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Abstract.  In this paper, a multi-scale meshfree-enriched finite element formulation is presented for the 
analysis of acoustic wave propagation problem. The scale splitting in this formulation is based on the 
Variational Multi-scale (VMS) method. While the standard finite element polynomials are used to represent 
the coarse scales, the approximation of fine-scale solution is defined globally using the meshfree 
enrichments generated from the Generalized Meshfree (GMF) approximation. The resultant fine-scale 
approximations satisfy the homogenous Dirichlet boundary conditions and behave as the “global 
residual-free” bubbles for the enrichments in the oscillatory type of Helmholtz solutions. Numerical 
examples in one dimension and two dimensional cases are analyzed to demonstrate the accuracy of the 
present formulation and comparison is made to the analytical and two finite element solutions. 
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1. Introduction 
 

There are many important scientific and engineering problems that involve dealing with 
information on multiple spatial and temporal scales. The time-harmonic acoustics governed by the 
Helmholtz equation in structural acoustics and electromagnetic applications is one of such 
problems which require simultaneous resolution of different scales spanned over a wide frequency 
spectrum. In particular, evanescent waves play a significant role in the design of various 
nano-optical and nano-biological sensors, and thus demand advanced modeling technique because 
of their multi-scale nature. Numerical analysis by the standard finite element method of such 
problems in the medium or higher frequency regimes is either computationally unfeasible or 
simply unreliable, particularly in the presence of evanescent waves. This is because the standard 
low-order continuous Galerkin finite element method fails to adequately control numerical 
dispersion errors (Belytschko and Mullen 1978) when the wave number increases. As a 
consequence, the finite element method not only inaccurately approximates the oscillatory part of 
the solution, but also experiences a notorious pollution error (Ihlenburg and Babuska 1995), a 
numerical error related to the phase difference between the exact and finite element solutions. To 
minimize the pollution error and obtain an accurate solution in the finite element analysis of 
Helmholtz equation, the resolution of mesh should be adjusted to the wave number according to 
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the “rule of thumb” (Harari and Hughes 1991). In addition to the hierarchical p-refinement of 
finite element method (Ihlenburg and Babuska 1997), many non-standard finite element methods 
have been developed in the past two decades to reduce the pollution error. They include 
Galerkin/Least Squares (GLS) method (Harari and Hughes 1992), Generalized Finite Element 
Method (Babuska et al. 1995), Discontinuous Galerkin Method (Farhat et al. 2001) and 
Bubble-based Stabilization Method (Harari and Gosteev 2007). Recent developments in 
Variational Multi-scale (VMS) Method (Hughes et al. 2004, Harari 2008) have shown that several 
non-standard finite element methods are closely related to VMS method. A common assumption in 
those methods is to consider the fine-scale enrichments to vanish on the inter-element boundaries, 
thus localizing the effect of the fine-scale. The obvious limitation associated with the loss of 
essential global effects inherent in local approaches may be overcome by including the 
inter-element jump terms (Oberai and Pinsky 2000) in the residual-based stabilized finite element 
method or employing nonconforming methods (Franca et al. 2005) under the Petrov-Galerkin 
framework. The early developments of multi-scale methods for Helmholtz equation were based on 
the element fine-scale Green functions (Oberai and Pinsky 1998, Hughes et al. 2004). In general, 
the element fine-scale Green functions become increasingly complicated (Hughes and Sangalli 
2007) as the order of the coarse-scale space is increased. More recently, a variational multi-scale 
method (Baiges and Codina 2013) was proposed to include the contribution of the fine-scale by 
imposing the continuity of fluxes across the inter-element boundaries. Similar to the approach in 
the GLS method, the stabilization parameter associated with the inter-element boundary terms in 
VMS method is determined by a dispersion analysis but the VMS method yields a result that is 
less dependent on the direction of the wave propagation and mesh orientation. 

