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Abstract. A time domain finite element based method is employed to analyze wave radiation by
multiple cylinders. The nonlinear free surface and body surface boundary conditions are satisfied based on
the perturbation method up to the second order. The first- and second-order velocity potential problems at
each time step are solved through a finite element method (FEM). The matrix equation of the FEM is
solved through an iteration and the initial solution is obtained from the result at the previous time step.
The three-dimensional (3D) mesh required is generated based on a two-dimensional (2D) hybrid mesh on
a horizontal plane and its extension in the vertical direction. The hybrid mesh is generated by combining
an unstructured grid away from cylinders and two structured grids near the cylinder and the artificial
boundary, respectively. The fluid velocity on the free surface and the cylinder surface are calculated by
using a differential method. Results for various configurations including two-cylinder and four-cylinder
cases are provided to show the mutual influence due to cylinders on the first and second waves and
forces.

Keywords: second order wave radiation; time domain; multiple cylinders; finite element method; unstruc-
tured mesh.

1. Introduction

With the development of oil exploration and production in deep water, the design of offshore structures

such as tension leg platforms (TLPs), semi-submersibles and drilling ships become interesting topics and

has been studied for many years. In ocean environment, these structures are subjected to the actions of

waves, winds and currents, which may produce nonlinear hydrodynamic forces on the structures and the

corresponding nonlinear motions such as ringing or springing, slow drift and mean motions. Especially,

these nonlinear loads and motions will be significant in severe environment. 

The tension leg platform is the most common offshore structure suiting for deep-water operation.

It mainly consists of a few columns and tendons for constraining the motion of the platform, and so

a study on the intersection of waves and the structure with multiple bodies is very important. The

perturbation method is a powerful tool to predict hydrodynamic forces and motions for offshore

structures. There are lot of publications for wave-body interactions based on the perturbation

method since the works of Lighthill (1979) and Molin (1979). The second order wave diffraction by

multiple bodies can be found from those by Chau and Eatock Taylor (1992), Malenica, Eatock
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Taylor and Huang (1999) in the frequency domain and  Wang and Wu (2007) in the time domain.

However, to the best knowledge of the authors, most of previous works are about the diffraction

problems even for a single-body structure in three-dimension. Some works on second-order wave

radiation problems may be found such as the oscillation of a single truncated cylinder by Li (1995)

and Goren (1996) in the frequency domain and by Isaacson, Ng and Cheung (1993) in the time

domain. Recently, Wang, Wu and Drake (2007) and Bai and Eatock Taylor (2009) simulated single

non-wall-sided cylinders in forced motions based on the fully nonlinear wave potential theory.

Simulations based on the fully nonlinear wave potential theory is good in describing large waves or

motions in large amplitudes but need much more computer resources than the perturbation method. 

The wave radiation by multi-body has many applications in ship and ocean engineering such as

TLPs, semi-submersibles, floating airports and some special ships such as catamaran and SWATH

(small waterplane area twin hull ship) that have two hulls and the interference may be important

when advancing in waves. In addition, two or more vessels in sufficient proximity may have

significant interactions. The earliest work on the radiation problem of multi-body is that by Ohkusu

(1969) about heaving motions of two circular cylinders on free surface in two-dimension. Williams

and Abul-Azm (1989) simulated wave radiation by a group of truncated cylinders, in which one

cylinder underwent forced motions but others were fixed. They found the added mass and the

damping coefficient of the cylinder are very different from that of a single isolated cylinder. Both

these two works are based on the linear theory. 

In the present paper, we study the second order wave radiation problems of multiple truncated

cylinders in the time domain. The linear and second order waves and hydrodynamic forces are

obtained by the finite element method and the interference  between cylinders is investigated

through changing the wave frequency and the spacing between cylinders.

