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Abstract.   The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-
sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and 
the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in 
the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual 
work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy 
due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear 
equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based 
on the difference between the Euler’s equations in the static state and the displaced state. The linear and 
nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the 
Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are 
validated with regard to the reference research addressing the accuracy and efficiency of the proposed 
nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for 
catenary riser are presented. 
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1. Introduction 

 

A catenary riser is used for connecting the wellhead at the seafloor and a fixed or floating 

platform on the water surface. It is commonly used offshore in deep water for conveying fluids such 

as oil, gas, or injection fluid. During its lifetime of operation, the catenary riser is designed to sustain 

extreme external loads and severe environmental condition which induce internal stresses and 

motions (Zou 2012). The natural frequencies and mode shapes of the catenary riser are important 

dynamic properties and are the significant parameters used for the design stage. At present, most 

research on catenary risers is limited to large-sag catenary risers with a small amplitude of vibration. 

To the authors’ knowledge, there is no example in the literature of a large sag with large-amplitude 

vibration. Therefore, the purpose of this research is to develop a nonlinear formulation using the 

principle of virtual work-energy for large-amplitude free vibration of a large-sag extensible catenary 
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riser in two dimensions. A literature review of research related to catenary risers is presented in this 

paper. 

A static analysis of a steel catenary riser subjected to its own self-weight was conducted by Moe 

and Arntsen (2001). Their model considered both inextensible and extensible risers. The numerical 

result was compared to the finite element method. A mathematical formulation for large-strain, 

extensible, flexible marine pipes transporting fluid was presented by Chucheepsakul et al. (2003) 

The virtual work principle and the vectorial method considering both Cartesian and natural 

coordinates for the large-strain formulations were developed. Kaewunruen et al. (2005) presented 

an investigation of the nonlinear natural frequencies and corresponding mode shapes for the marine 

pipe and riser. The virtual work-energy functional involves the bending strain energy, axial 

deformation strain energy, virtual work due to effective tension and external forces, and the kinetic 

energy due to riser and fluid motions. Their nonlinear equations of motion were derived using 

Hamilton’s principle. Static and dynamic behavior of extensible marine risers due to the effect of 

the transporting fluid were investigated by Monprapussorn et al. (2007). The velocity of the internal 

flow of the transported fluid was considered as a constant, linear, or pulsatile flow. Their large-strain 

formulation was generated using the virtual work method and the vectorial method, and the 

numerical results were obtained using the finite element method. 

Chatjigeorgiou (2008) proposed a finite difference solution for the simplified linear and nonlinear 

dynamic analysis of the catenary riser. The numerical results for static and dynamic responses were 

presented. Srinil et al. (2009a) and Srinil et al. (2009b) investigated a vortex-induced vibration of a 

catenary riser subjected to ocean current forces. Their riser was modeled using a pinned-pinned 

beam-cable model with bending and extensibility stiffness. Various behaviors of the response 

amplitude diagram, such as multimode lock-in, switching, sharing, and interaction features, were 

described. Athisakul et al. (2011) adopted a variational approach to solve the extensible three-

dimensional, large-displacement marine riser in static and dynamic states based on the work-energy 

principle. Their model formulation has the flexibility of independent variables such as water depth, 

offset, or the arc-length coordinate in Cartesian coordinates. The virtual work-energy involves the 

bending and axial deformation strain energy, torsion, and the virtual work done by the external and 

internal fluid. The numerical results were obtained using the finite element method. 

The static configurations of a steel catenary riser were investigated by Athisakul et al. (2014) 

using the variational formulation and the finite element method. Their research reported the unstable 

and stable configurations of the riser exhibited when the applied top tension was higher or lower 

than the critical top tension. Klaycham et al. (2014) proposed the nonlinear free vibration analysis 

of a steel catenary riser transporting fluid based on Hamilton’s principle. The work-energy 

functional involves the bending and axial deformation strain energy and the work done by inertia 

forces of the riser and transporting fluid motion. The large-amplitude free vibration with various 

horizontal offsets and top tensions were studied and reported. Klaycham et al. (2016) investigated 

the nonlinear free vibration of a two-dimensional marine riser with large displacement. The 

variational formulation was developed using Hamilton’s principle and the finite element method 

was employed to obtain the numerical solution. Klaycham (2016) presented a nonlinear vibration 

analysis with large-amplitude motions for the extensible marine riser. His variational and finite 

element model were formulated with variables of x and y and arc length coordinates. The dynamic 

characteristics of the marine riser were presented. The study also evaluated the dynamic responses 

induced by various loads, such as hydrodynamic wave, current, and unsteady flow of internal 

transported fluid. Klaycham et al. (2020) presented the free vibration analysis of a large sag catenary 
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shape with application to catenary jumper in hybrid riser system using the variational formulation 

and the finite element method.   

Alfosail et al. (2017) used the Galerkin approach to extract mode shapes and the natural 

frequencies of the inclined marine risers. The riser was modeled by the Euler-Bernoulli beam and 

the nonlinear stretch at midplane was considered. The significance of including the bending moment 

in the static and dynamic analysis of the risers was addressed. Kim and O’Reilly (2019) studied the 

instability of the static and vibration states of a flexible riser conveying fluid. Their three-

dimensional riser model can be either extensible or inextensible; the riser has pinned-pinned ends 

support. Numerical solution by the finite difference method was used to obtain the static 

configuration of the riser and a parametric study on the effects of the internal flow and current on 

the stability and dynamic behavior carried out. 

 

 

2. Variational model formulation  
 

The three states of the large-sag extensible catenary riser configuration in two dimensions, that 

is, undeformed, static, and dynamic states, are illustrated in Fig. 1. The catenary riser is modeled 

between the hinged support at one end and a free-sliding roller support in the horizontal direction at 

the other end. The lowest point of the large sag configuration may be not at the same level at the 

lower end. Thus, the touchdown zone may not exist and it is not considered in the model formulation. 

The influence of touchdown zone on the natural frequencies of riser is a localized problem due to 

the boundary layer effect (Pesce et al. 1998, Klaycham et al. 2016).  

The principle of work-energy in a two-dimensional Cartesian coordinate system is employed to 

develop the variational formulation of the mechanical behavior of the catenary riser induced by the 

applied force and environmental load. The virtual work for the static analysis involves the bending 

strain energy, the virtual work done by the top horizontal tension force, the effective weight, and the 

current drag force. The bending behavior of the catenary riser follows Euler-Bernoulli beam theory, 

in which deformation due to shear effect is neglected (Punjarat and Chucheepsakul 2019a). The 

virtual work for dynamic analysis involves the bending strain energy, the axial deformation strain 

energy, the virtual work done of the effective weight and inertia force. The arc-length coordinate of 

the catenary riser is used as an independent variable in the nonlinear formulation. 

As shown in Fig. 1, the geometrical configuration of the catenary riser in three states provided the 

following relations: 

𝑠𝑖𝑛𝜃 =
𝑑𝑦0

𝑑𝑠0
=

𝑦0
′

𝑠0
′                                       (1a) 

𝑐𝑜𝑠𝜃 =
𝑑𝑥0

𝑑𝑠0
=

𝑥0
′

𝑠0
′                                      (1b) 

𝑠0
′ 2 = 𝑥0

′ 2 + 𝑦0
′ 2                                     (1c) 

The prime symbol (′) represents the derivative with respect to the catenary riser unstrained arc 

length �̅�, the subscript (𝑠0) defines the unstrained arc length in the equilibrium state, the angle 
(𝜃) is measured between the arc length of the catenary riser and the horizontal. The curvature (κ) 

of the catenary riser element can be obtained by differentiating Eq. (1(a)) with respect to the catenary 

riser arc-length parameter 𝑠0 and gives 
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Fig. 1 Configuration of the catenary riser in three states 

 

 

𝜅 =
𝑑𝜃

𝑑𝑠0
=

𝑦0
′′

(1−𝑦0
′2)

1
2

                              (2) 

The total axial strain (𝜀0)  of the extensible catenary riser in the equilibrium state can be 

expressed by  

𝜀0 =
𝑑𝑠0−𝑑𝑠̅

𝑑𝑠̅
                             (3) 

