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1. Introduction 
 

Nanoporous filtration membranes have been evolved 

lately especially in manufacturing because of its application 

value in ultra filtration (Ariono et al. 2018, Baker and Bird 

2008, Bottino et al. 2011, Brown et al. 1975, El-ghzizel et 

al. 2019, Elizabeth et al. 2012, Fissel et al. 2009, Jackson 

and Hillmyer 2010, Jin et al. 2019, Sanjay et al. 2021, 

Sofos 2021, Stavrogiannis et al. 2022, Surwade et al. 2015). 

There have been plentiful experimental researches on the 

fluid flow in nanopores (Gruener et al. 2016, Harrell et al. 

2006, Holt et al. 2006, Huang et al. 2015, Itoh et al. 2022, 

Koklu et al. 2017, Majumder et al. 2005, Nair et al. 2012, 

Radha et al. 2016, Secchi et al. 2016, Wu et al. 2019). 

Molecular dynamics simulation (MDS) can be regarded as a 

computer experiment and it was often used in the modeling 

of fluid flow in nanopores (Ho et al. 2011, Jiang and Zhang 

2022, Kannam et al. 2013, Wagemann et al. 2019, Walther 

et al. 2013, Wang et al. 2012). 

Some particular phenomena were found by MDS in 

nanopore flows such as the rheology evolution, the fluid 

slippage and the sticking layer (Calabrò et al. 2013, Liu and 

Li 2011, Mattia and Calabro 2012, Meyer et al. 1998, 

Myers 2011, Shaat 2017, Sofos et al. 2015, Thomas and 

McGaughey 2008, 2009). However, such flows are not yet 

fully understood.  

One of the most obvious facts is the existence of the 

molecule layers physically adsorbed to the solid nanopore 
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wall (Brown et al. 1975, Grosse-Rhode and Findenegg 

1978, Koklu et al. 2017, Liu and Li 2011, Sofos et al. 

2015). When the diameter of the nanopore is critically 

small, there is only the adsorbed layer inside the nanopore, 

and the nanopore flow is thus essentially non-continuum 

(Zhang 2006, 2016). However, when the nanopore size is 

not very small so that both the adsorbed layer flow and the 

intermediate continuum fluid flow occur inside the pore, the 

nanopore flow is actually multiscale and it is also the 

popular flow mode in nanoporous filtration membrane 

(Adiga et al. 2009, Jiang et al. 2020, Wang and Zhang 

2022). Inside the hydrophilic silica nanopore, it was found 

that the water flow rate can be very significantly reduced 

due to the formation of the sticking boundary layer on the 

pore wall (Koklu et al. 2017). However, inside the 

hydrophobic nanopore such as the carbon nanotube, the 

water flow rate was found to be several orders higher than 

that calculated from the Hagen-Poiseuille equation (Holt et 

al. 2006, Majumder et al. 2005, Mattia and Calabro 2012, 

Whitby and Quirke 2007). This unexpected phenomenon 

was attributed to the interfacial slippage (Holt et al. 2006, 

Majumder et al. 2005, Mattia and Calabro 2012, Whitby 

and Quirke 2007). In the hydrophilic nanopore flow, the 

interfacial slippage was also detected (Tran-Duc et al. 

2019). Nevertheless, it is not very clear whether the 

slippage occurs on the adsorbed layer-pore wall interface or 

on the adsorbed layer-continuum fluid interface. According 

to the limiting shear strength model (Zhang 2014), when the 

pore wall is hydrophobic so that the shear strength of the 

adsorbed layer-pore wall interface is far lower than that of 

the adsorbed layer-continuum fluid interface, the slippage 

should occur on the adsorbed layer-pore wall interface; 
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however for the hydrophilic pore wall, due to the entropy 

discontinuity, it was regarded that the shear strength of the 

adsorbed layer-continuum fluid interface would be 

remarkably lower than that of the adsorbed layer-pore wall 

interface, and the slippage would occur on the adsorbed 

layer-continuum fluid interface (Rozeanu and Tipei 1980), 

nevertheless this was only a physical speculation and lacked 

quantitative analysis. Currently, it is still not very sure that 

where the slippage occurs in a real nanopore flow and on 

which interface the slippage will be most beneficial to the 

flux of a nanoporous membrane. 

In this paper, from the multiscale flow analysis, we 

quantitatively explore on which interface the slippage 

occurs in the nanopore flow in nanoporous filtration 

membranes, by calculating the critical power losses on the 

nanopore respectively for the slippage occurring on the 

adsorbed layer-pore wall interface and on the adsorbed 

layer-continuum fluid interface. Then, the total volume flow 

rates through the nanopore are compared when the slippage 

occurs respectively on these two interfaces. The advantage 

of the slippage on which interface is thus clearly shown. 

The present study is theoretically fresh and important for us 

to understand in detail the slippage mechanism in the 

nanopore filtration (e.g. the slippage does not necessarily 

occur on the adsorbed layer-continuum fluid interface but 

may instead occur on the adsorbed layer-pore wall interface 

in a hydrophilic nanopore). It can guide the design of the 

best slippage for efficiently improving the flux through the 

nanoporous membrane. 

