45.1.34. 

Bal, S. (2008), “Prediction of wave pattern and wave resistance of surface piercing bodies by a boundary 

element method”, Int. J. Numer. Method. Fl., 56, 305-329. https://doi.org/10.1002/fld.1527. 

Bal, S. (2011), “The effect of finite depth on 2-D and 3-D cavitating hydrofoils”, J. Mar. Sci. Technol., 16, 

129-142. https://doi.org/10.1007/s0077-011-0117.2. 

Bal, S. (2016), “Free surface effects on 2-D airfoils and 3-D wings moving over water”, Ocean Syst. Eng., 

6(6), 245-264. https://doi.org/10.12989/ose.2016.6.245. 

Bal, S. and Kinnas, S.A. (2002), “A BEM for the prediction of free surface effect on cavitating hydrofoils”, 

Comput. Mech., 28, 260-274. https://doi.org/10.1007/s00466.001.0286.7. 

Celik, F., Ozden, Y.A. and Bal, S. (2014), “Numerical simulation of the flow around two-dimensional partially 

cavitating hydrofoils”, J. Mar. Sci. Appl., 13, 245-254. https://doi.org/10.1007/s11804.01.1254.x. 

Chen, Z.M. (2012), “A vortex-based panel method for potential flow simulation around a hydrofoil”, J.  

Fluids Struct., 28, 378-391. https://doi.org/10.116/j.jfluidstructs.2011.10.003. 

Choi, J.K. and Kinnas, S.A. (1998), “Numerical water tunnel in two and three dimensions”, J. Ship Res., 42, 

86-98. https://doi.org/10.5957/jsr.1998.42.2.86. 

Conesa, F.R. and Liem, R.P. (2020), “Slotted hydrofoil design optimization to minimize cavitation in 

amphibious aircraft application: A numerical simulation approach”, Adv. Aircraft Spacecraft Sci., 7(4), 309-

333. https://doi.org/10.12989/aas.2020.7.4.309. 

Hess, J.H. and Smith, A.M.O. (1967), “Calculation of potential flow about arbitrary bodies”, Progress in 

Aeronautical Sciences, 8, 1-138. https://doi.org/10.1016/076-021(67)9000-6. 

Faltinsen, O.M. and Semenov, Y.A. (2008), “The effects of gravity and cavitation on a hydrofoil near the free 

surface”, J. Fluid Mech., 597, 371-394. https://doi.org/10.1017/s0022112007009822. 

Gradshteyn, I.S. and Ryzhik, I.M. (1965), “Table of integrals, series and products”, Academic Press, USA. 

https://doi.org/10.1016/C2010-0-64839-5. 

Gretton, G.I., Bryden, I.G., Couch, S.J. and Ingram, D.M (2010), “The CFD simulation of a lifting hydrofoil 

in close proximity to a free surface”, Proceedings of the 29th International Conference on Ocean, Offshore 

and Arctic Engineering, Shanghai, China, OMAE2010-20936. https://doi.org/10.1115/OMAE2010-20936. 

Roohi, E., Zahiri, A.P. and Passandideh-Fard, M. (2013), “Numerical simulation of cavitation around a two- 

 dimensional hydrofoil using VOF and LES turbulence model”, Appl. Math. Model., 37, 6469-6448. 

https://doi.org/10.1016/j.apm.2012.09.002. 

Karim, Md.M., Prasad, B. and Rahman, N. (2014), “Numerical simulation of free surface water wave for   

 the flow around NACA0015 hydrofoil using the Volume of Fluid (VOF) method”, Ocean Eng., 78, 89-94. 

https://doi.org/10.1016/j.oceaneng.2013.12.013. 

Katz, J. and Plotkin, A. (2001), “Low speed aerodynamics: From wing theory to panel methods”, Cambridge  

  University Press, Cambridge, USA. https://doi.org/10.1017/CB09780511810329. 

311

https://doi.org/10.1016/j.apm.2022.07.033
https://doi.org/10.3390/jmse9090976
https://doi.org/10.5957/jsr.1994.38.1.42
https://doi.org/10.5957/jsr.2001.45.1.34
https://doi.org/10.1002/fld.
https://doi.org/10.1007/s0077-011-0117.2
https://doi.org/10.12989/ose.2016.6.
https://doi.org/10.1007/s00466.001.0286.
https://doi.org/10.1007/s11804.01.1254.
https://doi.org/10.116/j.jfluidstructs.2011.10.003
https://doi.org/10.5957/jsr.1998.42.2.86
https://doi.org/10.12989/ose.2017.7.4.371
https://doi.org/10.1016/076-021(67)9000-6
https://doi.org/10.1017/s002211
https://doi.org/10.1016/C2010-0-64839-5
https://doi.org/10.1115/OMAE2010-20936
https://doi.org/10.1016/j.apm.2012.09.
https://doi.org/10.1016/j.oceaneng.2013.12.
https://doi.org/10.1017/CB09780511810329


 

 

 

 

 

 

Sakir Bal 

Katz, J. (2019), “Convergence and accuracy of potential flow methods”, J. Aircraft, 56, 2371-2375. 

https://doi.org/10.2514/1.C03483. 