The catenary riser arc length in the static equilibrium state 𝑑𝑠0 can be expressed in terms of the 

Cartesian coordinate components (𝑥0, 𝑦0) by 

𝑑𝑠0 = (1 + 𝜀0)𝑑�̅� = √𝑥0
′ 2 + 𝑦0

′2𝑑�̅�                        (4) 

where 𝑑�̅� is the infinitesimal arc length in the undeformed state. With Eqs. (1(c)) and (4), the 

following expression can be obtained 

𝑥0
′ = √(1 + 𝜀0)

2 − 𝑦0
′ 2                          (5) 

The total virtual work of the catenary riser in the static equilibrium state is composed of the 

bending strain energy, the external virtual work done due to the top horizontal tension force (𝑇𝐻), 
the effective weight (𝑤𝑒), and the current drag force, developed by Punjarat and Chucheepsakul 

(2019a, b) as follows 
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𝛿𝜋 = ∫ {

𝐸𝐼𝑦0
′′

1−𝑦0
′2
𝛿𝑦0

′′ +
𝐸𝐼𝑦0

′𝑦0
′′2

(1−𝑦0
′2)

2 𝛿𝑦0
′ + 𝑇𝐻

𝑦0
′

√(1+𝜀0)
2−𝑦0

′2
𝛿𝑦0

′

+𝑤𝑒𝛿𝑦0 + (𝑓𝐻𝑛𝑦 − 𝑓𝐻𝑡𝑦)𝛿𝑦0                                 

} 𝑑�̅�
𝑠𝑡
0

      (6) 

where 𝑤𝑒 is the effective weight; 𝑤𝑒 = (𝜌𝑝𝐴𝑝 − 𝜌𝑒𝐴𝑒 + 𝜌𝑖𝐴𝑖)𝑔, 𝜌𝑝, 𝜌𝑒 and 𝜌𝑖 are the densities 

of the riser pipe, external fluid, and internal fluid, respectively. 𝐴𝑝, 𝐴𝑒 , and 𝐴𝑖  are the cross-

sectional areas of the riser pipe, outside diameter, and inside diameter, respectively, and 𝑔 is the 

gravitational acceleration; 𝑓𝐻𝑛𝑦 and 𝑓𝐻𝑡𝑦 are the current drag force in the normal and tangential 

directions. 

In dynamic analysis, the variational formulation based on the work-energy principle is developed 

which involves the bending strain energy, an axial deformation, and virtual work done due to 

effective weight and inertia force. The work-energy functional is developed in terms of the deformed 

arc-length coordinate of the catenary riser; the strain energy due to shear is neglected. The dynamic 

displacement from the static equilibrium state in horizontal and vertical directions in 𝑢 and 𝑣 of the 

Cartesian coordinate system, respectively, is illustrated in Fig. 2. 

The arc length of the catenary riser at the stretched state, 𝑑𝑠, can be expressed by 

𝑑𝑠 = √(𝑥0
′ + 𝑢′)2 + (𝑦0

′ + 𝑣′)2𝑑�̅�                       (7) 

The strain in the displaced state, 𝜀 , followed the total aagrangian description and can be 

expressed by 

𝜀 =
𝑑𝑠−𝑑𝑠̅

𝑑𝑠̅
= √(𝑥0

′ + 𝑢′)2 + (𝑦0
′ + 𝑣′)2 − 1                  (8) 

 

 

 

Fig. 2 Schematic of static and dynamic configurations of the catenary riser 
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Its derivative is 

𝛿𝜀 =
(𝑥0
′+𝑢′)𝛿𝑢′+(𝑦0

′+𝑣′)𝛿𝑣′

√(𝑥0
′+𝑢′)

2
+(𝑦0

′+𝑣′)
2

                           (9) 

 

2.1 Virtual strain energy due to axial deformation 
 

The variation of the strain energy due to axial deformation can be expressed by 

𝛿𝑈𝑎 = ∫ 𝐸𝐴𝜀(𝛿𝜀)𝑑�̅�
𝑠𝑡
𝑜

                               (10) 

where 𝐸 is the elastic modulus and 𝐴 is the cross section of the catenary riser. 

Substitution of Eqs. (8) and (9) into Eq. (10) gives 

𝛿𝑈𝑎 = ∫ 𝐸𝐴(√(𝑥0
′ + 𝑢′)2 + (𝑦0

′ + 𝑣′)2 − 1)
(𝑥0
′+𝑢′)𝛿𝑢′+(𝑦0

′+𝑣′)𝛿𝑣′

√(𝑥0
′+𝑢′)

2
+(𝑦0

′+𝑣′)
2
𝑑�̅�

𝑠𝑡
𝑜

       (11) 

The dynamic updated Green’s strain 𝛾𝑑 , as given by Chucheepsakul et al. (2003), is  

𝛾𝑑 =
𝑥0
′𝑢′+𝑦0

′𝑣′

𝑥0
′2+𝑦0

′2
+
1

2

(𝑢′
2
+𝑣′

2
)

(𝑥0
′2+𝑦0

′2)
=

1

(1+𝜀0)
2
(𝑥0

′𝑢′ + 𝑦0
′𝑣′ +

1

2
𝑢′
2
+
1

2
𝑣′
2
)          (12) 

By approximation using the binomial series, and neglecting the higher-order terms for 

linearization purposes, one obtains 

1

√1+2𝛾𝑑
≈ 1 −

1

2
(2𝛾𝑑) +

1

2!
(−

1

2
) (−

3

2
) (2𝛾𝑑)

2 +⋯ ≈ 1 − 𝛾𝑑           (13) 

The arc length of the catenary riser in the stretched state can be simplified using Eq. (13), to give 

√(𝑥0
′ + 𝑢′)2 + (𝑦0

′ + 𝑣′)2 = √𝑥0
′ 2 + 𝑦0

′2 + 2(𝑥0
′𝑢′ + 𝑦0

′𝑣′) + 𝑢′2 + 𝑣′2 = √1 + 2𝛾𝑑(1 + 𝜀0) (14) 

Substituting Eqs. (13) and (14) into Eq. (11), one obtains 

𝛿𝑈𝑎 = ∫
𝐸𝐴

1+𝜀0
(𝜀0 + 𝛾𝑑)[(𝑥0

′ + 𝑢′)𝛿𝑢′ + (𝑦0
′ + 𝑣′)𝛿𝑣′]𝑑�̅�

𝑠𝑡
𝑜

            (15) 

Rearranging Eq. (15) by using Eq. (12) and substituting the axial tension in the equilibrium state, 

𝑇 = 𝐸𝐴𝜀0, the virtual strain energy due to axial deformation is  

𝛿𝑈𝑎 = ∫ [
𝑇

1+𝜀0
+

𝐸𝐴

(1+𝜀0)
3
(𝑥0

′𝑢′ + 𝑦0
′𝑣′ +

1

2
𝑢′
2
+
1

2
𝑣′
2
)] (𝑥0

′ + 𝑢′)𝛿𝑢′𝑑�̅�
𝑠𝑡
𝑜

  

+∫ [
𝑇

1+𝜀0
+

𝐸𝐴

(1+𝜀0)
3 (𝑥0

′𝑢′ + 𝑦0
′𝑣′ +

1

2
𝑢′
2
+
1

2
𝑣′
2
)] (𝑦0

′ + 𝑣′)𝛿𝑣′𝑑�̅�
𝑠𝑡
𝑜

       (16) 

 

64



 

 

 

 

 

 

Nonlinear formulation and free vibration of a large-sag extensible catenary riser 

2.2 Strain energy due to bending  
 
The bending strain energy presented in the total aagrangian descriptor is defined by 

𝛿𝑈𝑏 = ∫ [𝑀𝛿(𝜃′ − �̅�′)]𝑑�̅�
𝑠𝑡
𝑜

                           (17) 

while the bending moment can be expressed in terms of the curvature and dynamic strain, as follows: 

𝑀 = 𝐸𝐼[𝜅(1 + 𝜀) − �̅�]                            (18) 

The bending stiffness, 𝐸𝐼, of the catenary riser is considered constant and the rotational angle 

in terms of the total strain is defined by 

𝜃′ = 𝜅(1 + 𝜀)                               (19) 

with the assumption that the catenary riser is straight in the undeformed state, then �̅�′ = �̅� = 0. 

