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1. Introduction 
 

A clear sign of global warming is the increase in 

average earth and ocean temperatures, the widespread 

melting of ice and glaciers, and the rise of sea levels on 

land, all of which are measured and measured, including 

applied management (Qiu et al. 2022a, b, Feng et al. 2021), 

and nature physics (Yue et al. 2021, Quan et al. 2021, 

Zhang et al. 2019, Gao et al. 2021, Liu et al. 2022, Longo 

et al. 2019, Yin et al. 2022a, b, Zhou et al. 2021a, b, c, 

Yang et al. 2021, Xu et al. 2022, Zhao 2021a, b), and 

engineering application (Shen et al. 2022, Wang et al. 

2021,. 2022, Fang et al. 2021, Liu et al. 2016, Chen et al. 

2022, Zhao et al. 2020, Zhan et al. 2022, Ban et al. 2022, 

Miao et al. 2022, Gu et al. 2022, Zhu et al. 2022, Yang et 

al. 2022) et al. Freshwater supplies in Central, South, East 

and Southeast Asia are expected to decline by 2050. Areas 

near major rivers are particularly affected (IPCC Fourth 

Assessment Report Preparation, 2007). In fact, evidence of 

climate change has been found around the world in recent 

decades, with many scientists documenting the frequency 

and extent of floods and droughts. Studies are being  
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actively conducted in many countries around the world to 

assess the impact of climate change on their water supply 

systems. Christensen et al. (2004) evaluated the effects of 

climate change on Colorado River water resources. They 

use RCM to analyze hydrological phenomena and the 

effects of changes in water resources. They (2003) analyzed 

the effects of climate change on water flow in the upper 

Mississippi River. A similar study is also being conducted 

in South Korea. SNURCM is a climate model developed by 

Seoul National University and the Ministry of Environment 

(2006) to predict and evaluate the effects of climate change 

on the water cycle. In addition, the 21st Century Research 

and Development Project (Sejong University and Ministry 

of Science and Technology 2007) has established a system 

to assess the impact of climate change on water resources. 

However, in Vietnam, most water research focuses on 

climate change itself and uses techniques to predict changes 

in climate factors based on global climate models. As a 

result, there is little quantitative assessment of the impact of 

climate change on water supply systems. 

 Computer-based methods have been developed for 

many scientific and engineering disciplines (e.g., Zyada et 

al. 2011, Rosloniec 2010, Pezeshki et al. 2010, Baranoski 

2008, Narayanan 2008, de Espindola et al. 2010, Erenturk 

2010, Mehrabian and Yousefi -Koma, 2011, Landolsi et al. 

2011). For example, in water resources research, artificial 

neural networks have long been used to predict flow (Chang 

and Chen 2003) and facilitate reservoir management 

(Chang and Chang 2001). Efforts have been made to apply 

artificial neural networks to fluid dynamics problems 

(Milano and Koumoutsakos 2002, Hocevar et al. 2004), but  
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Abstract.  5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent 

severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality 

due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar 

radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated 

based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors 

affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an 

artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. 

In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a 

wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at 

different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio 

the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the 

compound was considered when preparing the hazard analysis. 
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the method is rarely used for open channel simulations 
(Omid et al. 2005). Previous studies have shown that neural 
network results agree well with chaotic velocity and 
intensity distributions of open channel currents that deviate 
from the smooth boundary of the laboratory circuit. Current 
conditions can be accurately predicted under research 
conditions (Chang et al. 2008). 

The main objectives of this study are: (1) to assess the 
impact of climate change on drought in the Mekong region. 
For research purposes, climate factors simulated by climate 
change models were analyzed using the SLURP model of 
distributions corresponding to long-term circulation patterns. 
Due to the high uncertainty about future water demand, 3 
scenarios are proposed: low demand, medium demand, and 
high demand. For each scenario, 50 different emission 
values (results from the SLURP model) were used as input 
to the K-WEAP model to estimate future water shortages 
for each scenario. (2) obtain and display high-quality 
experimental 3D flow data using an acoustic Doppler 
velocimeter (ADV) in a large open channel connected to a 
stream of multiple flow rates and frame rates, (3) use the 
multi-layer neural network (MFLN) method to simulate the 
performance and explore the use of artificial neural 
networks. 
 