2. Mathematical formulation 

We consider the second order wave radiation problem by a group or an array of cylinders. As

shown in Fig. 1, a right-handed Cartesian coordinate system oxyz is defined, in which x and y are

measured horizontally and z points vertically upwards form the still water level. The i-th cylinder

surface is denoted by Sib (i =1 , 2,…, n, where n is the cylinder number) and its unit normal vector

directed outward from the fluid region is denoted by . The seabed is assumed

horizontal along the plane z = −h.  Let t denote time and η be the elevation of the free surface Sf

relative to the still water level. When the fluid is assumed incompressible and inviscid, and the flow

irrotational, the fluid motion can be described by a velocity potential φ which satisfies the Laplace

equation within the fluid domain ∀

    in ∀ (1)

and is subject to the following boundary conditions

    on Sf (2)

 on Sf (3)
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    on Sib (4)      

    on z = − h (5)

where g is the acceleration due to gravity,   is the  translational oscillatory velocity of the i-th

cylinder and  is the rotational velocity about a point on the i-th cylinder, which may be chosen

as the  mass centre of the body and  is the position vector from a point on the i-th body surface

to the mass centre. In addition, the potential satisfies the radiation condition which is imposed

through a suitable numerical procedure applied on a control surface Sc located at some distance

away from the body as shown in Fig. 1. 

One of the major difficulties in solving above-mentioned fully nonlinear free surface potential

flow problems is the treatment of the free surface boundary conditions (2) and (3), which are both

nonlinear and defined on the free surface which is not known prior to solving the problem. Here we

will consider the problem to the second order. The second order approach for predicting floating

structures has been given by Ogilvie (1983) in the frequency domain and then used by Isaacson, Ng

and Cheung (1993) in the time domain.

Besides the coordinate system oxyz shown in Fig. 1, we define another coordinate system ,

which is fixed on the i-th body and the origin  is located at the mass centre of the body

. The coordinates in systems oxyz and  are denoted as  and

 respectively. The unit normal vector of the mean body surface  directed outward

from the fluid region is denoted by . The motion of the i-th rigid body can be

described in terms of a translational motion vector  along the axis x, y and z and a

rotational motion vector  around the mass centre. The displacement vector of a

point on the i-th body surface is denoted by  and it can be expressed as 

(6)

∂φ
∂Ni

-------- Ni Vi Ωi ri×+( )⋅=
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------- 0=

Vi
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Ξi x xig– xi–=

Fig. 1 A sketch of the problem
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With the assumptions that the wave amplitude is small compared to the wavelength and the body

motion is small compared to a principal body dimension, it is possible to apply Taylor series

expansions to transform the free surface and body surface conditions, originally defined on the

instantaneous surfaces, to conditions evaluated at the corresponding mean positions (Isaacson et al.

1993)

    on (7)

   on (8)

on (9)

where  is the still water surface, , where the over-dot indicates the time

derivative. The boundary conditions may now be applied on  and other mean boundaries.

Using the Stokes expansion procedure, quantities at first and second order are separated by

introducing perturbation series for φ, η,  and 

(10)

(11)

(12)

(13)

where ε is a perturbation parameter related to the wave slope which is small, and the superscripts

(1) and (2) indicate respectively components at the first- and second-order. With assuming the

motion to be harmonic and specified,  and  may be considered to first order only, so that

(14)

(15)

which means and . For convenience, the superscript

(1) will be omitted, so and  can be denoted by  and

 respectively. 

Since we consider only small amplitude motions, the displacement  can be expressed using the

translational motion  and the rotational motion  by the following equation

(16)
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Eq. (16) is valid up to second order. Similar to Eq. (16), the unit normal vector  is given by 

(17)

By a time differentiation of Eq. (16), we obtain the velocity on the body surface 

(18)

Upon substituting the Stokes perturbation expansions of φ, η and  into the Laplace equation

and the boundary conditions and collecting terms of equal order, it yields the corresponding

boundary-value problems for ε and ε2 terms in the power series expansions, and so the boundary

value problem at each order is now linear. In the k-th order wave radiation problem (with k = 1, 2 in

turn), the potential satisfies the Laplace equation in the fluid domain ∀(0)

    in ∀(0) (19)

and is subject to the boundary conditions applied on the still water surface, the mean body surface

and the seabed, given respectively as

    on   (20)

    on (21)

    on (22)

     on z = −h    (23)

where ∀
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For the first order solution, the problem corresponds to the linear wave radiation problem; for the

second order solution, the boundary problem is inhomogeneous and ,  and  represent

quadratic forcings of the corresponding free surface and body surface conditions which can be

determined from the first order solution.