 

 

2. Multiscale flow in the nanopore 
 

When the nanopore is not so small that both the 

adsorbed molecule layers and the continuum fluid coexist 

inside the pore, the nanopore flow should generally be 

treated as the multiscale flow although the adsorbed layer 

might be solidified. Fig. 1 shows the circumstance inside 

this nanopore. There may be several molecule layers in the 

adsorbed layer which can be equivalently treated as Fig. 1 

shows, due to the fluid-pore wall interaction. The adsorbed 

layer flow is non-continuum, influenced by the evolution of 

the rheological property within the layer and the slippage 

occurring on the adsorbed layer-pore wall interface or on 

the adsorbed layer-continuum fluid interface. When the 

pore radius (𝑅0 + ℎ𝑏𝑓) is about one hundred times larger 

than the thickness (ℎ𝑏𝑓) of the adsorbed layer, the adsorbed 

layer flow is negligible and the flow in the whole pore can 

be treated as continuum (Lin et al. 2022). When 1 < (𝑅0 +
ℎ𝑏𝑓)/ℎ𝑏𝑓 < 100, the adsorbed layer flow should generally 

be considered, and it would considerably contribute to the 

total flow rate through the nanopore. 

 

 

3. Multiscale analysis 

 
Classical multiscale approaches model the adsorbed 

layer flow by full molecular dynamics simulation and 

model the intermediate continuum fluid flow by the 

continuum fluid model (Atkas and Aluru 2002, Yen et al. 

2007). This approach is difficult to apply for the pore in 

Fig. 1 where its dimensions are impractical to simulate, 

since it would demand high computational time and 

memory. For solving this problem, Zhang has derived the 

closed-form explicit flow equations respectively for the 

adsorbed layer flow and the intermediate continuum fluid 

flow in the nanopore in Fig. 1 when the interfacial slippage 

is respectively absent, occurs on the adsorbed layer-pore 

wall interface, or occurs on the adsorbed layer-continuum 

fluid interface, by equivalently treating the adsorbed layer 

as Fig. 1 shows. In the present study, we just borrow his 

analytical results.  

The interfacial slippage was interpreted as the result of 

the interfacial shear stress exceeding the interfacial shear 

strength (Zhang 2014). This limiting shear strength model 

for the interfacial slippage is different from the slip length 

model (Gennes de 2002, Vinogradova 1995), where the slip 

length is actually a fictitious parameter (Zhang 2014). The 

limiting shear strength model is believed to be physically 

more rational and applicable for much wider engineering 

cases than the constant slip length model (Zhang 2014). In 

some circumstances they are reconciled, but in most 

engineering flows the slip length is not constant and the 

interfacial limiting shear strength model is much more 

accurate than the constant slip length model (Zhang 2014).  

The present study uses the interfacial limiting shear 

strength model to characterize the interfacial slippage. 

According to this model, the shear stress on the interface is 

expressed as: 

𝜏 = {
𝜂𝛾, for |𝜏| < 𝜏𝑠

sign(𝛾)𝜏𝑠, for |𝜏| ≥ 𝜏𝑠
 (1) 

where 𝜏𝑠 is the shear strength of the interface, that is the 

maximum endurable shear stress of the interface, and 𝜂 

and 𝛾 are respectively the effective viscosity and the shear 

strain rate of the fluid on the interface. Eq. (1) interprets 

that when the magnitude of the interfacial shear stress (𝜏) is 

smaller than the interfacial shear strength (𝜏𝑠), the velocity 

boundary condition should be applied, the flow velocity on 

the interface should follow the continuity condition, and the 

fluid shear stress on the interface should be calculated 

according to the fluid rheological behavior; however, it 

interprets that when the magnitude of 𝜏 is greater than that 

of 𝜏𝑠, the shear stress boundary condition should be applied 

on the interface, and the magnitude of the fluid shear stress 

on the interface should be equal to the interfacial shear 

strength. When the shear stress boundary condition is 

applied on the interface, the velocity on the interface is not 

continuous, and the velocity difference on the interface is 

the interfacial slipping velocity. This well explains the 

interfacial slippage from both physics and mathematics. For 

more understanding, people can refer to the reference by 

Zhang (2014), where the interfacial slipping velocities have 

been derived for some specific engineering flow problems 

based on the interfacial limiting shear strength model.   

The present interfacial slippage model physically 

follows the observation that the interfacial slippage more 

easily occurs on the hydrophobic surface than on the 

hydrophilic surface due to the weak and strong fluid-solid 

surface interactions on these surfaces respectively. The 
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following assumptions are also used: (a) The intermediate 

continuum fluid is Newtonian; (b) The pressure across the 

pore radius is constant; (c) The influences of the fluid 

pressure on the fluid density and viscosity are negligible; 

(d) The flow is isothermal. 