Thus, Eq. (17) is reduced to 

𝛿𝑈𝑏 = ∫ 𝑀𝛿𝜃′𝑑�̅�
𝑠𝑡
𝑜

                           (20) 

The curvature of the catenary riser in the displaced state can be expressed in terms of the 

Cartesian coordinate components (𝑥, 𝑦) as the following equation  

𝜃′ =
𝑥′𝑦′′−𝑥′′𝑦′

𝑥′
2
+𝑦′

2                              (21) 

Observing that 𝑠𝑖𝑛𝜃 = 𝑑𝑦/𝑑𝑠 and 𝑐𝑜𝑠𝜃 = 𝑑𝑥/𝑑𝑠, the derivative of the curvature in Eq. (21) 

can be expressed as 

𝛿𝜃′ = −(
𝑦′

𝑠′
2) 𝛿𝑢

′′ + (
𝑥′

𝑠′
2) 𝛿𝑣

′′ − (𝜅0
𝑥′

𝑠′
−

𝑥′𝑥′′+𝑦′𝑦′′

𝑠′
3 (

𝑦′

𝑠′
))𝛿𝑢′ − (𝜅0

𝑦′

𝑠′
+

𝑥′𝑥′′+𝑦′𝑦′′

𝑠′
3 (

𝑥′

𝑠′
))𝛿𝑣′  (22) 

Substituting Eqs. (21) and (22) into Eq. (17) yields the variational functional of the bending 

strain energy, as follows: 

𝛿𝑈𝑏 = ∫ 𝐸𝐼(1 + 𝜀) {
(𝑥0

′ + 𝑢′)(𝑦0
′′ + 𝑣′′)

−(𝑥0
′′ + 𝑢′′)(𝑦0

′ + 𝑣′)
} {

−(𝑦0
′ + 𝑣′)𝛿𝑢′′ + (𝑥0

′ + 𝑢′)𝛿𝑣′′

−𝜅0(𝑥0
′ + 𝑢′)𝛿𝑢′ − 𝜅0(𝑦0

′ + 𝑣′)𝛿𝑣′
} 𝑑�̅�

𝑠𝑡

𝑜

 

+∫ 𝐸𝐼(1 + 𝜀) {
(𝑥0

′ + 𝑢′)(𝑥0
′′ + 𝑢′′)

+(𝑦0
′ + 𝑣′)(𝑦0

′′ + 𝑣′′)
} 𝜅0{(𝑦0

′ + 𝑣′)𝛿𝑢′ − (𝑥0
′ + 𝑢′)𝛿𝑣′ }𝑑�̅�

𝑠𝑡
𝑜

     (23) 

The expression of 𝑠′  in Eq. (22) vanishes once the work-energy functional in this study is 

formulated in terms of the catenary riser arc length coordinate.  

 

2.3 Virtual work due to effective weight and inertia forces 
 
The virtual work done due to effective weight and inertia forces can be expressed by 
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𝛿𝑊𝑎 = −∫ 𝑤𝑒 {
√𝑥0

′2+𝑦0
′2

𝑔(1+𝜀0)
�̈�𝛿𝑢 + (

√𝑥0
′2+𝑦0

′2

1+𝜀0
+
√𝑥0

′2+𝑦0
′2

𝑔(1+𝜀0)
�̈�) 𝛿𝑣}𝑑�̅�

𝑠𝑡
0

         (24) 

where 𝑤𝑒  is the effective weight; 𝑤𝑒 = (𝜌𝑝𝐴𝑝 + 𝜌𝑖𝐴𝑖 + 𝜌𝑒𝐴𝑒𝐶𝑎)𝑔  and 𝐶𝑎  is the added mass 

coefficient; �̈� and �̈� are the acceleration in 𝑥 and 𝑦 directions, respectively. 

 

 

3. Equations of motion 
 

The total virtual work-energy of the catenary riser system can be defined by  

𝛿Π = 𝛿𝑈𝑎 + 𝛿𝑈𝑏 − 𝛿𝑊𝑎 = 0                           (25) 

Substitution of Eqs. (16), (23), and (24) into Eq. (25) yields the expression of total virtual work, 

as follows 

Π = ∫

{
 
 
 
 

 
 
 
 

     

[
𝑇

1+𝜀0
+

𝐸𝐴

(1+𝜀0)
3 (𝑥0

′𝑢′ + 𝑦0
′𝑣′ +

1

2
𝑢′
2
+
1

2
𝑣′
2
)] (𝑥0

′ + 𝑢′)𝛿𝑢′

−𝐸𝐼(1 + 𝜀 )[(𝑥0
′ + 𝑢′)(𝑦0

′′ + 𝑣′′) − (𝑥0
′′ + 𝑢′′)(𝑦0

′ + 𝑣′)](𝑦0
′ + 𝑣′)𝛿𝑢′′

−𝐸𝐼(1 + 𝜀 )𝜅0[(𝑥0
′ + 𝑢′)(𝑦0

′′ + 𝑣′′) − (𝑥0
′′ + 𝑢′′)(𝑦0

′ + 𝑣′)](𝑥0
′ + 𝑢′)𝛿𝑢′

+𝐸𝐼(1 + 𝜀 )𝜅0[(𝑥0
′ + 𝑢′)(𝑥0

′′ + 𝑢′′) + (𝑦0
′ + 𝑣′)(𝑦0

′′ + 𝑣′′)](𝑦0
′ + 𝑣′)𝛿𝑢′

+(𝑤𝑒
√𝑥0

′2+𝑦0
′2

𝑔(1+𝜀0)
�̈�) 𝛿𝑢

}
 
 
 
 

 
 
 
 

𝑠𝑡
0

𝑑�̅�  

+∫

{
 
 
 
 

 
 
 
 

    

[
𝑇

1+𝜀0
+

𝐸𝐴

(1+𝜀0)
3
(𝑥0

′𝑢′ + 𝑦0
′𝑣′ +

1

2
𝑢′
2
+
1

2
𝑣′
2
)] (𝑦0

′ + 𝑣′)𝛿𝑣′

+𝐸𝐼(1 + 𝜀)[(𝑥0
′ + 𝑢′)(𝑦0

′′ + 𝑣′′) − (𝑥0
′′ + 𝑢′′)(𝑦0

′ + 𝑣′)](𝑥0
′ + 𝑢′)𝛿𝑣′′

−𝐸𝐼(1 + 𝜀)𝜅0[(𝑥0
′ + 𝑢′)(𝑦0

′′ + 𝑣′′) − (𝑥0
′′ + 𝑢′′)(𝑦0

′ + 𝑣′)](𝑦0
′ + 𝑣′)𝛿𝑣′

−𝐸𝐼(1 + 𝜀)𝜅0[(𝑥0
′ + 𝑢′)(𝑥0

′′ + 𝑢′′) + (𝑦0
′ + 𝑣′)(𝑦0

′′ + 𝑣′′)](𝑥0
′ + 𝑢′)𝛿𝑣′

+(𝑤𝑒
√𝑥0

′2+𝑦0
′2

1+𝜀0
+ 𝑤𝑒

√𝑥0
′2+𝑦0

′2

𝑔(1+𝜀0)
�̈�) 𝛿𝑣

}
 
 
 
 

 
 
 
 

𝑠𝑡
0

𝑑�̅�     (26) 

Applying integration by part twice to obtain the equation of motion for the extensible catenary 

riser and considering the catenary riser in static equilibrium state, 𝛿𝜋 = 0 and 𝑢 = 𝑣 = 𝑢′ = 𝑣′ =
𝑢′′ = 𝑣′′ = 𝜀 = 0. The Euler equation in Eq. (26) in 𝑢 and 𝑣 directions is reduced to 

−
𝑇

1+𝜀0
(𝑥0

′ )′
 

− 𝐸𝐼(𝑥0
′𝑦0

′𝑦0
′′ − 𝑥0

′′𝑦0
′ 2)