The hydrodynamic forces on the i-th body can be obtained by carrying out a direct integration of

the pressure over the instantaneous wetted body surface Sib. The pressure in the fluid can be

determined by the Bernoulli equation an can be written as

(24)

The hydrodynamic force acting on body can be expressed as

(25)

where  is the vector from the point on the body surface to the mass centre. For the

second order problem, the integration over the exact wetted body surface may be expressed as the

sum of the integration over the mean wetted body surface and the correction integral defined at the

still waterline WL.  The hydrodynamic force contains three components

(26)

where ,  and  are the first order oscillatory force at the excitation frequency, the second

order oscillatory force at twice the excitation frequency and the second order mean force,

respectively, on i-th body.  and  may be finally expressed as (Isaacson et al. 1993)
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(28)

where Aiw  is the mean waterplane area for i-th body, (xif, yif) is the centre of floatation  in the

system oxyz when the i-th body is at rest, WL denotes the waterline.  is

thr

t
he relative wave height at the waterline for i-th body and . The mean force 

may be obtained by time averaging the part due to the first order potential in Eq. (28) over one

period 

(29)

The corresponding moment components ,  and  may be obtained in the similar way

and can be found in Isaacson, Ng and Cheung (1993),

3. Finite element discretization and numerical procedures 

3.1 Finite element discretization

We use the finite element method here. A 2D mesh generator called BAMG (Hecht 1998) is used

to generate the unstructured 2D grid (Fig. 2) on the plane first. It is then extended along the vertical

direction to form the 3D mesh with prismatic elements, as shown in Fig. 3 for four truncated

cylinders. The mesh on each cylinder is shown in Fig. 4. 

The disturbance due the water waves usually decay very rapidly along the depth. It will therefore

be more rational to use smaller elements near the free surface and larger elements near the bottom.

Truncated cylinders are only considered here. We first divide the height between the free surface

and the cylinder bottom into m1 intervals using the following equation (Chung 2002)

(30)

where zi is the vertical coordinate of the element node at layer i and m is the number of layers.
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surface and the cylinder bottom, and a larger β will have the elements to distribute more uniformly

along the depth. d is the draught of the cylinder and α is another constant. Eq. (32) can make the

nodes and elements cluster at both the free surface and the cylinder bottom. We then divide the

height between the cylinder bottom and the tank bottom into m2 layers using the following equation

(Chung 2002)

(31)

In the present paper, β  is taken as 1.05 in both Eqs. (30) and  (31).

Once the mesh is generated, the potentials  can be expressed in terms of the

shape function  

(32)

where  are the potentials at node J and  n is the number of nodes. Based on the Galerkin

method, we have
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Fig. 2 Mesh for four circles on the still water surface 

Fig. 3 A 3D mesh for four truncated cylinders Fig. 4 Mesh on a truncated cylinder surface
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(33)

Using Green’s identity and the boundary conditions, we can obtain the following matrix equations

(34) 

where 

Sp in above equations represents the Dirichlet boundary on which the potentials, denoted by

(k = 1,2), are known, and Sn represents the Neumann boundary on which the normal derivatives

of the potentials, denoted by  (k = 1,2), are known. The matrix equations are then solved

through an iteration based on the conjugate gradient method with a symmetric successive over

relaxation (SSOR) preconditioner. 