 

3.1 Critical power loss on the pore for starting the 
interfacial slippage 

 

The dimensionless critical power loss on the whole pore 

(with the axial length 𝑙) in Fig. 1 for starting the slippage 

which occurs on the adsorbed layer-pore wall interface is: 

𝐾𝑐𝑟,𝑏𝑓−𝑤 = [
1

2𝜆𝑏𝑓 (1 +
𝐷(𝑛 − 1)

𝑅0
)

]2 

{2𝜋
𝑅𝑒

𝑅0
{

4𝜀𝜆𝑏𝑓
3

𝐶𝑦 (1 +
𝛥𝑥
𝐷

)
[1 +

1

2𝜆𝑏𝑓
−

𝛥𝑛−2(𝑞0 − 𝑞0
𝑛)

ℎ𝑏𝑓(𝑞0
𝑛−1 − 𝑞0

𝑛)
] 

−
2𝐹1𝜆𝑏𝑓

3

3𝐶𝑦
} +

𝜋

4
−

4𝜋

𝐶𝑦
{
𝐹2𝜆𝑏𝑓

2

6
−

𝜆𝑏𝑓

1 +
𝛥𝑥
𝐷

[
1

2
+ 𝜆𝑏𝑓 

−
𝛥𝑛−2(𝑞0 − 𝑞0

𝑛)

2𝑅0(𝑞0
𝑛−1 − 𝑞0

𝑛)
]}} 

(2) 

where 𝐾𝑐𝑟,𝑏𝑓−𝑤 = 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑤𝜂/(𝜏𝑠,𝑏𝑓−𝑤
2 ℎ𝑏𝑓

2 𝑙) , 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑤 

is the dimensional critical power loss on the whole pore for 

starting the slippage, 𝜂 is the fluid bulk viscosity, 𝑙 is the 

axial length of the pore, 𝜏𝑠,𝑏𝑓−𝑤 is the shear strength of the 

interface between the adsorbed layer and the pore wall, ℎ𝑏𝑓 

is the thickness of the adsorbed layer, 𝜆𝑏𝑓 = ℎ𝑏𝑓/(2𝑅0), 

𝑅0 is the radius of the circle covered by the continuum 

fluid as shown in Fig. 1, D is the fluid molecule diameter, n 

is the equivalent number of the fluid molecules across the 

adsorbed layer thickness, 𝑅𝑒  is the equivalent constant 

radius and often 𝑅𝑒/𝑅0 = 1 + 𝜆𝑏𝑓 , 𝛥𝑥 is the separation 

between the neighboring fluid molecules in the 

circumferential direction in the adsorbed layer, 𝐶𝑦 =

𝜂𝑏𝑓
𝑒𝑓𝑓

/𝜂 , 𝜂𝑏𝑓
𝑒𝑓𝑓

 is the effective viscosity of the adsorbed 

layer, 𝑞0 (>1) is the average value of 𝛥𝑗+1/𝛥𝑗 (𝛥𝑗 is the 

separation between the (j+1)th and jth fluid molecules across 

the adsorbed layer thickness), 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑓  is the 

separation between the neighboring fluid molecules across 

the adsorbed layer thickness just on the boundary between 

the adsorbed layer and the intermediate continuum fluid,  

𝐹1 =
𝜂𝑏𝑓

𝑒𝑓𝑓

ℎ𝑏𝑓
3 (12𝐷2𝛹 + 6𝐷𝛷)  (3) 

𝜀 =
2𝐷𝐼 + 𝐼𝐼

ℎ𝑏𝑓(𝑛 − 1)(𝛥𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)𝑎𝑣𝑟,𝑛−1
 (4) 

𝐹2 =
6𝜂𝑏𝑓

𝑒𝑓𝑓
𝐷(𝑛 − 1)

ℎ𝑏𝑓
2 (𝑙𝛥𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)𝑎𝑣𝑟,𝑛−1 (5) 

𝜀 is the parameter reflecting the non-continuum effect of 

the adsorbed layer on the Couette flow of the adsorbed 

layer, 𝐹1  is the parameter reflecting the non-continuum 

effect of the adsorbed layer on the Poiseuille flow of the 

adsorbed layer, and 𝐹2 is the parameter reflecting the non- 

ontinuum effect of the adsorbed layer on the Poiseuille flow 

of the intermediate continuum fluid (Zhang 2020). Here, 

𝐼 = ∑ 𝑖(𝛥𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)𝑎𝑣𝑟,𝑖

𝑛−1

𝑖=1

 (6) 

𝛹 = ∑ 𝑖(𝑙𝛥𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)𝑎𝑣𝑟,𝑖

𝑛−1

𝑖=1

 (7) 

𝐼𝐼 = ∑
[𝑖(𝛥𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)𝑎𝑣𝑟,𝑖

+(𝑖 + 1)(𝛥𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)𝑎𝑣𝑟,𝑖+1]𝛥𝑖

𝑛−2

𝑖=0

 (8) 

𝛷 = ∑
[𝑖(𝑙𝛥𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)𝑎𝑣𝑟,𝑖

+(𝑖 + 1)(𝑙𝛥𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)𝑎𝑣𝑟,𝑖+1]𝛥𝑖

𝑛−2

𝑖=0

 (9) 

𝑖(𝛥𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)𝑎𝑣𝑟,𝑖 = ∑ 𝛥𝑗−1/𝜂𝑙𝑖𝑛𝑒,𝑗−1

𝑖

𝑗=1

 (10) 

𝑖(𝑙𝛥𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)𝑎𝑣𝑟,𝑖 = ∑ 𝑗𝛥𝑗−1/𝜂𝑙𝑖𝑛𝑒,𝑗−1

𝑖

𝑗=1

 (11) 

𝜂𝑙𝑖𝑛𝑒,𝑗−1 is the local viscosity between the jth and (j-1)th 

fluid molecules across the adsorbed layer thickness. 