′′
+ 𝐸𝐼𝜅0(𝑥0

′ 2𝑦0
′′ − 2𝑥0

′𝑥0
′′𝑦0

′ − 𝑦0
′ 2𝑦0

′′)
′
= 0   (27) 

and 
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−
𝑇

1+𝜀0
(𝑦0

′ )′
 

+ 𝐸𝐼(𝑥0
′ 2𝑦0

′′ − 𝑥0
′𝑥0
′′𝑦0

′)
′′
+ 𝐸𝐼𝜅0(2𝑥0

′𝑦0
′𝑦0
′′ − 𝑥0

′′𝑦0
′ 2 + 𝑥0

′ 2𝑥0
′′)

′
= 0   (28) 

For the catenary riser in motion, 𝑢 ≠ 0, 𝑣 ≠ 0, 𝑢′ ≠ 0, 𝑣′ ≠ 0, 𝑢′′ ≠ 0, 𝑣′′ ≠ 0 . The Euler 

equation in 𝑢 and 𝑣 directions becomes 

−
𝑇

1+𝜀0
(𝑥0

′ + 𝑢′)′ −
𝐸𝐴

(1+𝜀0)
3(
𝑥0
′ 2𝑢′ + 𝑥0

′𝑦0
′𝑣′ +

1

2
𝑥0
′𝑢′

2
+
1

2
𝑥0
′𝑣′

2

+𝑥0
′𝑢′

2
+ 𝑦0

′𝑢′𝑣′ +
1

2
𝑢′
3
+
1

2
𝑢′𝑣′

2
)

′

   

−𝐸𝐼 (
𝑥0
′𝑦0

′𝑦0
′′ + 𝑦0

′𝑦0
′′𝑢′ + 𝑥0

′𝑦0
′𝑣′′ + 𝑦0

′𝑢′𝑣′′ − 𝑥0
′′𝑦0

′ 2 − 𝑦0
′ 2𝑢′′ − 2𝑥0

′′𝑦0
′𝑣′ − 2𝑦0

′𝑢′′𝑣′

+𝑥0
′𝑦0

′′𝑣′ + 𝑦0
′′𝑢′𝑣′ + 𝑥0

′𝑣′𝑣
′′
+ 𝑢′𝑣′𝑣′′ − 𝑥0

′′𝑣′
2
− 𝑢′′𝑣′

2 )

′′

  

+𝐸𝐼𝜅0 (
𝑥0
′ 2𝑦0

′′ + 𝑥0
′𝑦0

′′𝑢′ + 𝑥0
′ 2𝑣′′ + 2𝑥0

′𝑢′𝑣′′ − 𝑥0
′𝑥0
′′𝑦0

′ − 𝑥0
′𝑦0

′𝑢′′ − 𝑥0
′𝑥0𝑐
′′ 𝑣′ − 𝑥0

′𝑢′′𝑣′

+𝑥0
′𝑦0

′′𝑢′ + 𝑦0
′′𝑢′2 + 𝑢′2𝑣′′ − 𝑥0

′′𝑦0
′𝑢′ − 𝑦0

′𝑢′′𝑢′ − 𝑥0
′′𝑢′𝑣′ − 𝑢′′𝑢′𝑣′

)

′

  

−𝐸𝐼𝜅0 (
𝑥0
′𝑥0
′′𝑦0

′ + 𝑥0
′′𝑦0

′𝑢′ + 𝑥0
′𝑦0

′𝑢′′ + 𝑦0
′𝑢′𝑢′′ + 𝑦0

′ 2𝑦0
′′ + 2𝑦0

′𝑦0
′′𝑣′ + 𝑦0

′ 2𝑣′′

+2𝑦0
′𝑣′𝑣′′ + 𝑦0

′′𝑣′
2
+ 𝑥0

′𝑥0
′′𝑣′ + 𝑥0

′′𝑢′𝑣′ + 𝑥0
′𝑢′′𝑣′ + 𝑣′

2
𝑣′′ + 𝑢′𝑢′′𝑣′

)

′

  

+𝑤𝑒
√𝑥0

′2+𝑦0
′2

𝑔(1+𝜀0)
�̈� = 0                        (29) 

and 

−
𝑇

1+𝜀0
(𝑦0

′ + 𝑣′)′ −
𝐸𝐴

(1+𝜀0)
3(

𝑥0
′𝑦0

′𝑢′ + 𝑦0
′ 2𝑣′ +

1

2
𝑦0
′𝑢′

2
+
1

2
𝑦0
′𝑣′

2

+𝑥0
′𝑢′𝑣′ + 𝑦0

′𝑣′𝑣′ +
1

2
𝑢′𝑢′𝑣′ +

1

2
𝑣′
3
)

′

  

+𝐸𝐼 (
𝑥0
′ 2𝑦0

′′ + 2𝑥0
′𝑦0

′′𝑢′ + 𝑥0
′ 2𝑣′′ + 2𝑥0

′𝑢′𝑣′′ − 𝑥0
′𝑥0
′′𝑦0

′ − 𝑥0
′𝑦0

′𝑢′′ − 𝑥0
′𝑥0
′′𝑣′ − 𝑥0

′𝑢′′𝑣′

+𝑦0
′′𝑢′2 + 𝑢′2𝑣′′ − 𝑥0

′′𝑦0
′𝑢′ − 𝑦0

′𝑢′𝑢′′ − 𝑥0
′′𝑢′𝑣′ − 𝑢′𝑢′′𝑣′

)

′′

 

+𝐸𝐼𝜅0 (
𝑥0
′𝑦0

′𝑦0
′′ + 𝑦0

′𝑦0
′′𝑢′ + 𝑥0

′𝑦0
′𝑣′′ + 𝑦0

′𝑢′𝑣′′ − 𝑥0
′′𝑦0

′ 2 − 𝑦0
′ 2𝑢′′ − 2𝑥0

′′𝑦0
′𝑣′ − 2𝑦0

′𝑢′′𝑣′

+𝑥0
′𝑦0

′′𝑣′ + 𝑦0
′′𝑢′𝑣′ + 𝑥0

′𝑣′𝑣′′ + 𝑢′𝑣′𝑣′′ − 𝑥0
′′𝑣′

2
− 𝑢′′𝑣′

2 )

′

 

+𝐸𝐼𝜅0 (
𝑥0
′ 2𝑥0

′′ + 2𝑥0
′𝑥0
′′𝑢′ + 𝑥0

′ 2𝑢′′ + 2𝑥0
′𝑢′𝑢′′ + 𝑥0

′𝑦0
′𝑦0
′′ + 𝑥0

′𝑦0
′′𝑣′ + 𝑥0

′𝑦0
′𝑣′′ + 𝑥0

′𝑣′𝑣′′

+𝑥0
′′𝑢′2 + 𝑢′2𝑢′′ + 𝑦0

′𝑦0
′′𝑢′ + 𝑦0

′′𝑢′𝑣′ + 𝑦0
′𝑢′𝑣′′ + 𝑢′𝑣′𝑣′′

)

′

 

+𝑤𝑒
√𝑥0

′2+𝑦0
′2

1+𝜀0
+𝑤𝑒

√𝑥0
′2+𝑦0

′2

𝑔(1+𝜀0)
�̈� = 0                        (30) 

Subtracting Eq. (27) from Eq. (29) and subtracting Eq. (28) from Eq. (30), one obtains the 

equations of motion for a large-sag extensible catenary riser in 𝑢 and 𝑣 directions, respectively. 