3.2 The evaluation of first- and second-order derivatives on the free surface and body surface

After the potential is found, its first and second order derivatives on element nodes are required to

update η(k) and φ(k) through Eqs. (20) and (21). The derivatives in theory can be obtained through

the differentiation of the shape function. The accuracy is, however, usually not sufficient when the

order of the shape function is low and the result becomes zero when the order of the derivative is

higher than that of the shape function. Here we employ a cubic polynomial to express the velocity

potential along straight mesh line in the vertical direction
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where zi = (i = 1, 2, 3, 4) are four successive nodes along the vertical direction, and 

are the first- or second-order velocity potentials at . The vertical velocity is obtained

using Eq. (38).  After the vertical velocity is obtained by Eq. (36), the following equation is used to

obtain the horizontal components  and 

(38)

where , and  are the components of (m=1,2,…), a vector formed

by nodes i+m and i. A weighted average was then used to obtain the final velocity. This method

requires the node on the free surface and three nodes immediately below the free surface to be on

the same vertical line. The method is found to be accurate but it is suitable only for wall-sided

cylindrical structures. 

In the first- and second-order body surface condition Eq. (22), some derivatives such as

and , are

necessary. We can use the differential method to obtain these derivatives through interpolation. However,

it may cause the result to be inaccuracy. Thus, we use a hybrid mesh on the free surface, in which a

structured mesh in a torus shaped region is used near each cylinder as shown in shadow in Fig. 5.

The structured mesh is obtained through discretized the torus by dividing it into some segments in

tangential direction τ uniformly, which is clockwise and four segments in normal direction n

directed toward the cylinder. 

On the bottom of each cylinder, calculation of all first- and second-order derivatives is the same
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Fig. 5 The hybrid mesh on the free surface with a structured mesh near each cylinder
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On the wall of the cylinder, the first- and second-order derivatives  and  along the

normal direction n can be calculated through Eq. (36) by replacing z with the circle radius.

Similarly, the tangential derivatives and  may be obtained along the tangential

direction τ. The derivative  can be calculated by differencing  along the tangential

direction after obtaining . All derivatives of potential with respect to x, y & z can be

obtained through the following equations

(39)

(40)

(41)

(42)

(43)

3.3 Update potential and wave elevation on free surface

The fourth order Adams-Bashforth scheme is used to advance the simulation through time

stepping method

(44)

where f(t) represents either the velocity potential or wave elevation on the free surface. This scheme

provides a high order accuracy and is particularly suited for the solution based on the perturbation

procedure. As the mesh is fixed and no remeshing is applied throughout the simulation, the

information including wave elevation, potential and velocity at previous time steps can be stored

easily. 

3.4  Absorbing boundary conditions

For long time simulations, an appropriate radiation condition should be imposed on the boundary

Sc to minimize the wave reflection. Here we use a combination of Sommerfeld-Orlanski condition

and a damping zone. The Sommerfeld-Orlanski condition used is based on that in Issacson and

Cheung (1993). In order to use this condition, we used a structured mesh near the boundary Sc (see

Fig. 6), the potential and velocity on the node of the structured mesh can be calculated directly.

Otherwise, interpolation is necessary and it may cause accuracy to be lost. The damping zone

adopted is similar to that used by Nakos et al. (1993) for the linear problem. We rewrite Eq. (20) as  
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(45)

where ν is the damping coefficient given by

(46)

r in Eq. (46) is the distance for the point under consideration to the centre of the nearest cylinder.

For the single body shown in Fig. 7, damping zone starts from the edge of an inner rectangle

 and ends at outer rectangle . Cs in the equation is a constant to

control the strength of the damping coefficient and is chosen to be 1.0 in this study, and the width

of the damping zone Ldm (see Fig. 7) is set to be one wavelength for short waves and eight times

the radius of the cylinder for long waves.

4. Numerical results 

In the numerical simulation, a modulation function M(t) is applied in body surface boundary

condition (22) in order to let the wave develop gradually (Isaacson et al. 1993)

(47)

where

and  is the wave period. The use of the modulation function helps the wave to reach the
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Fig. 6 An structured mesh near the control surface Sc
Fig. 7 Damping zone on the free surface
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periodic state more smoothly and quickly. 

4.1 Single cylinder case

We first consider a single truncated cylinder in vertical motions.  The water depth is h = a, where

a is the radius of the cross section of each cylinder and the height of the cylinder is d=h/2. The

cylinder is subject to the following harmonic motion in the vertical direction

(48)

where A and ω is the oscillatory amplitude and frequency of the motion, respectively. In the

simulation, A=0.1a. This case has been studied by Li (1995) and Goren (1996) in the frequency

domain.

