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Abstract.  Detecting objects is important for the safe operation of ships, and enables collision avoidance, risk 
detection, and autonomous sailing. This study proposes a ship detection method from images and videos taken 
at sea using one of the state-of-the-art deep neural network-based object detection algorithms. A deep learning 
model is trained using a public maritime dataset, and results show it can detect all types of floating objects and 
classify them into ten specific classes that include a ship, speedboat, and buoy. The proposed deep learning 
model is compared to a universal trained model that detects and classifies objects into general classes, such as 
a person, dog, car, and boat, and results show that the proposed model outperforms the other in the detection 
of maritime objects. Different deep neural network structures are then compared to obtain the best detection 
performance. The proposed model also shows a real-time detection speed of approximately 30 frames per 
second. Hence, it is expected that the proposed model can be used to detect maritime objects and reduce risks 
while at sea. 
 

Keywords:   object detection; ship detection; deep neural network; deep learning; maritime dataset 

 
 
1. Introduction 

 

Both aerial and ground-based unmanned vehicles are being developed for use in military, 

maritime, research, and civil fields. One of the key technologies required in unmanned vehicle 

applications is visual recognition, as autonomous vehicles need to be able to detect adjacent objects 

clearly and rapidly to avoid obstacles, follow paths or targets, read signs, and interact with them. A 

typical modern unmanned vehicle uses not only video cameras (also known as EO: electro-optical 

sensors) but also many different sensors simultaneously, such as radar, sonar, LiDAR (light detection 

and ranging), and GPS. It also utilizes sensor fusion techniques that combine sensory data from the 

various source types to improve its ability to detect the presence of obstacles around it. At the final 

stage of recognition, however, it continues to have a high dependence on the use of video cameras 

to distinguish the precise type and shape of adjacent objects (Hermann et al. 2015). From a maritime 

perspective, although AIS (automatic identification system) can provide detailed information about 
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nearby ships, it is unable to detect objects without AIS transmitters, such as buoys, small boats, and 

kayaks. Thus, an image-based recognition that employs video cameras is extremely important, 

despite the use of other available sensors. In this respect, extensive research on image detection and 

classification are actively being conducted in line with the development of deep learning technology. 

In this study, we introduce a state-of-the-art real-time object detection method that utilizes a 

convolutional neural network (CNN) to perform image-based ship detection. We firstly use one of 

the existing universally trained models as a “reference model” to examine its applicability in the 

maritime domain by testing how well it can detect ships from maritime images. We then present the 

proposed model, which has variations made to the network structures of the reference model, and 

train it based on a maritime domain-specific dataset. To evaluate the model, we compare how well 

the detection performance improves compared to the reference model in terms of recall and IOU 

(intersection over union) metrics. We also apply the proposed model to a video to confirm the 

applicability of real-time object detection at sea. 

 

 

2. Related works 
 

Visual recognition and object detection problems have been extensively studied by computer 

vision scientists for many decades, but recent CNN-based deep learning technologies are currently 

outperforming all existing algorithms (Huang et al. 2016). R-CNN (Regions with CNN) have 

applied CNN to the object detection problem and have achieved 30% better precision than previous 

best results (Girshick et al. 2014). The faster R-CNN not only further increases precision but also 

boosts the detection speed to a semi-real-time level of approximately five frames per second (Ren 

et al. 2015). 

R-CNN series algorithms conduct the proposal and classification of regions separately, whereas 

single-stage detection algorithms can perform all object detection processes in one stage. The SSD: 

Single Shot MultiBox Detector (Liu et al. 2016) and YOLO: You Only Look Once (Redmon et al. 

2016) are representative algorithms. They achieve a high speed of up to 45 frames per second (fps), 

although there is a slight trade-off with precision to some extent. However, the YOLO v2, which 

arrived in 2017, has an even faster speed, and it provides a higher precision than existing algorithms 

without any trade-off performances (Redmon and Farhadi 2017). Therefore, the YOLO v2 algorithm 

and its network model are chosen for use in ship detection in this study. 