When the dimensional power loss on the whole pore 

(with the axial length 𝑙) is no more than 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑤, no 

wall slippage occurs; otherwise, the wall slippage occurs 

and it can result in the total flow rate through the pore far 

higher than that calculated from the classical Hagen- 

Poiseuille equation. In carbon nanotubes or in biological 

systems, due to the hydrophobic pore wall and the low 

values of 𝜏𝑠,𝑏𝑓−𝑤, the values of 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑤 are low, and 

just a very small power loss on the nanochannel causes the 

severe wall slippage and consequently the high water flux 

through the channel, not explainable from the classical 

hydrodynamic flow theory (Holt et al. 2006, Majumder et 

al. 2005, Mattia and Calabro 2012, Whitby and Quirke 

2007).  

The dimensionless critical power loss on the whole 

nanopore (with the axial length 𝑙) in Fig. 1 for starting the 

slippage which occurs on the adsorbed layer-continuum 

fluid interface is: 

𝐾𝑐𝑟,𝑏𝑓−𝑓 =
1

4𝜆𝑏𝑓
2 {8𝜋

𝑅𝑒

𝑅0
{

𝜀𝜆𝑏𝑓
3

𝐶𝑦 (1 +
𝛥𝑥
𝐷

)
[1 +

1

2𝜆𝑏𝑓
 

−
𝛥𝑛−2(𝑞0 − 𝑞0

𝑛)

ℎ𝑏𝑓(𝑞0
𝑛−1 − 𝑞0

𝑛)
] −

𝐹1𝜆𝑏𝑓
3

6𝐶𝑦
} +

𝜋

4
 −

4𝜋

𝐶𝑦
{
𝐹2𝜆𝑏𝑓

2

6
 

−
𝜆𝑏𝑓

1 +
𝛥𝑥
𝐷

[
1

2
+ 𝜆𝑏𝑓 −

𝛥𝑛−2(𝑞0 − 𝑞0
𝑛)

2𝑅0(𝑞0
𝑛−1 − 𝑞0

𝑛)
]}} 

(12) 

where 𝐾𝑐𝑟,𝑏𝑓−𝑓 = 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑓𝜂/(𝜏𝑠,𝑏𝑓−𝑓
2 ℎ𝑏𝑓

2 𝑙), 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑓  is 

the dimensional critical power loss on the whole nanopore 

for starting the slippage, 𝜏𝑠,𝑏𝑓−𝑓 is the shear strength of the 

interface between the adsorbed layer and the continuum 

fluid, and the other parameters are same as above.  
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For a given nanopore, if 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑤 < 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑓, the 

slippage first occurs on the adsorbed layer-pore wall 

interface and it is absent on the adsorbed layer-continuum 

fluid interface; otherwise, the slippage only occurs on the 

adsorbed layer-continuum fluid interface. The competition 

between these two parameter values depends on the 

difference between 𝜏𝑠,𝑏𝑓−𝑤  and 𝜏𝑠,𝑏𝑓−𝑓  and also the 

difference between the calculated values of 𝐾𝑐𝑟,𝑏𝑓−𝑤 and 

𝐾𝑐𝑟,𝑏𝑓−𝑓.  

 

3.2 Total volume flow rates through the nanopore for 
different interfacial conditions 

 

For no slippage occurrence, the dimensionless total 

volume flow rate through the nanopore is: 

𝑄𝑣 =
(𝜋𝐾1)

1
2

4𝜆𝑏𝑓
2 {8

𝑅𝑒

𝑅0

𝜀𝜆𝑏𝑓
3

𝐶𝑦 (1 +
𝛥𝑥
𝐷

)
[1 +

1

2𝜆𝑏𝑓
 

−
𝛥𝑛−2(𝑞0 − 𝑞0

𝑛)

ℎ𝑏𝑓(𝑞0
𝑛−1 − 𝑞0

𝑛)
] −

4𝑅𝑒𝐹1𝜆𝑏𝑓
3

3𝑅0𝐶𝑦
+

1

4
 −

4

𝐶𝑦
{
𝐹2𝜆𝑏𝑓

2

6
 

−
𝜆𝑏𝑓

1 +
𝛥𝑥
𝐷

[
1

2
+ 𝜆𝑏𝑓 −

𝛥𝑛−2(𝑞0 − 𝑞0
𝑛)

2𝑅0(𝑞0
𝑛−1 − 𝑞0

𝑛)
]}}1/2 

(13) 

where 𝑄𝑣 = 𝑞𝑣𝜂/(𝜏𝑠ℎ𝑏𝑓
3 ) , 𝑞𝑣  is the dimensional total 

volume flow rate through the nanopore, 𝜏𝑠 is 𝜏𝑠,𝑏𝑓−𝑤 or 

𝜏𝑠,𝑏𝑓−𝑓, 𝐾1 is the dimensionless power loss on the whole 

nanopore and 𝐾1 = 𝑃𝑂𝑊𝜂/(𝜏𝑠
2ℎ𝑏𝑓

2 𝑙) , 𝑃𝑂𝑊  is the 

dimensional power loss on the whole nanopore.  