We consider a case with a nondimensional wavenumber k0a=1.0 (k0 is wavenumber in finite water

depth and . In the vertical direction, the height of elements near the free surface

and the bottom should be small enough and this may be achieved by Eq. (32), by which we divide

the height of the cylinder into 12 layers. Similarly, the height between the cylinder bottom and sea

bottom is divided 10 layers according to Eq. (33).  There are 40 segments along the cross section of

each cylinder. On the free surface, both length and width of the domain are 40a and there is 128

intervals along both directions of length and width, which corresponds to 16532 nodes and 32560

triangular elements. In the simulation, the modulation function will be used. The time interval is T/

200 (T = 2π/ω). The corresponding history of vertical force is shown in Fig. 8. The force

nonlinearity is very clear.

The amplitude of the first order force versus the nondimensional wavenumber k0a is shown in

Fig. 9. It is seen that the present numerical results are in very good agreement with those by Li

(1995) and Goren (1996) in the frequency domain. The amplitudes of the two second order force

components F(21) and F(22) corresponding to the contributions from the first- and second-order

potentials, respectively, are given in Fig. 10. Generally, F(21) is smaller than those by Li (1995) and

Goren (1996) and F(22)  is between them. The total second order force F(2) and the mean force

are given in Fig. 11. It is shown that F(2)  is in very good agreement with Goren’s (1996) result,

and the mean forces obtained by the three methods are nearly identical, which confirms that the

present numerical method is efficient and accurate.

Z Asinωt=

ω k0gtanh k0h( )=

F
2( )

Fig. 8 histories of vertical forces at k0a = 1.0
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4.2 Two-cylinder case

We next consider wave radiation by two identical cylinders in vertical motions given by Eq. (48).

The dimension of each cylinder is the same as the above single cylinder. The spacing between the

two cylinders is Lcy = 4a. The centre of section of each cylinder is on y = 0, and cylinder 1 & 2 are

located at (−2a,0) and (2a,0), respectively. We consider cylinder 1 only because of symmetry. The

nondimensional wavenumber is k0a = 1.0 and water depth h = a. The second order wave on the left

and right sides of cylinder 1 are given in Fig. 12.  It is seen that the development of the waves is

very good and in stable periodic state within 20 cycles. The linear and linear plus second order

waves are shown in Fig. 13 and the nonlinear feature can be clearly seen. A comparison of the

linear and second order waves between this two-cylinder case and a single isolated cylinder case by

removing cylinder 2 is shown in Fig. 14. It is seen that both linear and second order waves at the

right side in the two cases are different in phase and amplitude. The waves at the left side are

slightly different for linear wave but almost identical for the second order. The comparison of linear

and second order forces in the vertical direction is given in Fig. 15. It seems that the difference

between the two cases is very small. Fig. 16 shows the history of the hydrodynamic force. It is seen

Fig. 9 First order force versus k0a

Fig. 10 Second order force components versus k0a Fig. 11 Toal second order force and mean force versus k0a
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Fig. 12 Histories of second order waves at the (a) left and (b) right sides of cyilnder 1 at k0a = 1.0

Fig. 13 Histories of waves at the (a) left and (b) right sides of cyilnder 1 at k0a = 1.0 ········· linear; -------
linear plus second order

Fig. 14 Comparisons of linear and second order waves at the (a), (b) left and (c), (d) right sides of cyilnder 1
at k0a = 1.0          two-cylinder case; ·········single isolated cylinder case
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Fig. 15 Comparisons of linear and second order forces at k0a = 1.0 ------- two-cylinder case; ········· single
isolated cylinder case

Fig. 16 Histories of hydrodynamic force on cylinder 1 at k0a = 1.0 ········· linear; ········· linear plus second
order

Fig. 17 Linear and second order waves for clinder 1 versus spacing between both cylinders at k0a = 1.0;
········· left side ·········  right side
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that the nonlinearity is clear for the component in z-direction. 