On the other hand, several meshfree formulations (Uras et al. 1997, Suleau and Bouillard 2000) 
have also been developed to solve the wave and Helmholtz equations. It has been shown 
(Bouillard and Suleau 1998, You et al. 2002) that the dispersion and pollution phenomena affect 
the meshfree and finite element solutions in a similar way. However, the meshfree methods are 
more accurate than the finite element methods under same discretization (Bouillard and Suleau 
1998, Voth and Christon 2001). In comparison with the standard finite element method, the 
characteristics of mesh-independent and wave-based approximation effectively make the meshfree 
methods attractive alternative numerical techniques for modeling the acoustic wave propagation 
problems. Conventional meshfree approximations such as Moving Least-Squares (MLS) 
approximation (Belytschko et al. 1994) and Reproducing Kernel (RK) approximation (Liu et al. 
1995) do not satisfy the Kronecker-delta property at the boundary thus require special treatments 
such as Lagrange multiplier to impose the essential boundary conditions. However the method of 
Lagrange multiplier involves more unknowns which may result in an indefinite discrete linear 
system and pollute the numerical solution. Other meshfree interpolation methods based on radial 
point interpolation (Wenterodt and von Estorff 2009) or radial basis functions (Lai et al. 2010) 
were also developed for the analysis of Helmholtz equation and significant accuracy 
improvements have been made in particular for the medium and high frequency modes. While 
such methods provide high fidelity predictions of the propagation properties in waveguides, the 
issues of high conditioning, irregular nodal distribution and boundary effect due to the 
characteristics of non-locality and over-determined system of equations in those methods have not 
yet been fully investigated.  

Recently a novel approximation scheme, the generalized meshfree (GMF) approximation 
method (Wu and Koishi 2009, Wu et al. 2011), was developed to enhance the smoothness of the 
approximation as well as to generate the desired weak Kronecker-delta property (Wu and Koishi 
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2009) at the boundary. The meshfree convex approximation (non-negative and reproducing exactly 
affine functions) generated by GMF approximation method was shown to be insensitive to the 
nodal support size in solving the elastostatic problems. Park et al. (Park et al. 2011) embarked on a 
detailed dispersion analysis for GMF approximation method and revealed that meshfree convex 
approximation exhibits smaller lagging phase and amplitude errors than non-convex meshfree 
approximation in full-discretization of the wave equation. An immersed meshfree Galerkin 
formulation (Wu et al. 2013) was proposed using the nonconforming GMF approximations to 
solve the interface constraint problems in the composites and was shown to satisfy an optimal 
error estimates in the energy norm. By incorporating a local meshfree convex approximation into a 
low-order finite element, an enriched finite element formulation (Wu et al. 2012) was developed 
for solving the linear and nonlinear problems (Hu et al. 2012, Wu and Koishi 2012) involving 
material incompressibility. Their numerical inf-sup study (Wu and Hu 2011) has indicated the pair 
of spaces in displacements and pressure fields is inf-sup stable. This paper presents another 
application of meshfree convex approximation in solving the acoustic wave propagation problems. 
Different from the finite element enrichment using the local meshfree convex approximations for 
incompressible problems, the fine-scale finite element enrichment in the variational multi-scale 
method for acoustic wave propagation problems is constructed using the global meshfree convex 
approximations.  

This paper is organized as follows: In Section 2 the basic equation in acoustic wave 
propagation problem and its variational formulation are reviewed. Section 3 overviews the 
variational multi-scale formulation and introduces the global residual-free fine-scale enrichments 
using convex meshfree approximations to the variational multi-scale formulation for analysis of 
Helmholtz equation. The global fine-scale approximations constructed using the meshfree convex 
approximations are presented in Section 4. The relationship between the present global fines-scale 
approximations and the Green’s functions is also discussed in the same Section. Two numerical 
examples are given in Section 5. Final conclusions are made in Section 6. 
 
 
2. Interior Helmholtz equation 

 
The propagation of pressure waves in an acoustic media inside a domain is governed by the 

wave equation, which can be derived using the balance of mass, moment and the ideal gas law. 
Assumed that the state variables pressure P, density  and velocity v experience only small 
harmonic perturbation, then the wave equation can be transformed to the frequency domain and 
solved by the following Helmholtz equation: Find p:  C 

       : 22 infpkp Θp                          (1) 

0pp   on D ,                               (2) 

Nn onvip      n                              (3) 