Kinnas, S.A. (1992), "Inversion of the source and vorticity equations for supercavitating hydrofoils”, J. Eng. 

Math., 26, 349-361. https://doi.org/10.1007/BF00042728. 

Mansoor, W.F., Hocking, G.C. and Farrow, D.E. (2022), “Flow induced by a line sink near a vertical wall in a 

fluid with a free surface Part I: infinite depth”, J. Eng. Math., 133, 1-17.

 https://doi.org/10.1007/s10665-022-10217-8. 

Plotkin, A. (1976), “A note on the thin-hydrofoil theory of Keldysh and Lavrenties”, J. Ship Res., 20, 95-97. 

https://doi.org/10.5957/jsr.1976.20.2.95. 

Vrinos, P., Samouchos, K. and Giannakoglou, K. (2021), “The continuous adjointcut-cell method for shape 

optimization in cavitating flows”, Comput. Fluids, 224, 104974. 

https://doi.org/10.1016/j.compfluid.2021.104974. 

Xie, Z., Liu, Y. and Falzarano, J. (2017), “A more efficient numerical method of the green function in finite 

water depth”, Ocean Syst. Eng., 7(4), 399-412. https://doi.org/10.12989/ose.2017.7.4.399. 

Yu, M. and Falzarano, J. (2017), “A comparison of the Neumann-kelvin and rankine source methods for wave, 

resistance calculations”, Ocean Syst. Eng., 7(4), 371-398. https://doi.org/10.12989/ose.2017.7.4.371. 

 

 

MK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

312

https://doi.org/10.2514/1.C
https://doi.org/10.1007/
https://doi.org/10.1007/s10665-022-10217
https://doi.org/10.5957/jsr.1976.20.2.
https://doi.org/10.1016/j.compfluid.2021.
https://doi.org/10.12989/ose.2017.7.4.3
https://doi.org/10.12989/ose.2017.7.4.371


 

 

 

 

 

 

Analytic solution for flat-plate under a free surface with finite depth effects 

Appendix 
 

After the definitions of r = √x2 + (z − h)2 and β = tan−1 (
x

y−h
) , the following constant hold 

as given on pages 66-67 of [23]: 

 

a = −[ln(k0r) + 0.99999207γ + m1k0r(ln(k0r) cosβ − βsinβ) + γn1k0r cosβ +

m2k0
2r2(ln(k0r) cos2β − βsin2β) + γn2k0

2r2cos2β + m3k0
3r3(ln(k0r) cos3β − βsin3β) +

γn3k0
3r3cos3β + m4k0

4r4(ln(k0r) cos4β − βsin4β) + γn4k0
4r4cos4β + γn5k0

5r5cos5β 

       

b = −[β + m1k0r(ln(k0r) sinβ + βcosβ) + γn1k0r sinβ + m2k0
2r2(ln(k0r) sin2β +

βcos2β) + γn2k0
2r2sin2β + m3k0

3r3(ln(k0r) sin3β + βcos3β) + γn3k0
3r3sin3β +

m4k0
4r4(ln(k0r) sin4β + βcos4β) + γn4k0

4r4sin4β + γn5k0
5r5sin5β              

              

c = 1 + d1k0r cosβ + d2k0
2r2cos2β + d3k0

3r3cos3β + d4k0
4r4cos4β + d5k0

5r5cos5β +

d6k0
6r6cos6β                      

 

d = d1k0r sinβ + d2k0
2r2sin2β + d3k0

3r3sin3β + d4k0
4r4sin4β + d5k0

5r5sin5β +

d6k0
6r6sin6β           

 

γ=0.5772156649 

 

m1=0.23721365, m2=0.0206543, m3=0.000763297, m4=0.0000097687 

 

n1=-1.49545886, n2=0.041806426, n3=-0.03000591, n4=0.0019387339, n5=-0.00051801555 

 

d1=-0.76273617, d2=0.28388363, d3=-0.066786033, d4=0.012982719, d5=-0.0008700861, 

d6=0.0002989204 
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Nomenclature 
 

c  : Chord length 

CL  : Lift coeffcicient 

CL∞  : Lift coeffcicient 

d  : Depth of finite bottom from free surface 

Fr  : Froude number 

g  : Gravitational acceleration 

h  : Submergence depth of flat-plate from free surface 

k0  : Wave number 

L  : Lift force 

U  : Uniform inflow velocity 

x  : Horizontal coordinate 

z  : Vertical coordinate 

α  : Angle of attack 

  : Circulation 

∞  : Circulation in unbounded flow domain 

𝝓  : Perturbation potential 

Φ  : Total potential 

ρ  : Density of water 

ζ        : Wave elevation 
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