This can be written as  

𝑚𝑢�̈� + 𝑓1(𝑢
′′, 𝑣′′) + 𝑓2(𝑢

′′′, 𝑣′′′) + 𝑓3(𝑢
𝑖𝑣, 𝑣𝑖𝑣) = 0                (31) 
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and 

𝑚𝑣�̈� + 𝑔1(𝑢
′′, 𝑣′′) + 𝑔2(𝑢

′′′, 𝑣′′′) + 𝑔3(𝑢
𝑖𝑣, 𝑣𝑖𝑣) = 0                (32) 

Neglecting the higher-order terms in Eqs. (29) and (30), the linear and nonlinear stiffness matrix 

coefficients, 𝑓1, 𝑓2, … , 𝑔3, in Eqs. (31) and (32), can be expressed as follows 

𝑓1(𝑢
′′, 𝑣′′) =

𝑇𝑢′′

1+𝜀0
+

𝐸𝐴

(1+𝜀0)
3(

𝑥0
′ 2𝑢′′ + 𝑥0

′𝑦0
′𝑣′′

+(3𝑥0
′𝑢′ + 𝑦0

′𝑣′)𝑢′′ + (𝑥0
′𝑣′ + 𝑦0

′𝑢′)𝑣′′

+(
3

2
𝑢′
2
+
1

2
𝑣′
2
) 𝑢′′ + 𝑢′𝑣′𝑣′′

)

 

        (33) 

𝑓2(𝑢
′′′, 𝑣′′′) = −𝐸𝐼𝜅0 (

−2𝑥0
′𝑦0

′𝑢′′′ + (𝑥0
′ 2 − 𝑦0

′ 2)𝑣′′′ + (−2𝑦0
′𝑢′ − 2𝑥0

′𝑣′)𝑢′′′

+(2𝑥0
′𝑢′ − 2𝑦0

′𝑣′)𝑣′′′ − 2𝑢′𝑣′𝑢′′′ + (𝑢′2 − 𝑣′2)𝑣′′′
)    (34) 

𝑓3(𝑢
𝑖𝑣, 𝑣𝑖𝑣) = 𝐸𝐼 (

−𝑦0
′ 2𝑢𝑖𝑣 + 𝑥0

′𝑦0
′𝑣𝑖𝑣 − 2𝑦0

′𝑣′𝑢𝑖𝑣 + (𝑦0
′𝑢′ + 𝑥0

′𝑣′)𝑣𝑖𝑣

−𝑣′
2
𝑢𝑖𝑣 + 𝑢′𝑣′𝑣𝑖𝑣

)       (35) 

𝑔1(𝑢
′′, 𝑣′′) =

𝑇𝑣′′

1+𝜀0
+

𝐸𝐴

(1+𝜀0)
3(

𝑥0
′𝑦0

′𝑢′′ + 𝑦0
′ 2𝑣′′

+(𝑥0
′𝑣′ + 𝑦0

′𝑢′)𝑢′′ + (3𝑦0
′𝑣′ + 𝑥0

′𝑢′)𝑣′′

+𝑢′𝑣′𝑢′′ + (
1

2
𝑢′
2
+
3

2
𝑣′
2
) 𝑣′′

)        (36) 

𝑔2(𝑢
′′′, 𝑣′′′) = −𝐸𝐼𝜅0 (

(𝑥0
′ 2 − 𝑦0

′ 2)𝑢′′′ + 2𝑥0
′𝑦0

′𝑣′′′ + (2𝑥0
′𝑢′ − 2𝑦0

′𝑣′)𝑢′′′

+(2𝑥0
′𝑣′ + 2𝑦0

′𝑢′)𝑣′′′ + (𝑢′
2
− 𝑣′

2
)𝑢′′′ + 2𝑢′𝑣′𝑣′′′

)     (37) 

𝑔3(𝑢
𝑖𝑣, 𝑣𝑖𝑣) = −𝐸𝐼 (

−𝑥0
′𝑦0

′𝑢𝑖𝑣 + 𝑥0
′ 2𝑣𝑖𝑣 − (𝑥0

′𝑣′ + 𝑦0
′𝑢′)𝑢𝑖𝑣 + 2𝑥0

′𝑢′𝑣𝑖𝑣

−𝑢′𝑣′𝑢𝑖𝑣 + 𝑢′
2
𝑣𝑖𝑣

)      (38) 

 
3.1 Linear free vibration 
 

The linear free vibration of the large-sag extensible catenary riser can be expressed by 

[
𝑚𝑢 0
0 𝑚𝑣

] {
�̈�
�̈�
} + [𝒌𝐿] {

𝑢′′

𝑣′′
} + [𝒌𝐿] {

𝑢′′′

𝑣′′′
} + [𝒌𝐿] {

𝑢𝑖𝑣

𝑣𝑖𝑣
} = {𝟎}              (39) 

where the mass of the catenary riser in 𝑢 and 𝑣 directions is defined by  

𝑚𝑢 = 𝑚𝑣 = 𝑤𝑒
√𝑥0

′2+𝑦0
′2

𝑔(1+𝜀0)
                          (40) 

The linear axial stiffness matrix of the second-order derivative is  
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[𝒌𝐿
𝑎] = [

𝑇

1+𝜀0
+

𝐸𝐴𝑥0
′ 2

(1+𝜀0)
3

𝐸𝐴𝑥0
′𝑦0

′

(1+𝜀0)
3

𝐸𝐴𝑥0
′𝑦0

′

(1+𝜀0)
3

𝑇

1+𝜀0
+

𝐸𝐴𝑦0
′2

(1+𝜀0)
3

]                         (41) 

The linear bending stiffness matrix of the fourth-order derivative is  

[𝒌𝐿
𝑏1] = 𝐸𝐼 [

−𝑦0
′ 2 𝑥0

′𝑦0
′

𝑥0
′𝑦0

′ −𝑥0
′ 2
]                            (42) 

The linear bending stiffness matrix of the third-order derivative is 

[𝒌𝐿
𝑏2] = 𝐸𝐼𝜅0 [

2𝑥0
′𝑦0

′ 𝑦0
′ 2 − 𝑥0

′ 2

𝑦0
′ 2 − 𝑥0

′ 2 −2𝑥0
′𝑦0

′
]                      (43) 

 

3.2 Nonlinear free vibration 
 
The nonlinear free vibration of the large-sag extensible catenary riser can be expressed by 

[
𝑚𝑢 0
0 𝑚𝑣

] {
�̈�
�̈�
} + ([𝒌𝐿] + [𝒌𝑁𝐿]) {

𝑢′′

𝑣′′
} + ([𝒌𝐿] + [𝒌𝑁𝐿]) {

𝑢′′′

𝑣′′′
} + ([𝒌𝐿] + [𝒌𝑁𝐿]) {

𝑢𝑖𝑣

𝑣𝑖𝑣
} = {𝟎}(44) 

The first-order nonlinear axial stiffness matrix is 

[𝒌𝑁𝐿
𝑎1 ] =

𝐸𝐴

(1+𝜀0)
3 [
3𝑥0

′𝑢′ + 𝑦0
′𝑣′ 𝑥0

′𝑣′ + 𝑦0
′𝑢′

𝑥0
′𝑣′ + 𝑦0

′𝑢′ 3𝑦0
′𝑣′ + 𝑥0

′𝑢′
]                   (45) 

The second-order nonlinear axial stiffness matrix is 

[𝒌𝑁𝐿
𝑎2 ] =

𝐸𝐴

(1+𝜀0)
3 [

3

2
𝑢′
2
+
1

2
𝑣′
2

𝑢′𝑣′

𝑢′𝑣′
3

2
𝑣′
2
+
1

2
𝑢′
2
]                  (46) 

The first-order nonlinear bending stiffness matrix of the fourth-order derivative is 

[𝒌𝑁𝐿
𝑏1 ] = 𝐸𝐼 [

−2𝑦0
′𝑣′ 𝑦0

′𝑢′ + 𝑥0
′𝑣′

𝑦0
′𝑢′ + 𝑥0

′𝑣′ −2𝑥0
′𝑢′

]                      (47) 

The second-order nonlinear bending stiffness matrix of the fourth-order derivative is 

[𝒌𝑁𝐿
𝑏2 ] = 𝐸𝐼 [−𝑣

′2 𝑢′𝑣′

𝑢′𝑣′ −𝑢′2
]                          (48) 

The first-order nonlinear bending stiffness matrix of the third-order derivative is 

[𝒌𝑁𝐿
𝑏3 ] = 2𝐸𝐼𝜅0 [

𝑦0
′𝑢′ + 𝑥0

′𝑣′ −𝑥0
′𝑢′ + 𝑦0

′𝑣′

−𝑥0
′𝑢′ + 𝑦0

′𝑣′ −𝑦0
′𝑢′ − 𝑥0

′𝑣′
]                  (49) 
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The second-order nonlinear bending stiffness matrix of the third-order derivative is 