Bn onpAip      n                             (4) 

where Θ denotes the self-adjoint, indefinite, Helmholtz operator. 1i , k=ω/c denotes the 
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wave number and is defined by the ratio between the angular frequency ω and the speed of sound 
c. p is the complex amplitude of the sound pressure and f is the source term. The boundary consists 
of three disjointed parts, i.e., 

BND                                 (5) 

where BND   and , are Dirichlet, Neumann and Robin boundaries respectively. n is the exterior 

unit normal vector and vn stands for the excitation by the vibrating panels on Neumann boundary. 
An is the admittance coefficient that models the structural damping on the Robin boundary. 
Different from the wave equation which is a linear hyperbolic equation, the Helmholtz equation is 
also called the reduced wave equation and is a prototype of a linear elliptic equation.                           
The corresponding variational form of this problem consists of finding 

    DD onppHpHVp    0
11  such that 

     

1
0nn HwdwvifwdwpdAiwpdkpdw

NB

   2     (6) 

or in abstract form 

          
1
0,,,, HwvwifwpwAipwA

nB nn            (7) 

where     DonwHwH    011
0  is the space of kinematically homogeneous test 

function w.  ,  is the L2 inner product. The sesqulinear form A(w,p) is defined by 

       pwkpwpwA ,,, 2                         (8) 

Generally speaking, the solution of Helmholtz equation is highly oscillatory at high wave 
number. Consequently, the discretization in finite element method using the low-order elements 
has to be fine enough to resolve the oscillatory part of the solution. In another words, fine mesh is 
needed in order to avoid the loss of stability of the Helmholtz operator Θ, or equivalently to avoid 
the loss of ellipticity of Helmholtz equation at high wavenumber, i.e., for high wave number k, 

  hhhhhh VwwkwwwA    0,
222

                   (9) 

An engineering criterion for the mesh size h to resolve the oscillatory part of the solution is to 
follow the “rule of thumb” (Harari and Hughes 1991) defined by 

hk = constant.                                 (10) 

Sharp error estimations have been obtained under the small magnitude assumption of hk and 
have been shown (Ihlenburg and Babuska 1997) that the relative error of the low-order finite 
element solution in the H1-seminorm satisfies 

    221
2

1
2

hkkCCdpph                         (11) 
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where C1 and C2 are constants independent of the wavenumber and element size. The first term on 
the high-hand side of Eq. (11) represents the usual approximation error. The error in second term 
dominated the whole errors at medium and high wave numbers. This error is often referred to as a 
“pollution error” (Ihlenburg and Babuska 1995) which is related to the loss of numerical stability 
in short wave problems. In essence, the pollution error is associated with the unresolved part of the 
solution that lies outside the resolution capacity of a given mesh. 
 
 

3. Variational multi-scale method 
 
As pointed out in last section, the numerical instability in modeling the problem (1)-(4) comes 

from the inability to measure the effect of unresolved fine-scales at the resolved discretization 
level. In order to better approximate the oscillatory part of the Helmholtz solution using low-order 
finite element method, fine-scale solution is introduced via VMS method (Hughes et al. 2004, 
Harari 2008). In the definition of VMS, the exact solution is interpreted as an overlapping of a 
resolved coarse-scale component and an unresolvable fine-scale component. In frequency domain, 
the coarse-scale solution corresponds to the combination of frequency modes of lower wave 
numbers and the fine-scale solution corresponds to the part superimposed by the short wave 
modes.  

Recall the original variational formulation in (6), any 1
0Hwh   admits a unique decomposition 

as 

ffccfch VwVwwww  , with,                        (12) 

where wc represent the coarse-scale test functions, and wf  are the fine-scale test functions. The 
above definition induces a multi-scale decomposition for the function space of the form 

fch VVV                                   (13) 

where Vc hV is the finite-dimensional space obtained through a finite element discretization and 

Vf  is the space of fine-scale functions. Theoretically, Vf does not pose scaling information, and 
therefore it is infinite-dimensional. However, in the discrete case, Vf  can be replaced with various 
possible finite-dimensional approximations either using analytical methods such as element 
Green’s functions or numerical methods such as bubbles, hierarchical shape functions, or wavelets. 
The approximation ph to the sound pressure p can also be decomposed into two scales. 

fch ppp                                  (14) 