In the maritime domain, image-based ship detection has been the focus of many studies. For 

example, Lee et al. (2016) detected ships at sea using the Viola & Jones algorithm. Originally 

designed for face detection in 2011, this algorithm is fast in real-time, but is not as accurate as CNN-

based models. Zhang et al. (2016) conducted ship detection within satellite images using a 

combination of image processing techniques and CNN classification, which provides a result similar 

to the R-CNN scheme. However, this method has a slower processing speed than the R-CNN, and 

although it is acceptable for use with satellite image analysis, it is not suitable for application to an 

unmanned surface vehicle that requires a real-time detection operation. Cuong et al. (2015) 

performed ship classification with a CNN model that takes single-ship-containing images as the 

input and classifies them into 35 ship classes. Although this image classification for a single ship 

can be performed as fast as the real-time processing by CNN, it cannot detect multiple objects within 

an image. Image classification (for a single object) and object detection (for multiple objects + 

bounding boxes) are treated as different problems in the computer vision field. In this study, we 
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propose an accurate and real-time fast ship detection model that uses a single-stage detection 

algorithm with CNN and the transfer learning method. 

 

 

3. Image-based ship detection 
 

3.1 Dataset for ship detection 
 

The major difference between the reference model and the proposed model is the datasets used 

in training. The reference model is trained using one of the universal image datasets that are known 

as the PASCAL VOC (Pattern Analysis, Statistical modeling and Computational Learning Visual 

Object Classes) dataset (Everingham et al. 2015), as shown in Fig. 1. The dataset contains 

approximately 21,000 images, bounding-box information, and classifying labels for 20 general 

classes, such as a person, dog, cat, cow, table, car, truck, bus, and boat. The fully trained weight data 

of the CNN model based on this PASCAL VOC dataset is published online without any 

modifications. 

In contrast, the proposed model uses a public dataset available for the maritime industry known 

as the Singapore Maritime Dataset (SMD) (Prasad et al. 2017). The dataset employs approximately 

63 videos taken at sea during both the day and night and thus reflects the actual ocean environment. 

The dataset contains ground truth labels for every frame of each video that comprises object classes 

and bounding-box information for each object shown in every frame. Only floating objects that can 

be observed in the maritime environment are subject to classification, and they are divided into ten 

classes: ferry, buoy, vessel/ship, speedboat, boat, kayak, sailboat, swimming person, flying 

bird/plane, and other. Although a flying bird/plane is not a floating object, it is included because it 

can be seen in the maritime environment and also needs to be distinguished from floating objects. 

Fig. 2 shows sample images captured from a video in the dataset. 

 
 

 

Fig. 1 Sample images from the PASCAL VOC dataset (Everingham et al. 2015) 
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Fig. 2 Sample snapshot images from the Singapore Maritime Dataset video (Prasad et al. 2017) 

 
 

 

Fig. 3 Data distribution of the labeled objects in training (blue) and validation (orange) images with 

respect to class (top-left), distance (top-right), orientation (bottom-left), and size (bottom-right) 

 
 

To train the CNN model for ship detection, 189 images were extracted from the SMD videos; 

159 images were then used as training data, and the remaining 30 images were used as validation 

data. Although it was possible to obtain more images from the videos, all videos contained similar 

objects. To avoid an overfitting problem in learning, we selected a smaller number of images. There 

is an average number of seven objects in each image. Training and validation images contain 1,252 

labeled objects in total. Data distribution of the objects in training and validation images with respect 

to class, distance, orientation, and physical size is shown in Table 1 and Fig. 3. 