[𝒌𝑁𝐿
𝑏4 ] = 𝐸𝐼𝜅0 [

2𝑢′𝑣′ −𝑢′2 + 𝑣′2

−𝑢′2 + 𝑣′2 −2𝑢′𝑣′
]                       (50) 

 

 

4. Finite element method 
 

The static equilibrium configuration for the large-sag extensible catenary riser was obtained in 

previous work by the authors using the finite element method and the Newton-Raphson iterative 

procedure (Punjarat and Chucheepsakul, 2019a, b). The equation of motion is solved using the 

Galerkin finite element method (Cook et al. 2002). The displacement components vector in two-

dimensional Cartesian coordinate is written as  

{𝒖} = {𝑢 𝑣}𝑇 ≈ [𝑵]{𝒅}                             (51) 

where [𝑵] is the cubic polynomial shape function matrix arranged in the form 

[𝑵] = [
𝑁1 𝑁2 0 0 𝑁3 𝑁4 0 0
0 0 𝑁1 𝑁2 0 0 𝑁3 𝑁4

]                 (52) 

and {𝒅} is the nodal displacement coordinate, which is written as 

{𝒅} = {𝑢1 𝑢′1 𝑣1 𝑣′1 𝑢2 𝑢′2 𝑣2 𝑣′2}
𝑇               (53) 

 

4.1 Linear free vibration solution 
 
Eq. (39) can be written in the form of a matrix following the Galerkin finite element method, as 

follows 

∑ (∫ [𝑵]𝑇 [
𝑚𝑢 0
0 𝑚𝑣

] [𝑵]𝑑𝑠{�̈�} + ∫ [𝑵′]𝑇 [
𝑘𝑢𝑢 𝑘𝑢𝑣
𝑘𝑣𝑢 𝑘𝑣𝑣

] [𝑵′]𝑑𝑠{𝑑}
𝑙

0

𝑙

0
𝑁𝑒𝑙𝑒𝑚
𝑗=1   

+∫ [𝑵′]𝑇 [
𝑘𝑢𝑢 𝑘𝑢𝑣
𝑘𝑣𝑢 𝑘𝑣𝑣

] [𝑵′′]𝑑𝑠{𝒅} + ∫ [𝑵′′]𝑇 [
𝑘𝑢𝑢 𝑘𝑢𝑣
𝑘𝑣𝑢 𝑘𝑣𝑣

] [𝑵′′]𝑑𝑠{𝒅}
𝑙

0

𝑙

0
) = {𝟎}      (54) 

where j is the element number and [𝑵′] and [𝑵′′] are the first and second derivatives, respectively, 

of the cubic polynomial shape functions.  

The finite element equation of the global system for linear free vibration can be expressed by 

[𝑴]{�̈�} + [𝑲𝑳]{𝑫} = {𝟎}                           (55) 

where {�̈�}  and {𝑫}  are the acceleration and displacement vectors, respectively, and can be 

obtained by assembling the element acceleration and displacements. Therefore 

{𝑫} = ∑ {𝒅}𝑛𝑒𝑙𝑒𝑚
𝑗=1                             (56a) 
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and 

{�̈�} = ∑ {�̈�}𝑛𝑒𝑙𝑒𝑚
𝑗=1                             (56b) 

The global mass matrices [𝑴] is defined by 

[𝑴] = ∑ [𝒎]𝑁𝑒𝑙𝑒𝑚
𝑗=1                             (57) 

where [𝒎] is the element mass matrix, which is given by  

[𝒎] = ∫ (𝑚𝑝 +𝑚𝑖 + 𝐶𝑎
∗)[𝑵]𝑇 [

1 0
0 1

] [𝑵]𝑑𝑠
𝑙

0
               (58) 

Here 𝑚𝑝, 𝑚𝑖 , and 𝐶𝑎
∗ are the mass of the catenary riser, internal fluid, and the external fluid, 

including the added mass coefficient, respectively. The linear global stiffness matrix [𝑲𝑳] is  

[𝑲𝑳] = ∑ [𝒌𝑳]
𝑁𝑒𝑙𝑒𝑚
𝑗=1                              (59) 

where [𝒌𝐿] is the element linear stiffness matrix, consisting of the linear axial stiffness matrix and 

linear bending stiffness matrices. 

[𝒌𝐿] = [𝒌𝐿
𝑎] + [𝒌𝐿

𝑏1] + [𝒌𝐿
𝑏2]                         (60) 

in which the linear axial stiffness matrix is 

[𝒌𝐿
𝑎] = ∫ {

1

1+𝜀0
[𝑵′]𝑇 [

𝑇 0
0 𝑇

] [𝑵′] +
𝐸𝐴

(1+𝜀0)
3
[𝑵′]𝑇 [

𝑥0
′ 2 𝑥0

′𝑦0
′

𝑥0
′𝑦0

′ 𝑦0
′ 2
] [𝑵′]} 𝑑�̅�

𝑙

0
        (61) 

The linear bending stiffness matrix of the fourth-order derivative is 

[𝒌𝐿
𝑏1] = ∫ 𝐸𝐼[𝑵′′]𝑇 [

−𝑦0
′ 2 𝑥0

′𝑦0
′

𝑥0
′𝑦0

′ −𝑥0
′ 2
] [𝑵′′]𝑑�̅�

𝑙

0
                  (62) 

The linear bending stiffness matrix of the third-order derivative is 

[𝒌𝐿
𝑏2] = ∫ 𝐸𝐼𝜅0[𝑵′]

𝑇 [
2𝑥0

′𝑦0
′ 𝑦0

′ 2 − 𝑥0
′ 2

𝑦0
′ 2 − 𝑥0

′ 2 −2𝑥0
′𝑦0

′
] [𝑵′′]𝑑�̅�

𝑙

0
              (63) 

Using the standard procedure of the Galerkin finite element method, Eq. (55) leads to the 

eigenvalue problem, as follows 

([𝑲𝑳] − 𝜔𝑖
2[𝑴]){�̅�} = {𝟎}                        (64) 

where 𝜔𝑖 represents the natural frequency of vibration and {�̅�} is the corresponding mode shapes 

in Cartesian coordinates. 

 

71



 

 

 

 

 

 

Ong-art Punjarat and Somchai Chucheepsakul 

4.2 Nonlinear free vibration solution 
 
The equation of the nonlinear free vibration can be written as 

[𝑴]{�̈�} + ([𝑲𝑳] + [𝑲𝑵𝑳]){𝑫} = {𝟎}                    (65) 

where [𝑲𝑵𝑳] is the nonlinear element stiffness matrix, which is the combination of nonlinear axial 

stiffness matrices and nonlinear bending stiffness matrices. 

[𝒌𝑁𝐿] = [𝒌𝑁𝐿
𝑎1 ] + [𝒌𝑁𝐿

𝑎2 ] + [𝒌𝑁𝐿
𝑏1 ] + [𝒌𝑁𝐿

𝑏2 ] + [𝒌𝑁𝐿
𝑏3 ] + [𝒌𝑁𝐿

𝑏4 ]                (66) 

The first-order nonlinear axial stiffness matrix is 

[𝒌𝑁𝐿
𝑎1 ] = ∫

𝐸𝐴

(1+𝜀0)
3
[𝑵′]𝑇 [

3𝑥0
′𝑢′ + 𝑦0

′𝑣′ 𝑥0
′𝑣′ + 𝑦0

′𝑢′

𝑥0
′𝑣′ + 𝑦0

′𝑢′ 3𝑦0
′𝑣′ + 𝑥0

′𝑢′
] [𝑵′]𝑑�̅�

𝑙

0
              (67) 

The second-order nonlinear axial stiffness matrix is 

[𝒌𝑁𝐿
𝑎2 ] = ∫

𝐸𝐴

(1+𝜀0)
3
[𝑵′]𝑇 [

3

2
𝑢′
2
+
1

2
𝑣′
2

𝑢′𝑣′

𝑢′𝑣′
3

2
𝑣′
2
+
1

2
𝑢′
2
] [𝑵′]𝑑�̅�

𝑙

0
              (68) 