Here, cc Vp  is based on standard finite element polynomials, representing coarse-scale solution 

that is resolved by the mesh. ff Vp  is an enhancement or enrichment, representing fine or 

subgrid scale solution. Likewise, the Dirichlet boundary condition (2) is assumed satisfied ab 
initio by the trial solution Pc. Therefore, the fine-scale functions are chosen such that they vanish 
on the global boundary Γ and satisfy the following system 
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   









    0

      22

onp

infppkpp

f

fcfc                     (15) 

The definition in Eq. (15) justifies the name “global residual-free” in this paper for the 
enrichments in the oscillatory type of fine-scale approximations as will be described in the next 
section. Using a simple algebra can help show that the proposed formulation is residual-based in 
the sense that if the coarse-scale solution is also the exact solution, i.e., 

           22 infpkp cc                          (16) 

then 

pf = 0 in Ω,                                 (17) 

thus the fine-scale vanishes identically.  
Substituting Eqs. (12) and (14) into Eq. (6) and exploiting the linearity of the test function slot 

we can split Eq. (6) into a coarse-scale and a fine-scale problem. The application of Green’s 
theorem and cancellation of surface terms lead to equations consist of the coarse-scale equation 

     

ccncc

ccnfccfcc

Vwdvwidfw

dpwAidppwkdppw

N

B







  



  

    

2




     (18) 

or 

          ccnccccnfccc VwvwifwpwAipwApwA
nB

  ,,,,,     (19) 

and the fine-scale equation 

    ffΩ ffcffcf Vw dfwdppwkdppw    
  ΩΩ 2       (20) 

or 

      fffffcf VwfwpwApwA 


,,,                  (21) 

Note the boundary terms in Eq. (20) drop out in the fine-scale equation because of the space 
chosen for the fine-scale approximation.  

The general idea at this point is to solve Eq. (20) and extract the expression for the fine-scale 
field. The expression then can be substituted in the coarse-scale equation defined by Eq. (19), 
thereby eliminating the explicit presence of the fine-scale field, yet modeling its effect. In standard 
VMS method using the fine-scale Green’s function, the sesquilinear forms  cf pwA ,  and 

 ff pwA ,  in Eq. (21) are further expressed using integration by parts and Eq. (15) to yield 
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         
     
 













cf

cefcf

cefcefcfcf

pw

pwpw

pwpwpwpwA
BN

,               

,,               

,,,,

n

nn

         (22) 

         
     
 













ff

fefff

feffefffff

pw

pwpw

pwpwpwpwA
BN

,                

,,                

,,,,

n

nn

        (23) 

where e

n

e

el


1

is the union of element interiors, 





 

 e

n

e

el

1
represents the summation of 

element skeleton. The jump operator     is defined by 

      bbnbn ee                             (24) 

where ne denotes a unit normal vector on the element boundary. ΘPc and ΘPf are Dirac 
distributions (Hughes et al. 2004) on Ω. Substituting Eqs. (22) and (23) into Eq. (21) leads to the 
following fine-scale equation 

       efffffcf HVwfwpwpw
e

 
1
0,,,            (25) 

which can be used to solve the Green’s function problem (see e.g. Oberai and Pinsky 1998 for 
details). By assuming zero Dirichlet boundary conditions on every element boundary for element 
Green’s function together with the homogenous boundary condition in Eq. (17), the local 
fine-scale solution can be obtained by 

     

         

         

         

    xc

n

e
e

n

e
xceexce

xceexce

xcexc

xcf

dfpg

dpgdfpg

dpgdfpg

dpgdfpg

dfpgp

el

e

el

ee








 









 


















xxx

xxxxxx

xxxxxx

xxxxxx

xxxx

0
1

1
00

00

00

00

,            

,,            

,,            

,,            

,

n

n

n

   (26) 

where  0, xxg  is the global fine-scale Green’s function for a kind of interior Helmholtz equation 

with homogeneous boundary conditions evaluated at x0.  0, xxeg is the element-wise 

approximation of Green’s function. It is clear that Eq. (26) has lost the global effects due to the 
restriction of element Green’s function to a vanishing trace on the element boundaries. In order to 
retrieve the global effects on the fine-scale approximations, a global fine-scale approximation 

89



 
 