When the slippage only occurs on the adsorbed layer- 

pore wall interface, the dimensionless total volume flow 

rate through the nanopore is: 

𝑄𝑣,𝑏𝑓−𝑤 = 𝐾1[1 +
1

2𝜆𝑏𝑓
−

1+
𝛥𝑛−2(𝑞0−𝑞0

𝑛)

𝐷(𝑞0
𝑛−1−𝑞0

𝑛)

2𝜆𝑏𝑓
𝑅0
𝐷

], 

for 𝐾1 > 𝐾𝑐𝑟,𝑏𝑓−𝑤 

(14) 

where 𝑄𝑣,𝑏𝑓−𝑤 = 𝑞𝑣𝜂/(𝜏𝑠,𝑏𝑓−𝑤ℎ𝑏𝑓
3 ). 

When the slippage only occurs on the adsorbed 

layer-continuum fluid interface, the dimensionless total 

volume flow rate through the nanopore is: 

𝑄𝑣,𝑏𝑓−𝑓 =
𝐾1

2𝜆𝑏𝑓
, for 𝐾1 > 𝐾𝑐𝑟,𝑏𝑓−𝑓 (15) 

where 𝑄𝑣,𝑏𝑓−𝑓 = 𝑞𝑣𝜂/(𝜏𝑠,𝑏𝑓−𝑓ℎ𝑏𝑓
3 ). 

The comparison between the values of 𝑄𝑣,𝑏𝑓−𝑤  and 

𝑄𝑣,𝑏𝑓−𝑓 can show the slippage on which interface is better 

for yielding the higher flux of the nanopore.  

4. Calculation 
 

The calculations chose: 𝛥𝑥/𝐷 = 𝛥𝑛−2/𝐷 = 0.15 

These parameter values are representative for the simple 

fluid flows in silicon or carbon nanopores like those of 

water and methane (Jiang and Zhang 2022 and 2024, Zhang 

2016). It was assumed that 𝜂𝑙𝑖𝑛𝑒,𝑖/𝜂𝑙𝑖𝑛𝑒,𝑖+1 = 𝑞0
𝑚, where m 

is positive constant (Jiang and Zhang 2022). 

The following regressed equations were used (Zhang 

2020): 

𝜀 = (4.56𝐸 − 6) (
𝛥𝑛−2

𝐷
+ 31.419) (𝑛 + 133.8) 

(𝑞0 + 0.188)(𝑚 + 41.62) 
(16) 

𝐹1 = 0.18(
𝛥𝑛−2

𝐷
− 1.905)(𝑙𝑛 𝑛 − 7.897) (17) 

𝐹2 = (−3.707𝐸 − 4) (
𝛥𝑛−2

𝐷
− 1.99) (𝑛 + 64) 

(𝑞0 + 0.19)(𝑚 + 42.43) 
(18) 

𝐶𝑦(𝐻𝑏𝑓) = 𝑎0 +
𝑎1

𝐻𝑏𝑓
+

𝑎2

𝐻𝑏𝑓
2  (19) 

where 𝐻𝑏𝑓 = ℎ𝑏𝑓/ℎ𝑐𝑟,𝑏𝑓 , ℎ𝑐𝑟,𝑏𝑓  is the critical thickness 

for characterizing the rheological properties of the adsorbed 

layer, and 𝑎0, 𝑎1 and 𝑎2 are respectively constant. The 

accuracies of Eqs. (16)-(18) are satisfactory as compared to 

the direct calculations (Zhang 2020). Eq. (19) also fits the 

experimental measurements (Meyer et al. 1998, Zhang 

2004).  

For different fluid-pore wall interactions, the following 

parameter values were used: 

Weak interaction: m = 0.5, n = 3, 𝑞0 = 1.03, ℎ𝑐𝑟,𝑏𝑓 = 7nm 

Medium interaction: m = 1.0, n = 5, 𝑞0 = 1.1, ℎ𝑐𝑟,𝑏𝑓 = 20nm 

Strong interaction: m = 1.5, n = 8, 𝑞0 = 1.2, ℎ𝑐𝑟,𝑏𝑓 = 40nm 

These parameter values surely give different 

discontinuity and inhomogeneity across the adsorbed layer 

thickness owing to different fluid-pore wall interaction 

strengths for the flow of simple fluids in nanopores (Zhang 

2015a, b, 2016).  

The other parameter values are shown in Table 1. These 

parameter values result in different effective viscosities of 

the adsorbed layer due to different fluid-pore wall 

interactions according to Eq. (19). Stronger the fluid-pore 

wall interaction, more significant the solidification of the 

adsorbed layer, and greater the value of Cy. The parameter 

values in Table 1 fit the experimental measurements of the 

viscosity of simple fluids confined in nanochannels (Meyer 

et al. 1998, Zhang 2004). 