 
3.2 Neural network models and structure 
 
The YOLO v2 algorithm (Redmon and Farhadi 2017) was selected to provide image-based ship 

detection and classification. The core algorithm of YOLO v2 is based on the first version of YOLO 

(Redmon et al. 2016), but it adopts several additional techniques that improve its detection speed  
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Table 1 Data distribution of the labeled objects in training and validation images 

Item Training Validation Item Training Validation 

Class     Distance     

Ferry 30 12 Far (d > 500 m) 800 197 

Buoy 18 9 Middle (250 < d ≤ 500 m) 133 37 

Vessel/Ship 822 191 Near (d ≤ 250 m) 72 13 

Speed boat 31 15 Orientation     

Boat 6 3 Front/Rear 237 56 

Kayak 3 4 Side 541 143 

Sailboat 12 3 Oblique 227 48 

Swimming person 0 0 Size     

Flying bird 3 2 Large (L > 40 m) 838 197 

Other 80 8 Middle (10 < L ≤ 40 m) 52 12 

Total 1005 247 Small (L ≤ 10 m) 115 38 

 

 

 

Fig. 4 YOLO detection system (Redmon et al. 2016) 

 

 

and precision. Fig. 4 shows the keystream involved in the YOLO object detection process, where 

the system (1) resizes the input image to the pre-specified size, (2) runs a single convolutional 

network on the image, and (3) eliminates duplicate bounding boxes for the same object using the 

boxes’ confidence scores. A single convolutional network simultaneously predicts multiple 

bounding boxes and class probabilities of objects in the boxes. 

The CNN models used in this study are presented in Figs. 5 and 6. The basic structure, including 

the number of convolutions and pooling layers, is based on the CNN model proposed by Redmon 

and Farhadi (2017). We gave the reference model and the proposed model (Model #3) the same 

network structure to enable a comparison between the two models, but the different datasets were 

used for training. We also developed two network models for use in comparing the detection 

performance of the proposed model. The first model (shown in Fig. 5) is a simple CNN model that 

consists of 22 convolutional layers and 5 pooling layers, and was used for model #1. The neural 

network model in Fig. 6 was used for the reference model, model #2, and #3, and the networks 

consist of 23 convolutional layers and 5 pooling layers. Convolution layers with 1 x 1 convolution  
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Fig. 5 Convolutional neural network (CNN) model structure tailored for ship detection 

 

 

Fig. 6 Convolutional neural network (CNN) with passthrough layer tailored for ship detection 

 

filters, which are the concept of ‘network in network’ (Lin et al. 2013), were added between some 

of the 3 x 3 convolution layers to provide better feature extraction. A passthrough layer was added 

to the 13th convolutional layer to enhance performance for small scale objects. The leaky ReLU 

activation function (Mass et al. 2013) was used in all neural network models. 

To classify the detected objects into ten classes, the number of filters in the proposed model’s 

last layer was changed from 125 to 75, which equals 5ⅹ(4+1+10). The first five correspond to the 

number of bounding boxes for each cell; 4 and 1 correspond to each bounding box’s coordinate 

information (x, y, w, and h) and confidence score, respectively; and the last 10 correspond to the 

number of classes. The only difference between the reference and proposed model relates to the 

model structure:  

the proposed model takes 416 x 416 resized input images and makes 13 x 13 x 75 tensor all the way 

through the network; it then finally performs the classification and bounding box regression (i.e., 

the object detection). 
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Table 2 Configuration of models used in training 

Item Reference Model #1 Model #2 Model #3 

Dataset for 

training 

General images 

(PASCAL VOC: 

21,493 images) 

Maritime images 

(SMD training data: 

159 images ) 

Maritime images 

(SMD training data: 

159 images) 

Maritime images 

(SMD training data: 

159 images ) 

Model 

structure 

23 convolutional layers, 

including passthrough 

layer 

22 convolutional layers  

(no passthrough layer) 

23 convolutional layers, 

including passthrough 

layer 

23 convolutional layers, 

including passthrough 

layer 

Transfer 

learning 

Yes 

(ImageNet  VOC) 
No No 

Yes 

(ImageNet  SMD) 

 

Our detection algorithm and neural network models were implemented using Google’s 

TensorFlow library in Python. It was also inspired by many open-source object detection projects, 

including the original YOLO source code (in C/C++) published by Redmon et al. (2017). 