 

2. Multilayer Functional Link Network (MFLN) and its 
basic theory 

 

K-WEAP is a model developed by the "Sustainable 

Water Supply Technology Development Project Group" in 

the “Upstream Water Balance Master Plan and Technology 

Development Project” implemented in the 21st century. 

Research and development projects. The model is part of a 

joint study by the Water Resources Research Department of 

the Korea Institute of Building Technology and the Boston 

Environmental Center in Stockholm. 

 

 

 K-WEAP is based on water balance analysis and can 

be applied to water supply and demand systems in 

agricultural areas, small watersheds or river basins. In 

addition, K-WEAP can be used for water demand analysis, 

water resource protection, prioritization and allocation of 

water rights, water and groundwater modeling, water 

reservoir management, hydropower generation, pollution 

monitoring, water level monitoring for ecological analysis, 

etc. It can cover a wide range of topics. 
K-WEAP is implemented in several steps, as shown in 

Fig. 1. First, analyze the main elements of the water supply 
system, such as the target year of the plan, the geographic 
scope of the target area, the water supply situation and 
regional demand, network, etc. Second, the current water 
supply system is at the expected level, taking into account 
the actual water demand, the amount of pollution, the local 
water supply and distribution sources, especially the water 
sources and waste water treatment plants. Third, future 
scenarios and options are developed taking into account 
factors such as policies, costs, technological development or 
demand, pollution and distribution that affect hydrological 
conditions. Finally, K-WEAP can assess the sensitivity of 
each scenario to uncertainties in key parameters, such as 
water scarcity, pollution load, water use for water 
maintenance, and water availability. 

For drought and water scarcity in the Mekong River 
Basin, the study will follow the steps shown in Figure 2. 
First, create a water demand scenario based on climate 
change. Card. The current climate change situation and the 
climate change situation to support environmental water 
needs in the medium to long term. Then, we applied the 
SLURP model to the K-WEAP water resource assessment 
and planning model based on flow data from 50 climate 
change scenarios to overcome the uncertainty of climate 
change. Finally, water scarcity in small river basins 
(medium-sized areas on the water map) is assessed against 
scenarios and targets. 

 

Fig. 1 Water resources planning and assessment process in the K-WEAP model 
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Fig. 3 MFLN architecture and learning process 
 

 

Fig. 4 Arrangement of test equipment for section 

measurement and speed measurement of profile points 
 

 

The K-WEAP water balance model is used to predict 

future water supply and demand in the Mekong River Basin. 

To develop the K-WEAP model, it is necessary to determine 

the level of water supply of the Mekong River Basin in the 

future. This study used the national standard map - the water 

resource unit map. The area of the Han Basin (Great Basin) 

can be divided into four basins. This study takes the upper 

area of the Mekong River basin as the center, and the average 

area of the basin map is used as the simulation unit to 

generate the information of the Mekong River basin. 

According to the K-WEAP model, the Mekong river water 

supply system includes 17 lines, 38 rivers, 4 reservoirs, 67 

bridges, 100 transmission lines. and 63 water return pipes. 
Adapting the MFLN follows the error reduction function 

(Fig. 3). Use the delta rule to adjust the weights w lj 

directly, specifying the output unit size directly . 

𝛥𝑤𝑙𝑗 = 𝑤𝑙𝑗
𝑛𝑒𝑤 − 𝑤𝑙𝑗

𝑐 = 𝜂0(𝑑𝑙 − 𝑦𝑙)𝑓′0(𝑛𝑒𝑡𝑙)𝑥𝑙 (1) 

𝑛𝑒𝑡𝑙 =∑𝑤𝑙𝑗𝑥𝑙 (2) 

current weight 𝑤𝑙𝑗
𝑛𝑒𝑤 , 𝑤𝑙𝑗

𝑐 dl  and yl are the components of 

the target cell and the output cell . 𝜂0 is the learning rate. 

is the derivative of the nonlinear function f0 on the network . 

𝑓′0 The net is the sum of the weights l. The output unit. 

Learning is repetitive. Each loop has a propagation step that 

modifies the process weights to minimize the cost function. 

Standard propagation procedures are described in Ham and 

Kostanic (2001). 
 