 
 

5. Results 
 

5.1 Critical power loss on the pore for starting the 
slippage 

 

Fig. 2(a) shows that for the weak fluid-pore wall 

interaction, the value of 𝐾𝑐𝑟,𝑏𝑓−𝑤 is smaller than that of 

Table 1 The mean specific growth rate and maximum 

growth rate of Anabaena 

 Parameter 

Interaction a0 a1 a2 

Strong 1.8335 -1.4252 0.5917 

Medium 1.0822 -0.1758 0.0936 

Weak 0.9507 0.0492 1.6447E-4 
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bf  

(a) For the weak interaction 

 
bf  

(b) For the medium interaction 

 
bf  

(c) For the strong interaction 

Fig. 2 Values of 𝐾𝑐𝑟,𝑏𝑓−𝑤  and 𝐾𝑐𝑟,𝑏𝑓−𝑓  for different 

fluid-pore wall interactions 

𝐾𝑐𝑟,𝑏𝑓−𝑓 for a given 𝜆𝑏𝑓; the difference between 𝐾𝑐𝑟,𝑏𝑓−𝑤 

and 𝐾𝑐𝑟,𝑏𝑓−𝑓 is increased with the increase of 𝜆𝑏𝑓, and it 

is very significant for 𝜆𝑏𝑓 ≥ 0.1 and is great for 𝜆𝑏𝑓 ≥

0.4. According to the definitions of 𝐾𝑐𝑟,𝑏𝑓−𝑤 and 𝐾𝑐𝑟,𝑏𝑓−𝑓, 

for the strongly hydrophobic nanopore wall (which yields 

the quite weak fluid-pore wall interaction), the dimensional 

critical power loss 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑤 on the nanopore for starting 

the slippage on the adsorbed layer-pore wall interface 

should be significantly smaller than the dimensional critical 

power loss 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑓  on the nanopore for starting the 

slippage on the adsorbed layer-continuum fluid interface 

since 𝜏𝑠,𝑏𝑓−𝑤  is significantly smaller than 𝜏𝑠,𝑏𝑓−𝑓 . This 

means that for the strongly hydrophobic nanopore wall, the 

slippage occurs on the adsorbed layer-pore wall interface 

and its occurrence is much easier than the occurrence of the 

slippage on the adsorbed layer-continuum fluid interface for 

𝜆𝑏𝑓 ≥ 0.1. It is particularly the case for a larger 𝜆𝑏𝑓 i.e. a 

smaller nanopore.  

Fig. 2(b) shows the similar results of 𝐾𝑐𝑟,𝑏𝑓−𝑤  and 

𝐾𝑐𝑟,𝑏𝑓−𝑓 for the medium fluid-pore wall interaction as in 

Fig. 2(a). The medium interaction should reflect the pore 

wall which is somewhat hydrophilic. From Fig. 2(b), it 

seems hard to judge on which interface the slippage should 

occur. As an example, for 𝜆𝑏𝑓 = 0.9, 𝐾𝑐𝑟,𝑏𝑓−𝑓/𝐾𝑐𝑟,𝑏𝑓−𝑤 =

5.444; for this case, if 𝜏𝑠,𝑏𝑓−𝑤 < 2.333𝜏𝑠,𝑏𝑓−𝑓, 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑤   

< 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑓 and the slippage thus occurs on the adsorbed 

layer-pore wall interface, otherwise the slippage should 

occur on the adsorbed layer-continuum fluid interface. It 

was found that the slippage can also occur in a hydrophilic 

nanopore (Tran-Duc et al. 2019). According to the present 

results, this slippage can occur either on the adsorbed 

layer-pore wall interface or on the adsorbed layer- 

continuum fluid interface, depending on the competition 

between 𝜏𝑠,𝑏𝑓−𝑤 and 𝜏𝑠,𝑏𝑓−𝑓. 

Fig. 2(c) shows the similar results of 𝐾𝑐𝑟,𝑏𝑓−𝑤  and 

𝐾𝑐𝑟,𝑏𝑓−𝑓  for the strong fluid-pore wall interaction as in 

Figs. 2(a)-(b). The strong interaction should correspond to 

the strongly hydrophilic nanopore wall for which the shear 

strength (𝜏𝑠,𝑏𝑓−𝑤) of the adsorbed layer-pore wall interface 

is much higher than that ( 𝜏𝑠,𝑏𝑓−𝑓 ) of the adsorbed 

layer-continuum fluid interface. In a strongly hydrophilic 

nanopore, there is a sticking boundary layer and the 

slippage occurs more difficultly (Koklu et al. 2017). Figure 

2(c) shows that for 𝜆𝑏𝑓=1.4, 𝐾𝑐𝑟,𝑏𝑓−𝑓/𝐾𝑐𝑟,𝑏𝑓−𝑤 ≈ 10; for 

this case, if 𝜏𝑠,𝑏𝑓−𝑤 > 3.162𝜏𝑠,𝑏𝑓−𝑓, 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑤 > 𝑃𝑂𝑊𝑐𝑟,𝑏𝑓−𝑓 

and the slippage thus only occurs on the adsorbed 

layer-continuum fluid interface. In a strongly hydrophilic 

nanopore, such a condition is often satisfied. However, in 

this nanopore, to generate the slippage on the adsorbed 

layer-continuum fluid interface is much more difficult than 

to generate the slippage on the adsorbed layer-pore wall 

interface in a hydrophobic nanopore, due to 𝜏𝑠,𝑏𝑓−𝑤 <<

𝜏𝑠,𝑏𝑓−𝑓. This is why the hydrophobic nanopore wall is far 

advantageous over the strongly hydrophilic nanopore wall 

by the resulting wall slippage to largely increase the 

nanopore transport. Such a technical merit can be easily 

realized just by covering a hydrophobic coating on the 

nanopore wall.  
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5.2 Nanopore transport for the slippage on different 
interfaces 