 
3.3 Transfer learning 
 

In this study, as only 159 images were used to train the neural network, the transfer learning 

algorithm was adopted (Pan and Yang 2010), as the number of images was not sufficient for training 

the network (and insufficient data can cause overfitting problems). 

Fig. 7 shows the general difference between the use of the transfer learning method and training 

from scratch. Transfer learning provides a shorter training time and uses a smaller dataset; however, 

the accuracy can be lower because of the size of the dataset. Prior to training the neural network 

using the main dataset, pre-training was thus conducted using the ImageNet classification dataset 

(ImageNet, 2019), which contains more than one million images and can be obtained publicly. The 

neural network was then initialized using ImageNet by employing the weight values pre-trained, and 

the SMD was finally used to train the weight values. To evaluate the efficiency of the transfer 

learning method, models #1 and #2 were trained only with SMD, and the reference model and model 

#3 were pre-trained firstly with ImageNet and then trained with PASCAL VOC and SMD, 

respectively. The neural network models used in this study are summarized in Table 2. 

 

3.4 Loss function 
 

The loss function is defined as Eq. (1) and is based on YOLO v2 (Redmon and Farhadi 2017) 

with slight modifications 
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Fig. 7 Comparison between scratch and transfer learning training 
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Fig. 8 Performance metrics of proposed neural network models 

 

 

In this study, we selected coord = 1.0, obj = 5.0, noobj = 1.0, and class = 1.0. coord, obj, noobj, 

and class are the weight factors for the position and size of the detected bounding box, existence of 

an object, non-existence of an object, and classification of the object, respectively. Lossbb is the error 

value related to the accuracy of the bounding box of the detected objects; Lossc is the confidence 

level relating to whether an object is located in the bounding box or not; Lossp is the probability that 

shows whether the detected object is classified correctly; Lossbb
 and Lossc are mean square errors; 

and Lossp is the cross-entropy error. The loss function was applied to all proposed models. 

 

3.5 Training network model with a dataset 
 

The training of the proposed network model was conducted using the maritime dataset with 

20,000 iterations of 32 mini-batch images, making a total of 640,000 image operations over a period 

of approximately 12 h using the GPU of NVIDIA GeForce GTX 1080. Two performance metrics of 

the network model are shown along the mini-batch iteration axis in Fig. 8. The recall scores represent 

the number of objects detected out of all true objects (upper), and the IOU (intersection over union) 

scores represent the level of accuracy with respect to bounding box predictions (lower). In each plot, 

the blue and red lines represent scores for the training and validation data, respectively. The model 

reached a recall of 73.86% and an IOU of 60.79% for the validation data at the converging point. 

All the performance metrics in Fig. 8 show that the proposed model converges around 15,000 

iterations of training, which is approximately 3,000 epochs. 
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Table 3 Performance comparison between the reference and proposed models 

Metric Reference Model #1 Model #2 Model #3 

Recall 33.05 % 56.82 % 68.18% 73.86 % 

IOU 29.65 % 47.77% 53.94% 60.79 % 

Processing time 14 ms 12 ms 14 ms 14 ms 

 
 
 
4. Applications 

 

4.1 Performance comparison between models 
 

The performances of the detection models were evaluated by measuring recall and IOU scores 

on the validation data described in Table 1. Recall and IOU metrics are defined by Eq. (2), where 

TPc is the number of true positive predictions for class c; FNc is the number of false negative objects 

in class c; GTc is the number of ground truth objects in class c; Intersectionbb and Unionbb are the 

area of intersection and union between ground truth and predicted bounding boxes respectively. To 

present the recall score throughout the classes as a single value, we define an overall recall score as 

Eq. (3). All the recall scores mentioned in this paper, if not specified, mean the overall recall score. 

TP TP Intersection
Recall = = , IOU =

TP +FN  GT  Union

c c bb
c bb

c c c bb

                 (2) 

Overall

TP

Recall =
 GT  

c

c class

c

c class








                               (3) 

A comparison between the reference and proposed models is summarized in Table 3. Results 

show that the proposed model can detect ships and floating objects with double the accuracy of the 

reference model, as evidenced by both the IOU and recall scores. 