 
 
 
 

C.T. Wu and Wei Hu 

constructed using meshfree method is considered in this study. Note that since global Green’s 
functions are only known for relatively simple configurations, we are not using Green’s functions 
for the global fine-scale approximations in general cases. In the content of VMS method, wc and pc 
take the form 

      cc WNWN xxx  cc ww                       (27) 

      ccc pp PNPN c )(xxxx                        (28) 

where N(x) is the finite element shape function in row vector, while  Tccc pp 21P is the 

discretized field variable in column vector that needs to be determined and 

 Tccc ww 21W is its variation. Similarly for the global fine-scale approximations and their 

gradients, we have 

        ff WφWφ xxxx  ff ww                      (29) 

        ff PφPφ xxxx  ff pp                      (30) 

where  xφ  is the shape function of global fine-scale approximations in row vector and its 

derivation will be described in the next section.  Tfff pp 21P is the unknown discretized 

field variable with its variation  Tfff ww 21W . Substituting Eqs. (29) and (30) into Eq. 

(25) and invoking the arbitrariness of Wf leads to 

RPK fff                                (31) 

where ffK  is the coefficient matrix which is symmetric, and R  is right-hand side term that is 

related to the residuals from the homogeneous coarse-scale solution and the effect from the source 
term. They are defined by 

          
 dkd TT

ff xxxx φφφφK 2                  (32) 

  cfcf PKFR                                 (33) 

      dff xφF                                (34) 

          
 dkd TT

fc xxxx NφNφK 2                     (35) 

Similarly, we have the following linear system for coarse-scale solution 

RPK ccc                                  (36) 
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where Kcc represents the standard symmetric coefficient matrix interpolated by the low-order finite 

elements. Right-hand side term R includes the original right-hand side term cF from the 

coarse-scale and an additional term contributed from the fine-scale solution. They are given by 

            




      B

dAidkd T
n

TT
cc xxxxxx NNNNNNK 2          (37) 

 c f f  cR F K P                                 (38) 

       


N

dvidf nxx NNFc                          (39) 

         T
fc

TT
f dkd KφNφNK c    

  2 xxxx                   (40) 

The combination of (31) and (36) yields a linear equation solving for coarse-scale and fine-scale 
solutions. 
































f

c

f

c

fffc

T
fccc

F

F

P

P

KK

KK
                         (41) 

Since fine-scale approximations satisfy the homogenous boundary condition, the fine-scale nodal 
coefficients associated with the boundary nodes become null. Accordingly, the vector Pf  contains 
only the node set of interior nodes. Eq. (41) can also be written in a condensed form 

  RPK ˆˆ c                                   (42) 

where 

  ˆ
fc

-1
ff

T
fccc KKKKK                           (43) 

  ˆ
f

-1
ff

T
fcc FKKFR                             (44) 

Now the new coefficient matrix K̂ remains symmetric, and it contains the low-scale coefficient 

matrix ccK and a stabilization term   fc
1

ff
T
fc KKK - from the fine-scale approximations. Note that 

fine-scale approximations reside completely in the definition of the stabilization term. Accordingly, 
the positive-definite system of the final Eq. (42), and thus the discrete analogue of ellipticity of the 
Helmholtz equation is controlled by the characteristics of the fine-scale approximations. 
 
 
4. Fine-scale approximations 

 
In this section, the global fine-scale approximations are constructed using the wave-based 

meshfree approximations to capture the oscillatory type of fine-scale solution. The fine-scale 
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equation of Eq. (25) can be re-expressed in the following residual form 

    ffcfff Vwpfwpw 


,,                     (45) 

The corresponding strong form (Euler-Lagrangian equation) to Eq. (45) is 








                  0

      

onp

inpfp

f

cf                       (46) 

with relevant Green’s function problem defined by 

   
 







                     0,

      ,

0

00

ong

ing

xx

xxxx 
                  (47) 

Since the operator Θ is linear, the fine-scale solution of Eq. (46) can be determined in terms of 
global Green’s function given by 

       xcf dfpgp   xxxx 00 ,               (48) 

Note Eq. (48) is a theoretically exact formulation for pf and the problem of Eq. (46) lies in finding 
the Green’s function g   that satisfies Eq. (47).  
  On the other hand, the proposed global fine-scale approximations in Eq. (31) can also be written 
by 

 fcftfff FPKKP  1                      (49) 

Compare Eq. (49) to Eq. (48), we can observe the matrix -1
ffK in Eq. (49) plays a role like the 

global fine-scale Green’s function  0, xxg . The main numerical issue in constructing the global 

fine-scale approximations using meshfree method is the satisfaction of    0 onp f . To solve this 

numerical issue, the wave-based approximations generated by the Generalized Meshfree (GMF) 
convex approximation are employed to obtain the global fine-scale approximations.  