 

Fig. 3(a) shows the comparison of the values of 𝑄𝑣,𝑏𝑓−𝑤 

and 𝑄𝑣,𝑏𝑓−𝑓 for the weak fluid-pore wall interaction for the 

dimensionless power loss 𝐾1 on the whole pore covering 

the ranges of no slippage and slippage. Generally, even for 

a weak fluid-pore wall interaction, the slippage does not 

necessarily occur on the adsorbed layer -pore wall interface, 

and it can also occur on the adsorbed layer-continuum fluid 

interface depending on the competition between 𝜏𝑠,𝑏𝑓−𝑤 

and 𝜏𝑠,𝑏𝑓−𝑓; thus for the purpose of comparison the value 

of 𝑄𝑣,𝑏𝑓−𝑓 here is also calculated for the weak fluid-pore 

wall interaction. When no slippage occurs, 𝑄𝑣,𝑏𝑓−𝑤  or 

𝑄𝑣,𝑏𝑓−𝑓 are calculated from Eq. (3). Fig. 3(a) shows that for 

the two 𝜆𝑏𝑓  values the curves for 𝑄𝑣,𝑏𝑓−𝑤  and 𝑄𝑣,𝑏𝑓−𝑓 

are overlaid. This means that for the weak interaction, if 

𝜏𝑠,𝑏𝑓−𝑤 = 𝜏𝑠,𝑏𝑓−𝑓, the same dimensional power loss (𝑃𝑂𝑊) 

on the pore (giving the same dimensionless power loss 𝐾1 

on the pore) gives nearly the same volume flow rate through 

the pore whenever the slippage occurs on the adsorbed 

layer-pore wall interface or on the adsorbed layer- 

continuum fluid interface. However, since the adsorbed 

layer-pore wall interface can be modified by the coating and 

the value of 𝜏𝑠,𝑏𝑓−𝑤 and the slippage on this interface can 

thus be designed, we prefer the slippage to occur on the 

adsorbed layer-pore wall interface to enhance the nanopore 

transport by using the hydrophobic pore wall. 

Fig. 3(b) shows that for the medium fluid-pore wall 

interaction, for 𝜆𝑏𝑓 = 0.05  the curves for 𝑄𝑣,𝑏𝑓−𝑤  and 

𝑄𝑣,𝑏𝑓−𝑓 are overlaid. This is due to the negligible adsorbed 

layer effect because of the pore radius far larger than the 

thickness of the adsorbed layer. It means that for this case, 

if 𝜏𝑠,𝑏𝑓−𝑤 = 𝜏𝑠,𝑏𝑓−𝑓 , the nanopore transport is not 

influenced by the interface where the slippage occurs. As 

the medium interaction corresponds to the hydrophilic pore 

wall which gives 𝜏𝑠,𝑏𝑓−𝑤 > 𝜏𝑠,𝑏𝑓−𝑓 , for very low 𝜆𝑏𝑓 

values the slippage should be better to occur on the 

adsorbed layer-continuum fluid interface to give higher 

flow rate through the pore for the medium interaction.  

Fig. 3(b) shows that for 𝜆𝑏𝑓 = 0.5 , the curves for 

𝑄𝑣,𝑏𝑓−𝑤 and 𝑄𝑣,𝑏𝑓−𝑓 are overlaid when 𝐾1 is below about 

1.0. This corresponds to the case of no slippage on any 

interface. However, when 𝐾1  is above about 1.0, for a 

given 𝜆𝑏𝑓  the value of 𝑄𝑣,𝑏𝑓−𝑤  is larger than that of 

𝑄𝑣,𝑏𝑓−𝑓 due to the slippage occurrence on the two interfaces. 

This means that for the medium interaction, when the radius 

of the nanopore is comparable to the thickness of the 

adsorbed layer, the slippage on the adsorbed layer-pore wall 

interface should generate a more flow rate through the pore 

than the slippage on the adsorbed layer-continuum fluid 

interface if 𝜏𝑠,𝑏𝑓−𝑤 is only modestly larger than 𝜏𝑠,𝑏𝑓−𝑓 . 