 
4.2 Object detection performance of the reference model 
 

The reference model trained by the PASCAL VOC dataset was tested, and a sample test image is 

shown in Fig. 9. It was not always possible for this model to detect small ships or ships in the distance, 

which accordingly decreased its recall score. However, in tests using videos, the model was better 

able to detect ships approaching it when they occupied a larger proportion of the frame, thus 

delivering a higher confidence score. For this reason, although the overall performance scores of the 

reference model were relatively lower than those of the proposed one, the reference model is deemed 

acceptable for use in detecting nearby ships. Nevertheless, this universal (general-purpose) reference 

model has two major drawbacks in addition to its performance measurements, and these are as 

follows: first, there is only one class representing floating vessels in the PASCAL VOC dataset, and 

therefore, all types of ships, yachts, boats, and kayaks are classified simply as ‘boat’; and second, 

other types of floating objects, such as buoys, cannot be detected because there is no class that 

represents them. 
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Fig. 9 (Reference model) Ship detection example by the reference model trained using PASCAL 

VOC dataset 

 

 

4.3 Object detection performance of the proposed model 
 

The proposed model can overcome these problems because it was trained using the maritime 

domain-specific dataset and classifies floating objects into ten classes, including ferry, vessel/ship, 

speedboat, and boat. It can also detect buoys and other types of floating objects that the reference 

model cannot. Fig. 10 shows the same sample image as Fig. 9, but with the detection test results of 

the proposed model. The proposed model shows that it is better able to detect small ships and ships 

in the distance than the reference model, which contributes to an increase in the number of ships 

detected and, consequently, a higher performance score. Furthermore, the bounding box prediction 

is more precise, which also contributes to the high IOU score. 

 

 

 

Fig. 10 (Model #3) Ship detection example by the proposed model trained using SMD 
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Table 4 (Model #3) Performance evaluation for each class on validation images 

Class # of Objects Recall Precision AP @IOU ≥ 0.5 

Ferry 12 0.58 0.58 0.5411 

Buoy 9 0.33 0.17 0.2500 

Vessel/Ship 191 0.81 0.71 0.7722 

Speed boat 15 0.33 0.71 0.3222 

Boat 3 1.00 1.00 1.0 

Kayak 4 0.00 0.00 0.0 

Sailboat 3 1.00 1.00 1.0 

Swimming person 0 - - - 

Flying bird 2 0.00 0.00 0.0 

Other 8 0.75 0.30 0.6643 

Weighted Mean   0.73 0.66 0.6979 

 

 

The performance evaluation result of the final proposed model (model #3) was presented as a set 

of recall, precision, and average precision score per class in Table 4. The recall score for each class 

was evaluated according to the Eq. (2); and the precision score for each class was calculated by the 

Eq. (4), where TPc and FPc are the number of true positive and false positive predictions for class c, 

respectively. 

TP
Precision =

TP +FP

c
c

c c

                           (4) 

Average precision or AP for each class is equivalent to the area under the precision-recall curve 

of that class in Fig. 11. Precision-recall curves for some classes are shown in Fig. 12. A predicted 

detection box was considered true positive or TP when its classification was correct, and the IOU 

score with a ground truth box was greater than the IOU threshold, which wais set to 0.5 in this paper. 

AP scores for ‘boat’, ‘kayak’, ‘sailboat’ and ‘flying bird’ classes are obtained by testing over very 

limited numbers of samples (less than 5), and it is difficult to believe that their AP scores are properly 

representing the model’s performance over those classes. For swimming person class, no AP can be 

evaluated at all, as there are no labeled objects in both the training and validation data. 