The fundamental idea of the GMF approximation (Wu et al. 2011) is the introduction of an 
enriched basis function in the Shepard function to achieve linear consistency. The choice of the 
basis function determines whether the GMF approximation has convexity property and if the 
corresponding global fine-scale approximations satisfy    0 onp f . In this paper, a convex GMF 

approximation constructed using an exponential basis function is considered. Assume a convex 
hull conv( ) of a node set   nii ,1,x ℝ2 defined by (Wu et al. 2011) 

conv( ) = 






i

n

i
ii xx

1

  , i ℝ




 


 ,2,1 ,1,0, 
1

i
n

i
ii  .       (50) 

The GMF method is to construct convex approximations of a given function p in the form 
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    i
n

i
i

h pp 



1

xx                        (51) 

with the generating function  conv:i  ℝ satisfying the following polynomial 

reproduction property 

   


conv xx xx  
1

i

n

i
i .         (52) 

The first-order GMF approximation in two-dimensions is expressed as 

                     
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
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xxxxx

xxxxx
xx            (53) 

subjected to linear constraints 

    0 


n

i

a
irr

1
i),( xxx  ,   (54) 

where  

                         riiiai B  ,; xxxxx  ,                (55) 

                      riiia

n

i

n

i
i B  ,;

1 1

xxxxx   
 

,            (56) 

The notation ( ; )a i x X in Eq. (53) represents the weight function of node i  with support 

size    iia asupp x-xx; . ),( riiB xx denotes the basis function of the GMF approximation. 

x is the coordinate of material point and ix  is the coordinate of material point evaluated at node 

i . The symbol n  in summations denotes the number of nodes within the support size ( )a x  at 

fixed x . )(xr ( 2r ) are the constraint parameters which have to be determined.  
In the GMF approximation, the property of the partition of unity is automatically satisfied by 

the normalization in Eq. (53). The completion of the GMF approximation is achieved by finding 
  to satisfy Eq. (54). To determine   at any fixed x in Eq. (53), a root-finding algorithm is 
required for the non-linear basis functions. In this study the Newton-Raphson method is adopted 
for the equation solving of the objection function in Eq. (54). The partial derivative of the 
objection function with respect to   is 

                 
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i rr
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1
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1

,





  a

r
a xxJ ,        (57) 

where J  is a 22  Jacobian matrix and   indicates the dyadic product of vectors. Once the 
converged   is obtained, the basis functions are computed and the spatial derivative of the GMF 
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approximation can be obtained and given by 

                        xx ,r
a
i

a
i

a
i  ,,                       (58) 
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 












n

j

ja
i

ia
i

rr
BB

1

,,
, 







 


aa
                 (61) 
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A cubic spline function with a rectangular support is chosen to be the weight function in Eq. (55). 
Finally, the global fine-scale approximations for Eq. (30) can be expressed by   

  



n

i

i
f

a
if pp

1

x                      (65) 

where i
fp  denotes the fine-scale coefficient of node i. Same fine-scale approximations are 

applied to Eq. (29). The constructed fine-scale approximations generate the desired weak 
Kronecker-delta property (Wu and Koishi 2009) with vanishing value on the global boundary. Fig. 
1 illustrates one of the fine-scale approximations that satisfy the homogenous Dirichlet boundary 
condition in Eq. (15). 
 
 

Fig. 1 Illustration of one fine-scale approximation 

94



 
 
 
 
 
 

Multi-scale finite element analysis of acoustic waves using global residual-free meshfree 

 

Table 1 Three formulations adopted in the numerical comparison 

Name Description 

FEML 4-noded bilinear finite element formulation (2-noded in 1D. 