 

3. Materials and test methods 

 
Collect data on the release of open channels at 90 

intersections at the Ho Chi Minh City drainage station by 
the Ministry of Water Resources of Vietnam. A schematic 
diagram of the experimental setup is shown in Fig. 4. The 
channel consists of 200 m one long main channel, eight 
inlet channels (each 20 m long), and two outlet channels 
(each 20 m long). The passage on both sides is 1 m wide 
and 1 m deep. The side bed 1.0 mis above the main hall 
bed. The main channel has a slope of 0.1%, a depth of 4.2 
m1 4.2 m and a width of 1 2.2 m. The bed and side walls 
are made of concrete slabs. Fig. 2 shows 0.25 m the 1.72 m 
measurement 1.22 m section 2.72 m. 3.72 m. The speed of 
each section is obtained from 10 points with different y 
values. 

Velocity was measured using a three-component Acoustic 

Doppler Velocimeter (ADV). Operating temperature 0from 

C to C, the device 40 can measure 0.1 mm3D current from 

0 to /s with accuracy Details of /s 2.5 m. The sampling 

frequency of each measurement point is 20 Hz. The number 

of samples per recording rate exceeds 600. Due to the 

limitations of the conditions of use, it is necessary to 

develop audio equipment that operates according to the 

principle of Doppler ratio measurement. A Vector 3D ADV 

probe from Nortek AS was used. For a more detailed 

review of ADV, see Kraus et al. (1994), Voulgaris and 

Trowbridge (1998), and Chanson et al. (2008). The aspect 

ratio or aspect ratio (W/H) is between 1388 and 1438. The 

Reynolds number (Re = U mA R / ) varies from 
𝑈𝑚−𝐴

√𝑔𝐻
 

approximately 4.2 10 5 to 7.7 10 5 and the Froude number 

is Fr = . 5 The test conditions are shown in Table 1. Where 

H = water depth of the main channel, T = water 

temperature, and Q = flow measured in the test section. U 

mA = Q/A = average flow velocity of the main channel, A = 

cross-sectional area, B = width of the main channel of the 

upper stream. R = radius of water, Kinematic viscosity, g 

= gravitational acceleration. 
 

 

4. Analysis and discussion 

 
As mentioned above, one of the main goals of this study 

is to evaluate the potential of neural networks to simulate 
speed data based on existing experimental data. Velocity 
data is a function of aspect ratio (W/H), vertical position 
(Z), and depth of position y/H. 

𝑢 = 𝑓(𝐵/𝐻, 𝑍, 𝑦/𝐻) (3) 

where f( ) is a non-linear function. There are 5 different 
discharge hoppers, each with 8 vertical posts. Each vertical 
configuration has 10 data points. The total number of data 
points is 400. This amount of data is sufficient to model the 
speed data and create the MFLN n. By convention, the 
available data is divided into two subsets, the training set 
and the validation set. MFLN usually begins with a mock 
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Table 1 Test conditions 

case 
𝐻 

(man) 

𝑇 

( 3) 

listen 

( m3/s) 

𝑈𝑚−𝐴 

(think) 
𝐵 𝐻⁄  relationship 𝐹𝑟 

R1 
Chapter 

2785 
21.4 3 981 0.35 1 1,88 425319 0.058 

R2 
Chapter 

2818 
21.3 5,173 0.448 1,519 55220 0.027 

R3 2847 __ 21.5 5,87 0.516 1,448 62928 0.120 

R4 
Chapter 

2868 
21.6 6,835 0.26 1,356 729 0.12 

R5 
Chapter 

2889 
22.8 7,226 0.637 1,38 771254 0.128 

 

Table 2 MFLNs. The result 

Subgroup  Raw RMSE (m/s) 

Electric train 0.977 0.01 5 

confirm 0.954 0.0 11 

 

 

Fig. 5 Speed comparison between ADV method and 

MFLN method 
 

 

exam. Then we use hybrid algorithms to adjust the synaptic 
weights of the multilayer sensor using as many training 
examples as possible. Therefore, there are 16 vertical 
velocities, of which 160 are vertical velocities and the 
remaining 24 are vertical velocities (Cas. R2, R3 and R4) 
and 240. This training and validation dataset subsection 
aims to provide a general evaluation of the properties of the 
trained network. As shown in Fig. 3, the input layer 
contains 9 parameters, while the output layer has only one 
node that shows the velocity value at a specified position in 
the vertical direction y/H. Through trial and error, we have 
identified the best eight hidden neurons for our training data 
set. The learning rate is initially unitary and is multiplied by 
a certain number depending on whether the error function 
increases or decreases during the learning process. This 
type of activation is called a sigmoid function. Network 
training continues until the failure target is reached and 
stops after 20,000 iterations. The results of training and 
validation are shown in Fig. 5. All data points (observed 
and simulated) seem to agree. Table 2 shows the  values 
and root mean square error (RMSE) for the training and 
validation sets. The correlation coefficient is close to 1, and 
the RMSE is small. 