Excluding those outliers, the AP for the ‘vessel/ship’ class is the highest at 0.77, followed by 

‘other’ with 0.66, ‘ferry’ with 0.54, ‘speed boat’ with 0.32, and ‘buoy’ with 0.25. It can be assumed 

that those AP scores which are significantly lower than that of ‘vessel/ship’ are partially due to the 

severe class imbalance in the training data (see Table 1). The training images have only a few 

numbers (mostly less than 40) of objects for every class but ‘vessel/ship’, which is less than 5% of 

‘vessel/ship’ objects. 

Nevertheless, although the numbers of ‘ferry’ and ‘speed boat’ objects are almost the same in the 

training images, the detection performances on the two classes show a huge difference. Recall and 

AP scores of ‘ferry’ are approximately 70% higher than those of ‘speed boat. 
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Fig. 11 (Model #3) Average precision for each class on validation images 

 

 

      

      

Fig. 12 (Model #3) Precision-recall curve for meaningful classes 
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Only the class imbalance or a small number of training samples cannot explain these significantly 

different performances between those classes. Another possible assumption is the scale of objects in 

the image. Objects belong to the ‘speed boat’ class tend to have smaller scales than the ‘ferry’ class. 

It is mainly because the speed boats in the dataset usually are smaller than ferries in their physical 

size. 

We present additional evaluation results regarding other aspects of the objects, including their 

size. Table 5 shows the recall, precision, and average precision score sets with respect to distance, 

orientation, and physical size categories. The results show that the detection performance for ‘small’ 

objects is much lower than ‘middle’ or ‘large’ objects. Because most of the ‘near’ objects in the 

dataset are very small, they are small-scale objects in the images despite their short distances (See 

Fig. 17). Thus the detection performance for ‘near’ objects is low as well. Fig. 13 shows the average 

precision with respect to distance, orientation, and size of the objects on validation images. And Figs. 

14-16 show the precision-recall curve for each category of the distance, orientation, and size of the 

objects, respectively. 

Some examples of ‘buoy’ provide evidence of the small-scale difficulty issue. As shown in Fig. 

17, detection boxes, especially for small-scale objects, are relatively hard to achieve the IOU score 

above the threshold; thus, they are easy to be misdetected. Although the proposed model can detect 

buoys while the reference model cannot (See Figs. 9 and 10), small-size buoys and other small-scale 

objects still seem to be a pain point of the proposed model. Our detection model is based on YOLO 

v2, one of the single-stage detection algorithms known to have lower performance for small-scale 

objects than two-stage or multi-stage detection algorithms. This issue should be overcome for the 

practical use of the detection model as it is crucial to detect those small and near objects like buoys 

that do not have an AIS transmitter but have a high risk of collision. 

 

 
Table 5 (Model #3) Performance evaluation with respect to distance, orientation, and size of the objects on 

validation images 

Item  Objects Recall Precision AP @IOU ≥ 0.5 

< Distance >         

Far (d > 500 m) 197 0.76 0.68 0.7295 

Middle (250 < d ≤ 500 m) 37 0.68 0.52 0.6489 

Near (d ≤ 250 m) 13 0.46 0.25 0.3333 

< Orientation >         

Front/Rear 56 0.68 0.48 0.6242 

Side 143 0.70 0.61 0.6604 

Oblique 48 0.90 0.88 0.8922 

< Size >         

Large (L > 40 m) 197 0.78 0.70 0.7563 

Middle (10 < L ≤ 40 m) 12 0.92 0.65 0.8281 

Small (L ≤ 10 m) 38 0.42 0.29 0.3387 
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Fig. 13 (Model #3) Average precision with respect to distance, orientation, and size of the objects on 

validation images 

 

 

     

Fig. 14 (Model #3) Precision-recall curve for each distance category 

 

 

     

Fig. 15 (Model #3) Precision-recall curve for each orientation category 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

< Distance >

Far

Middle

Near

< Orientation >

Front / Rear

Side

Oblique

< Size >

Large

Middle

Small

429



 

 

 

 

 

 

Sung-Jun Lee, Myung-Il Roh and Min-Jae Oh 

     

Fig. 16 (Model #3) Precision-recall curve for each size category 

 

 

 

 

Fig. 17 Misdetection examples for the small-scale buoy object. A predicted detection box (red) is not 

overlapped with a GT box (green) enough (IOU < 0.5), the prediction is considered a false positive 

 

 

Possible solutions to this issue can be utilizing advanced detection algorithms which can show higher 

performance for small-scale objects without jeopardizing real-time detection speed, and/or 

collecting more data of small objects for training. 