FEMQ 8-noded quadratic finite element formulation (3-noded in 1D). 
PRESENT Multi-scale meshfree-enriched finite element formulation. 

 
 
5. Numerical examples 
 

In this section, two benchmark examples are analyzed to study the performance of the present 
method for the multi-scale analysis of acoustic wave propagation problems. The normalized nodal 
support size in Eq. (53) for the global fine-scale approximations is chosen to be 3.0 for all 
numerical examples. A four-point Gauss quadrature rule is employed for the integration of discrete 
equations in Eq. (42). As comparison, we also provide the results from the bilinear and quadratic 
finite element formulations. A list of abbreviations for those methods along with their brief 
descriptions is given in Table 1. Unless otherwise specified, dimensionless unit system is adopted 
in this paper for convenience. 
 

5.1 Wave propagation in bar 
 

The one–dimension wave propagation in frequency domain is investigated. Same problem has 
been studied in (Uras et al. 1997) using Reproducing Kernel Particle Method (RKPM). The 1D 
waveguide has a length of 10 and is uniformly discretized into 20 elements using piece-wise linear 
finite elements or 10 elements using quadratic finite elements. This discretization corresponds to 
21 nodes for all three numerical methods. The governing equation for this problem can be 
described by the following Helmholtz equation 

 2 2 x       p k p f in    .                   (66) 

Two cases are examined in this 1D example: 
(1)  The first case considers a homogenous differential equation with non-homogenous boundary 
condition described by 

0)10( and 1)0( ,0)x(  ppf .            (67) 

The analytical solution of this case is given by 

    
 k

k
p

10sin

x10sin
x


 .                   (68) 

Figs. 2(a)-(c) compares the results with three different wave numbers, 2,3,4k   using 
evenly-distributed nodes. It can be seen that linear FEM experiences large amplitude error even 
with k = 2 which corresponds to five elements per wavelength in this example. The large 
amplitude error in linear FEM is related to the approximation error. On the other hand, the 
presence of pollution error in linear FEM can be verified by increasing wave number k as shown in 
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Fig. 2(b). Severe pollution error is observed in the case k = 4, and thus is not plotted in Fig. 2(c). 
Quadratic FEM improves the solution of linear FEM in particular for the case with a higher wave 
number. However, the improvement is limited to the resolution of mesh in higher-order elements 
as shown in Fig. 2(c). The present multi-scale approach achieves a good agreement with analytical 
solution for all three different wave numbers. Particularly in Fig. 2(c), the present method 
demonstrates an excellent ability to model the short wavelengths. When k = 4, only 3 elements (2 
elements for Nyquist limit) per wavelength are required in the present method to meet the 
analytical solution. 
 
 

(a) k = 2 

(b) k = 3 

(c) k = 4 

Fig. 2 Comparison of solution in different wave numbers using regular mesh (1st case) 
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Fig. 3 The components of coarse and fine scale in two-scale solution with k = 4 (1st case) 
 

(a) Linear FEM 

 

(b) Quadratic FEM 

 

(c) Present multi-scale method 

Fig. 4 Swept spectrum analyses with wave number (0,4]  using regular mesh (1st case) 
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(a) k = 2 

(b) k = 3 

(c) k = 4 

Fig. 5 Comparison of solution in different wave numbers using irregular mesh (1st case) 
 
 

The coarse and fine scale components of the present multi-scale method for wave number k = 4 
are plotted in Fig. 3. The coarse solution in Fig. 3 presents a relatively smooth solution that is 
interpolated by the linear finite element method. The fine-scale component is a nonlocal solution 
which is approximated by the global residual-free meshfree enrichment. The fine-scale solution 
satisfies the homogenous Dirichlet boundary in Eq. (15) as shown in Fig. 3 and offers the ability to 
reduce the pollution error in the highly oscillated wave solution that is outside the discretization 
level. 