The first-order nonlinear bending stiffness matrix of the fourth-order derivative is 

[𝐤𝑁𝐿
𝑏1 ] = ∫ 𝐸𝐼[𝑵′′]𝑇 [

−2𝑦0
′𝑣′ 𝑦0

′𝑢′ + 𝑥0
′𝑣′

𝑦0
′𝑢′ + 𝑥0

′𝑣′ −2𝑥0
′𝑢′

] [𝑵′′]𝑑�̅�
𝑙

0
                (69) 

The second-order nonlinear bending stiffness matrix of the fourth-order derivative is 

[𝒌𝑁𝐿
𝑏2 ] = ∫ 𝐸𝐼[𝑵′′]𝑇 [−𝑣

′2 𝑢′𝑣′

𝑢′𝑣′ −𝑢′2
] [𝑵′′]𝑑�̅�

𝑙

0
                      (70) 

The first-order nonlinear bending stiffness matrix of the third-order derivative is 

[𝒌𝑁𝐿
𝑏3 ] = ∫ {2𝐸𝐼𝜅0[𝑵′]

𝑇 [
𝑦0
′𝑢′ + 𝑥0

′𝑣′ −𝑥0
′𝑢′ + 𝑦0

′𝑣′

−𝑥0
′𝑢′ + 𝑦0

′𝑣′ −𝑦0
′𝑢′ − 𝑥0

′𝑣′
] [𝑵′′]} 𝑑�̅�

𝑙

0
           (71) 

The second-order nonlinear bending stiffness matrix of the third-order derivative is 

[𝒌𝑁𝐿
𝑏4 ] = ∫ 𝐸𝐼[𝑵′]𝑇𝜅0 [

2𝑢′𝑣′ −𝑢′2 + 𝑣′2

−𝑢′2 + 𝑣′2 −2𝑢′𝑣′
] [𝑵′′]𝑑�̅�

𝑙

0
                 (72) 

Using the standard Galerkin finite element method, Eq. (65) leads to the nonlinear eigenvalue 

problem, as follows 
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(([𝑲𝑳] + [𝑲𝑵𝑳]) − 𝜔𝑖
2[𝑴]) {�̅�} = {𝟎}                      (73) 

where 𝜔𝑖  represents the natural frequency of vibration and {�̅�} is the corresponding mode shapes 

in Cartesian coordinates. 

The expression of the nonlinear equation of motion in Eq. (73) is time dependent; therefore, to 

reduce it to a time-independent nonlinear eigenvalue problem, the certain properties of the time 

function are substituted to the point of the maximum amplitude or the point of reversal of the motion.  

The dynamic displacement is assumed by substitution of the characteristic of the time function 

as an instant with harmonic function to obtain the eigenvalue problem (Sarma and Varadan 1982) 

{�̈�}
𝑚𝑎𝑥

= −𝜔𝑖
2{𝑫}𝑚𝑎𝑥                         (74) 

where 𝜔𝑖 is the natural frequencies of the catenary riser and {𝑫}𝑚𝑎𝑥 is the dynamic displacement 

at the nodal point of maximum amplitude.  

The equation of motion for time-independent, large-amplitude free vibration is obtained by 

substitution of Eq. (74) into Eq. (65), as follows 

(([𝑲𝑳] + [𝑲𝑵𝑳]) − 𝜔𝑖
2[𝑴]) {𝑫}𝑚𝑎𝑥 = {𝟎}                 (75) 

The relationship between the dynamic displacements of the catenary riser at the point of 

maximum amplitude as expressed in Eq. (75) and the vibration mode shape can be expressed by  

{𝑫}𝑚𝑎𝑥 = 𝑎{𝑽}                           (76) 

where 𝑎 is the maximum amplitude of vibration and {𝑽} is the normalized corresponding mode 

shapes. 

 

 

5. Numerical results 
 

The free vibration of the catenary riser is validated with the numerical results proposed by 

Chucheepsakul and Huang (1989) to verify the effectiveness of the proposed model formulation. 

The water depth of the catenary riser is 400 m and the offset distance varies from 20 m to 120 m. 

The outside diameter is 0.55 m, the inside diameter is 0.50 m, and the densities of the steel, seawater, 

and internal fluid are 7850 kg/m3, 1025 kg/m3, and 1410 kg/m3, respectively. The values of the top 

tension and elastic modulus are 1700 kN and 2.10 x 108 kN/m2, respectively, and the added mass 

coefficient is 1.0.  

The convergence evaluation of the riser problem in this validation with 20 m offset distance are 

performed using 10, 15, 20, 30, 40, 60 and 80 elements discretization. The finite element analysis 

with 40 equal elements discretization provided sufficiently accurate results as presented in Table 1. 

Therefore, 40 equal elements were used throughout to conduct finite element analysis. 

The natural frequencies of the first three mode shapes of the catenary riser with varying offset 

distances from 20 m to 120 m are illustrated in Table 2 and were found to be in good agreement with 

the reference research work. The first three mode shapes of the catenary riser with 20 m offset 

distance are shown in Fig. 3. 
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Table 1 Convergence evaluation 

Mode 

(rad/sec) 
Mode 1 Mode 2 Mode 3 

Elements 

discretization 

Natural 

frequencies 
Difference 

Natural 

frequencies 
Difference 

Natural 

frequencies 
Difference 

10 0.453823 - 0.730382 - 0.967309 - 

15 0.454013 0.042% 0.730578 0.027% 0.967604 0.031% 

20 0.454037 0.005% 0.730607 0.004% 0.967625 0.002% 

30 0.454045 0.002% 0.730618 0.002% 0.967629 0.000% 

40 0.454046 0.000% 0.730619 0.000% 0.967630 0.000% 

60 0.454046 0.000% 0.730620 0.000% 0.967630 0.000% 

80 0.454046 0.000% 0.730620 0.000% 0.967630 0.000% 

 

 
Table 2 Natural frequencies of the catenary riser for various offset distances 

Mode 

(rad/sec) 
Mode 1 Mode 2 Mode 3 

Offset (m) This study FEM(a) This study FEM(a) This study FEM(a) 

20 0.454 0.456 0.731 0.728 0.968 0.960 

30 0.465 0.467 0.778 0.777 1.141 1.139 

40 0.465 0.469 0.786 0.786 1.167 1.166 

60 0.460 0.466 0.781 0.784 1.160 1.162 

80 0.451 0.460 0.770 0.775 1.143 1.147 

120 0.425 0.445 0.734 0.750 1.091 1.106 

Note: FEM(a) = Chucheepsakul and Huang (1989) 

 

 

 

Fig. 3 Mode shapes of the catenary riser 
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Table 3 Natural frequencies of the catenary riser supported at the same elevation 

Mode (rad/sec) TH = 500 kN TH = 100 kN TH = 50 kN TH = 30 kN 

1 1.1764 0.5098 0.3373 0.2403 

2 1.2194 0.7624 0.5505 0.4388 

3 1.8316 1.0644 0.7710 0.6244 

4 2.3585 1.3239 0.9749 0.8012 

 
 

  
(a) Top tension 500 kN (b) Top tension 100 kN 

  
(c) Top tension 50 kN (d) Top tension 30 kN 

Fig. 4 Mode shapes of the catenary riser supported at the same elevation 

 
 
The numerical result for the free vibration analysis of the large-sag extensible catenary riser is 

presented in this section. The input parameters are the external diameter, internal diameter, and the 

unstrained arc length, which are 0.1524 m, 0.1397 m, and 500 m, respectively. The densities of the 

riser, seawater, and internal fluid are 7850 kg/m3, 1025 kg/m3, and 998 kg/m3, respectively. The 

elastic modulus is 2.07 x 108 kN/m2, the current velocity is 1.0 m/s, and the added mass coefficient 

is 1.0. The applied top horizontal tension varied, with values equal to 500, 100, 50, and 30 kN. 