 

4.4 Processing time for the object detection 
 

Both the reference and proposed models showed similar processing times for object detection 

because they share a similar network structure. The detection process for each model took about 

0.03 s per image using a GPU (NVIDIA GeForce GTX 1080), which is equivalent to approximately 

30 fps. As this is equal to, or greater than, the frame rate of a regular video camera, the proposed 

model can operate real-time. The proposed model was tested using video to verify its detection speed; 

if the detection time is too slow, accidents can occur from the ship’s inability to change direction in 

time. Therefore, real-time detection is an important factor, and from the video tests conducted, as 

shown in Fig. 18, the detection speed is confirmed to be over 30 fps. 
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Fig. 18 (Model #3) Ship detection using video samples with 30 fps 

 

 

4.5 Object detection under low visibility 
 

The proposed model was tested to detect marine images during low visibility under severe 

weather or night-time conditions. Sample images were randomly prepared by web crawling, but 

object labeling was not performed for those images. This task is not intended to be an accurate 

assessment, but to visually demonstrate an approximate level of robustness for images that are much 

less similarity to the training images from the Singapore Maritime Dataset. Fig. 19 shows detection 

results for the sample images under the rain, fog, and darkness. All the detections were performed 

without preprocessing of images. The proposed model can recognize objects from unclear or obscure 

images. 

 

 

5. Conclusions 
 

We applied YOLO v2, one of the state-of-the-art CNN-based object detection algorithms, to ship 

detection and classification problems. The reference model was trained using the universal PASCAL 

VOC dataset, and it provided a moderately acceptable performance when detecting ships in the  
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Fig. 19 (Model #3) Ship detection test under low visibility: rain (top), fog (middle), and night (bottom) 

conditions 

 

 

maritime field. The proposed models in this study were newly trained using the maritime domain-

specific Singapore Maritime Dataset. The recall and IOU scores of Model #3 were almost double 

those of the reference model when detecting ships from validation images of SMD. Models #1 and 

#2 showed lower recall and IOU scores than model #3, but higher scores than the reference. This 

analysis indicates that the CNN structure with a passthrough layer provides better performance and 

less overfitting pattern. Transfer learning can help prevent overfitting and provide a higher detection 

rate, particularly when there is an inadequate number of trained images. Although the number of 

training images used was considerably less than the case of the reference model, it was evident that 

the domain-specific model can be successfully trained and utilized using the dataset. 

We conducted a more detailed performance evaluation on Model #3. The recall, precision, and 

average precision scores were obtained with respect to class, distance, orientation, and size of the 

object. We found that the main drawback of the proposed model is its relatively low performance 

for the small-scale objects. Since they tend to be objects with a high risk of collision, this weakness 

must be overcome to use the model in practice. 

All the detection processes operated on a GPU were faster than a real-time phase. Unlike the 

previous work by Lee et al. (2016) and Zhang et al. (2016), the proposed algorithm does not need a 

separate image preprocessing stage. Furthermore, the proposed model shows the ability to detect 

432



 

 

 

 

 

 

Image-based ship detection using deep learning 

objects under low visibility conditions such as rain, fog, and at night. Not only can the CNN-based 

object detection method achieve higher performance and faster speed, but the model is more robust 

and scalable than any other existing machine learning algorithms. As a result, the object detection 

mechanism based on the proposed CNN model is considered to be practical and feasible for the safe 

operation of the ship, provided that the performance for the small-scale objects is improved. 

This study did not consider video frame information in detection. Therefore, the object detection 

method could be further studied using frame information to enhance detection accuracy. The method 

can also be extended to object tracking, which is important when calculating the risk of collision 

and determining a safe route. 
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