Fig. 6 shows the measurement results of the velocity 
envelope u R3. It can be seen that 1.5 m the maximum 
speed (Umax -A) of  this part is between and 2.0 m. This 

 

Fig. 6 Measuring the curve of speed circuit R3 

 

 

Fig. 7 Measure the vector field cross section 

 

 

result is 4.0 mdue to the reduced width of the main channel 

2.0 m. In addition, because the bottom of the side channel is 

located at 1.0 mthe bottom 1.5 mof the main channel, the 

maximum speed of the flow channel can be obtained at a 

water depth of 1 to 1.5 m. The lateral velocity (ie, 

z-direction) reduces the amplitude of the main velocity (ie, 

x-direction). The secondary flow pattern can be understood 

by looking at the measured cross section of the velocity 

vector fields R1 and R5, as shown in Fig. 7. Looking down, 

you can see the wake from the right bank to the left bank in 

the north. There is a clockwise circle near the open water of 

the channel. Note that the secondary current in R1 is less 

than the secondary current in R5. In other words, when the 

channel ratio decreases, the secondary current becomes 

stronger, slowdown in open straits (Henderson 1965, Nezu 

and Rodi 1985). Therefore, the maximum speed reaches the 

lower region and the speed distribution is not symmetrical 

with the center line. 

To predict future water scarcity, we ran a 70-year 

simulation from 2020 to 2090. Select 2020-2030. as the base 

year, and select 2031-2060 and 2061-2090 as the base year. 

Estimate the water shortage in the target year. policy. To 

calculate the uncertainty associated with the water scarcity 

model, 50 streamflow sets for each sub-basin (19 central 

basins) were derived from the SLURP model and the annual 

water scarcity was calculated. Simulation. Climate change 

scenarios and water demand. 

In 50 sets of data on water scarcity, the average is the 

average water scarcity per population over 50 years. To see 

the long-term trend of water scarcity compared to the base 

year, use the moving average method to calculate the annual 
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average of the modeled water scarcity. The procedure using 

the 10-year moving average method shows that the water 

shortage in the Mekong River Basin is more and more high 

demand A2. 

(1) Water shortages are more severe in June as the flood 

season moves from July, August, and September to August, 

September, and October. 

(2) In general, less water flow leads to more weight loss. 

(3) Similar budget implementation signatures are seen in 

2031-2060 and 2061-2090. However, water scarcity will 

increase in the target years 2061-2090 due to uncertainty in 

emissions (levels of change). 
  

 

5. Conclusions 
 

This study assesses the vulnerability of the Mekong 

River region to drought and water use. Climate change 

scenarios and water demand were developed based on 

climate change scenarios applied to the K water resource 

assessment model, and emissions data were simulated using 

the SLURP model. -WEAP and pattern mode. The results 

of this model are used in the quantitative analysis of water 

scarcity in the Mekong River region. At the same time, it 

will also analyze the extent of water scarcity in small 

watersheds and suggest why. A robust and reliable 

hydrological risk assessment process deserves attention. 

Flooding and transportation of mixed materials in the 

powerful lava play a role in this danger and should be 

considered. However, the transport of the mixture is not 

currently systematic and is only included in the preparation 

of the hazard analysis. The result is the loss of the accuracy 

of the forecast and the risk of assessing the impact of the 

disaster. Flow phenomena at open junctions such as 

irrigation canals and sewage treatment plants are important 

hydrological issues. The current characteristics of open 

junctions at different transmission frequencies were 

investigated. Experimental measurements show that the 

maximum velocity is not a free surface under all flow 

conditions tested. The experimental measurements were 

compared with the open channel velocity distribution 

obtained by ADV. MFLN simulation results are better than 

Eq. (4). Embedded neural network models can be used as 

modules for estimating or generating complex average 

velocity profiles in open channels. Such models are 

powerful tools for simulating flow under similar flow 

conditions and can also be used to correct distorted flow 

data. A comparison with the regression analysis results was 

performed as well. In this study, an artificial neural network 

(ANN) was used to simulate the average speed data. The 

results show that the artificial neural network can accurately 

and reliably simulate average speed data. 
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