The difference at different frequencies is clearly seen.  Fig. 17 shows that first and second order

waves for cylinder 1 vary with the spacing between both cylinders. It is seen that both first and

second order waves at the left side change slowly with the spacing but those at the right side are

more affected by the spacing. The maximum wave amplitude at the right side is much larger than

that at the left side for both linear and second order waves. The corresponding force versus k0a is

given in Fig. 18. Generally, the effect of spacing on vertical force and its components is smaller. In

the horizontal direction, the spacing has an important influence on the second order force  and

the component due to the second order potential , and the influence on the second order mean

force  is also clear. Fig. 19 shows the snapshot of the wave profile around the cylinders at t/

T=19. The nonlinear feature of the wave can be observed from the figure.  

Fx

2( )

Fx

22( )

Fx
2( )

Fig. 18 Linear and second forces on cylinder 1versus spacing between both cylinders at k0a = 1.0

Fig. 19 Wave profiles at t/T = 19 (k0a = 1.0 and Lcy = 5a) in vertical motions (a) linear and (b) linear plus
second order
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Simulations are also made for two cylinders in swaying motions, and the detailed results will be

presented in the conference. 

4.3 Four-cylinder case

Finally, we discuss some four-cylinder cases.  The water depth h = 3a and the cylinder height

d = h/2. All cylinders are in identically vertical motions described by Eq. (48). The configuration is

symmetric about both x- and y-axes and cylinders 1 & 2 are located (−2a, −2a) & (2a, −2a),

respectively. The nondimensional wavenumber is k0a=1 and the oscillational amplitude A=0.1a.

Firstly, a case of vertical motions is simulated. The waves on the left and right sides of cylinder 1

are given in Fig. 20. It seems that the wave nonlinear feature is weak. The hydrodynamic force is,

however, has stronger nonlinearity for components in both x- and z-direction as shown in Fig. 21.

Fig. 22 shows a snapshot of wave profiles at t/T=19. The case of all four cylinders in identical

horizontal motions (48) is also considered and Fig. 23 shows f wave profiles at t/T=19 and it is seen

that the effect of the second order wave is important .

Fig. 20 Histories of waves at the (a) left and (b) right sides of cyilnder 1 at k0a = 1.0 ········· linear; ·········
linear plus second order

Fig. 21 Histories of hydrodynamic force on cylinder 1 at k0a = 1.0 ········· linear; ········· linear plus second
order
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5. Conclusions

A finite element based numerical method has been employed to study second order wave

radiation by multiple truncated cylinders in open seas. The 3D mesh is obtained through an

extension of a 2D hybrid mesh linked by a Delaunay unstructured grid and two structured grids

near the cylinder and the truncated artificial boundary, respectively. The finite element method was

employed to calculate the velocity potential in the fluid domain and the differential method is used

to calculate the velocity on the free surface and body surface. 

A truncated vertical cylinder undergoing forced sinusoidal oscillations was first selected to

validate the present numerical method, the time histories of wave elevation and hydrodynamic

forces at first and second order on the cylinder are calculated and the result of first and second

order forces have been compared with previous studies and good agreement have been achieved.  

Two-cylinder cases are then studied. Steady state solutions are achieved over a long duration in

terms of the first and second order waves. The amplitudes of first and second forces vary with the

spacing between both cylinder are discussed and comparisons are made with those in single isolated

cylinder cases. Results show that both first and second order waves in the region between cylinders

may be more affected by the interference. For the horizontal force, the total second order force 

and the component  may change quickly with the spacing. The vertical force and its

components are, however, are generally slightly affected by the spacing. 

A four-cylinder case is also been investigated and more work is needed for further study, which

includes more analyses of the effect of oscillational frequency  and cylinder spacing on the first and

second order waves and forces, and more simulations of wave radiation by larger arrays of cylinders

are also under consideration. 

Fx

2( )

Fx

22( )

Fig. 22 Wave profiles at t/T = 19 in vertical motion (a) linear and (b) linear plus second order

Fig. 23 Wave profiles at t/T = 19 in horizontal motion (a) linear and (b) linear plus second order
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