Fig. 3(c) compares the total volume flow rates (𝑄𝑣,𝑏𝑓−𝑤 

and 𝑄𝑣,𝑏𝑓−𝑓) through the pore when the pore wall is 

respectively hydrophobic and strongly hydrophilic (so that 

the slippage respectively occurs on the adsorbed layer-pore 

wall interface and on the adsorbed layer-continuum fluid 

interface). Even for 𝜆𝑏𝑓 = 0.05, the slippage for hydro- 

 
(a) For the weak interaction 

 
(b) For the medium interaction 

 
(c) Solid line: hydrophobic pore wall, dashed line:  

strongly hydrophilic pore wall 

Fig. 3 Comparison of the values of 𝑄𝑣,𝑏𝑓−𝑤 (solid line) 

and 𝑄𝑣,𝑏𝑓−𝑓 (dashed line) 
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phobic pore wall gives the flow rate through the pore 

significantly higher than that given by the slippage for 

strongly hydrophilic pore wall when 𝜏𝑠,𝑏𝑓−𝑤=𝜏𝑠,𝑏𝑓−𝑓 and 

the dimensional power losses on the pore for the two cases 

are the same. In practice, the value of 𝜏𝑠,𝑏𝑓−𝑤  for a 

hydrophobic pore wall is remarkably smaller than that of 

𝜏𝑠,𝑏𝑓−𝑓, thus even when 𝜆𝑏𝑓 is very low so that the pore 

radius is far bigger than ℎ𝑏𝑓 the nanopore transport for a 

hydrophobic pore wall should be much higher than that for 

a strongly hydrophilic pore wall.  

When 𝜆𝑏𝑓 = 0.5 so that the pore radius is comparable 

to the thickness of the adsorbed layer, Fig. 3(c) shows that 

the value of 𝑄𝑣,𝑏𝑓−𝑤 for a hydrophobic pore wall is far 

larger than that of 𝑄𝑣,𝑏𝑓−𝑓 for a strongly hydrophilic pore 

wall in the condition of the slippage respectively occurring 

on the two interfaces when the values of 𝐾1 are the same. 

This indicates that in a small nanopore the hydrophobic 

pore wall very effectively enhances the mass transport. It 

suggests the strong benefit of the application of a 

hydrophobic pore wall in a very small nanopore.  
 

 

6. Validation of the model 
 

By comparing full molecular dynamics simulation 

results with the results calculated from Zhang’s multiscale 

approach as shown in this paper, Jiang and Zhang (2024) 

showed the correctness and accuracy of the present 

multiscale scheme in calculating the total volume flow rate 

through a nanochannel. Currently are absent the results in 

other literatures showing the dependences of the total flow 

rate through a nanopore on the power loss and on the 

interfacial shear strength in the case of the wall slippage. 

The direct comparison of the present results with the results 

from other sources is still not viable. The present study 

should be the first step and for correlation by the following 

researches. 
 

 

7. Conclusions 
 

Multiscale calculations were held to show where the 

slippage should occur in the nanopore where both the 

adsorbed layer flow and the intermediate continuum fluid 

flow occur. This multiscale flow nanopore is applicable to 

nanoporous filtration membranes, biological nanochannel 

flows, and nanopore mass transfer etc. The study on this 

subject is important for the application of the slippage for 

efficiently improving the mass transfer through the 

nanopore.  

The closed-form explicit flow equations for the 

nanopore multiscale flow derived by Zhang were used to 

calculate the critical power losses on the whole pore for 

starting the slippage respectively on the adsorbed layer-pore 

wall interface and on the adsorbed layer-continuum fluid 

interface. For these two slippage cases, the volume flow 

rates through the nanopore were also respectively 

calculated.  

According to the calculation results, we conclude that: 

• when the nanopore wall is hydrophobic, the slippage 

should occur on the adsorbed layer-pore wall interface, and 

this interfacial slippage can greatly enhance the nanopore 

transport with low interfacial shear strengths especially for 

a very small nanopore.  

• For a medium-hydrophilic nanopore, the slippage can 

occur on the adsorbed layer-pore wall interface or on the 

adsorbed layer-continuum fluid interface, depending on the 

competition between the shear strength (𝜏𝑠,𝑏𝑓−𝑤 ) of the 

adsorbed layer-pore wall interface and the shear strength 

(𝜏𝑠,𝑏𝑓−𝑓) of the adsorbed layer-continuum fluid interface 

( 𝜏𝑠,𝑏𝑓−𝑤 > 𝜏𝑠,𝑏𝑓−𝑓 ); if 𝜏𝑠,𝑏𝑓−𝑤  is close to 𝜏𝑠,𝑏𝑓−𝑓 , the 

slippage occurs on the adsorbed layer-pore wall interface 

especially for a very small nanopore; if the difference 

between 𝜏𝑠,𝑏𝑓−𝑤  and 𝜏𝑠,𝑏𝑓−𝑓  is sufficiently large, the 

slippage occurs on the adsorbed layer-continuum fluid 

interface.  

• When the nanopore is medium-hydrophilic, for very 

low 𝜆𝑏𝑓 values i.e. big nanopores the slippage should be 

better to occur on the adsorbed layer-continuum fluid 

interface for giving higher flow rate through the pore; when 

the radius of the nanopore is comparable to the thickness of 

the adsorbed layer, the slippage on the adsorbed layer-pore 

wall interface should generate a more flow rate through the 

pore than the slippage on the adsorbed layer-continuum 

fluid interface if 𝜏𝑠,𝑏𝑓−𝑤  is only modestly larger than 

𝜏𝑠,𝑏𝑓−𝑓. 

• When the nanopore is strongly hydrophilic, the 

slippage should occur on the adsorbed layer-continuum 

fluid interface due to 𝜏𝑠,𝑏𝑓−𝑤 much higher than 𝜏𝑠,𝑏𝑓−𝑓.  
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