Table 3 presents the natural frequencies of the first four mode shapes of the catenary riser 

supported at the same elevation for the top horizontal tensions 500, 100, 50, and 30 kN. The 

numerical results show that the natural frequency decreases as the top horizontal tension decreases. 
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Table 4 Natural frequencies of the catenary riser supported at different elevations 

Mode (rad/sec) TH = 500 kN TH = 100 kN TH = 50 kN TH = 30 kN 

1 1.1833 0.5159 0.3429 0.2462 

2 1.1977 0.7710 0.5574 0.4435 

3 1.8416 1.0757 0.7789 0.6299 

4 2.3828 1.3377 0.9843 0.8076 

 

 

  
(a) Top tension 500 kN (b) Top tension 100 kN 

  
(c) Top tension 50 kN (d) Top tension 30 kN 

Fig. 5 Mode shapes of the catenary riser supported at different elevations 

 

 

The first four mode shapes for the catenary riser with both supports at the same elevation, with 

applied top horizontal tension of 500 kN, 100 kN, 50 kN, and 30 kN, are illustrated in Figs. 4(a)-

4(d), respectively. 
The results for natural frequencies of the catenary riser with the support elevation of 100 m are 

as presented in Table 4. It was found that the natural frequency decreases as top horizontal tension 

decreases. The first four mode shapes for the catenary riser with 100 m support elevation and applied 

top horizontal tension of 500 kN, 100 kN, 50 kN, and 30 kN are illustrated in Figs. 5(a)-5(d), 

respectively. 
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(a) Elastic modulus 2.07 x 107 kN/m2 (b) Elastic modulus 2.07 x 108 kN/m2 

  
(c) Elastic modulus 2.07 x 109 kN/m2 (d) Elastic modulus 2.07 x 1010 kN/m2 

Fig. 6 Effect of the top horizontal tension on the relationship between nonlinear frequency ratios 

(𝜔𝑁𝐿/𝜔𝐿)
2 and amplitude of vibration (𝑎/𝑟) for catenary riser supports at the same elevation and elastic 

modulus values of 2.07 x 107 kN/m2 to 2.07 x 1010 kN/m2 

 

 

In this section, the effect of nonlinear axial and bending stiffness matrices based on the proposed 

equations of motion for the large-sag extensible catenary riser is investigated. The input parameters 

are the external diameter, internal diameter, and the unstrained arc length, which are 0.1524 m, 

0.1397 m, and 2000 m, respectively. The densities of the riser, seawater, and internal fluid are 7850 

kg/m3, 1025 kg/m3, and 998 kg/m3, respectively. The elastic modulus varies from 2.07 x 107 kN/m2 

to 2.07 x 1010 kN/m2, the current velocity is 1.0 m/s, and the added mass coefficient is 1.0. The 

applied top horizontal tension varied, with values equal to 500 kN to 900 kN. The support elevation 

was considered as the same elevation and 1000 m support elevation. The results of nonlinear free 

vibration analysis between the frequency ratio (𝜔𝑁𝐿/𝜔𝐿)
2 and amplitude of vibration (𝑎/𝑟) are 

plotted in Fig. 6 for the support at the same elevation and Fig. 7 for the support elevation of 1000 m, 

where 𝜔𝑁𝐿 is the nonlinear frequency and 𝜔𝐿 is the linear frequency, obtained from the nonlinear  
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(a) Elastic modulus 2.07 x 107 kN/m2 (b) Elastic modulus 2.07 x 108 kN/m2 

  
(c) Elastic modulus 2.07 x 109 kN/m2 (d) Elastic modulus 2.07 x 1010 kN/m2 

Fig. 7 Effect of the top horizontal tension on the relationship between nonlinear frequency ratios 

(𝜔𝑁𝐿/𝜔𝐿)
2  and amplitude of vibration (𝑎/𝑟) for catenary riser supports with elevation 1000 m and 

elastic modulus values of 2.07 x 107 kN/m2 to 2.07 x 1010 kN/m2 

 

 

free vibration analysis and linear free vibration analysis, respectively, and 𝑟 is the radius of gyration 

of the catenary riser. 
Figs. 6 and 7 exhibit the behavior of nonlinear free vibration depends on the parameters of 

support elevation, top horizontal tension value and elastic modulus values as presented in section 

5.1, 5.2 and 5.3, respectively. 

 
5.1 Effect of support elevation 
 
The results for nonlinear free vibration of the large-sag extensible catenary riser suspended at the 

same elevation of support exhibit the behavior of nonlinear free vibration as a softening type for all 

values of the elastic modulus, as illustrated in Figs. 6(a) to 6(d). For the catenary riser with support 
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elevation of 1000 m, the nonlinear free vibration behavior exhibits a softening type for the elastic 

modulus of 2.07 x 107 kN/m2 and 2.07 x 1010 kN/m2, as shown in Figs. 7(a) and 7(d), while the 

elastic modulus value of 2.07 x 108 kN/m2 exhibits the hardening type of nonlinear free vibration 

behavior, as shown in Fig. 7(b). The elastic modulus value of 2.07 x 109 kN/m2 exhibits the nonlinear 

frequency ratio moving from hardening to softening type, as shown in Fig. 7(c). 

 

5.2 Effect of top horizontal tension 
 
The effect of top horizontal tension on the nonlinear free vibration behavior of the extensible 

catenary riser with the support at the same elevation is illustrated in Fig. 6. The results show the 

degree of softening increases as the top horizontal tension increases, as shown in Figs. 6(a) and 6(b) 

for the elastic modulus values of 2.07 x 107 kN/m2 and 2.07 x 108 kN/m2, respectively, while the 

degree of softening increases as the top horizontal tension decreases, as shown in Figs. 6(c) and 6(d) 

for the elastic modulus of 2.07 x 109 kN/m2 and 2.07 x 1010 kN/m2, respectively. 

For the catenary riser with the support elevation set to 1000 m, the nonlinear free vibration 

behavior exhibits a softening type for the elastic modulus of 2.07 x 107 kN/m2 and 2.07 x 1010 kN/m2. 

The results presented show that the degree of softening increases as the top horizontal tension values 

decrease, as shown in Figs. 7(a) and 7(d), respectively. The elastic modulus values of 2.07 x 108 

kN/m2 and 2.07 x 109 kN/m2 in Figs. 7(b) and 7(c), respectively, exhibit the hardening type of 

nonlinear free vibration behavior and the degree of hardening increases as the top horizontal tension 

value increases. 

 

5.3 Effect of elastic modulus 
 
The nonlinear free vibration behavior of the extensible catenary riser with the support at the same 

elevation exhibits a softening type for all values of elastic modulus as illustrated in Fig. 6(a) to 6(d). 

The degree of softening increases as the elastic modulus value increases. The nonlinear free vibration 

behavior of the catenary riser with support elevation of 1000 m exhibits a softening type for the 

elastic modulus values of 2.07 x 107 kN/m2 and 2.07 x 1010 kN/m2, and the plotted values show a 

hardening type of nonlinear free vibration behavior for the elastic modulus values of 2.07 x 108 

kN/m2 and 2.07 x 109 kN/m2. 

 
 
6. Conclusions 

 
The nonlinear model formulation based on the variational approach for free vibration of a large-

sag extensible catenary riser using the arc length coordinate adopted from the aagrangian description 

as the independent variable are presented in this paper. The total virtual work due to axial 

deformation and bending strain energy and virtual work due to effective weight and inertia forces 

were addressed. The equations of motion were derived from the difference between the Euler’s 

equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the 

catenary riser are obtained. Finally, the eigenvalue problem of linear free vibration analysis was 

solved by the inverse iteration method to obtain the natural frequencies and corresponding mode 

shapes, while the direct iteration method was used for nonlinear free vibration analysis. 

The numerical results for free vibration of the large-sag catenary riser was validated and found 

to be in good agreement with the reference research work. The free vibration of the large-sag 
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extensible catenary riser with the support at the same and different elevations was performed while 

varying the top horizontal tension. The numerical results show the natural frequencies decrease as 

the top horizontal tension decreases. The nonlinear behavior based on the proposed formulation for 

the large-sag extensible catenary riser is investigated with various parameters and discussed herein. 
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