Superior performance of the present method over two other methods can also be seen in Figs. 
4(a)-(c). Figs. 4(a)-(c) compare the middle point displacement between the analytical and 
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numerical solution where the wave number varies from zero to 4. The results of linear and 
quadratic FEM methods show good agreements for low wave numbers, but have significant 
deteriorations for high wave numbers. The result of the present method matches the analytical 
solution very well in all spectrums. The present method also improves the RKPM solution for the 
shorter waves as presented in Fig. 6 of (Uras et al. 1997). 
The sensitivity of mesh irregularity to the wave solution is also studied in this example. Since the 
solution of linear FEM deteriorates significantly in this test example, its result is therefore omitted 
and not reported in this paper. The results of quadratic FEM are shown in Figs. 5(a)-(c). The 
performance of quadratic FEM using irregular nodal distribution is much worse than the one using 
regular mesh as illustrated in Figs. 5(a)-(c). Remarkably, the present method with the irregular 
discretization maintains the same accuracy level as in the case of regular mesh for low wave 
number and outperforms the quadratic FEM for high wave number as depicted in Fig. 5(c). 
Consistent result is observed in Figs. 6(a)-(b) which compare the middle point displacement with 
wave number ranging from zero to four. In this study, we observe a poor performance of linear and 
quadratic FEM methods when mesh becomes irregular. 
 
 

 

(a) 

(b) 

Fig. 6 Swept spectrum analyses using irregular mesh (1st case) 
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(a) 

(b) 

(c) 

Fig. 7 Swept spectrum analyses using regular mesh (2nd case) 
 
 
(2)  The second case considers a nonhomogenous differential equation with homogenous 

boundary condition, with (x) 1f  . The analytical solution of this case is given by 

     
   2

cos 10 11
x 1 cos x sin x

sin 10

k
p k k

k k

 
   

 
.             (69) 

Fig. 7 depicts the comparison of the middle point displacement between the analytical and 
numerical solution using regular mesh. Similar to the results in Case (1), the present method in this 
case yields much more accurate results over linear and quadratic FEM in the wave number 
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spectrum analysis especially in high wave numbers. We can conclude from this numerical study 
that meshfree enrichment to the unresolved fine scales in VMS method allows FEM to effectively 
approximate high wave number problem that is beyond the mesh resolution. 
 

5.2 The acoustic square domain problem with robin boundary conditions 
 

The effectiveness of the present method in two-dimension case is examined in this plane wave 
propagation problem. The standard FEM method usually is sensitive to the mesh orientation 
relative to the plane wave propagation direction which is generally not known a priori in real 
problems. The problem in this example is taken from (Bouillard and Suleau 1998, Yao et al. 2010) 
which considers a unit square domain with Robin boundary conditions prescribed on all four edges 
under different plane wave propagation directions. The governing equation for this problem can be 
described by the following Helmholtz equation 

2 2 0      

1          at  x 0, y 0

p k p in

p

   
  

                (70) 

with non-homogenous Robin boundary conditions as follows 

cos x 0

cos x 1

sin y 0

sin y 1

ikp

ikp
p

ikp

ikp






 
     
 

n .                     (71) 

The analytical solution of this problem is a plane wave propagating along a direction inclined with 
an angle of β degrees on x-axis and is given by 

     x, y cos x cos ysin sin x cos ysinp k i k             .      (72) 

The regular and irregular 10x10 discretization are used, as shown in Fig. 8. Since the Robin 
boundary conditions (RBC) in this problem are highly oscillated for high wave number and only 
satisfied by the coarse-scale solution in the weak sense, the residual of RBC is introduced in the 
fine-scale equation and minimized using the present variational multi-scale framework. 

Figs. 9(a)-(c) show the real part of the solution by three comparing methods under different 
wave number k and RBC parameter  using a regular discretization. For the case of k = 6 and 

4  , all three numerical methods generate the solutions which are in good agreements with 
the analytical solution as depicted in Fig. 9(a). Linear FEM solution loses the accuracy 
significantly as wave number increases to be k = 12 as shown in Fig. 9(b). The sensitivity of 
pollution error to the wave propagation direction is investigated and reported in Fig. 9(c) using k = 
12. When the dominant direction of propagation becomes β=π/24, both linear and quadric FEM 
produce notorious pollution error as presented in Fig. 9(c). In contrast, the present method 
demonstrates its superiority over FEM in minimizing the pollution error even when the fine-scale 
approximations do not contain the information of plane wave propagation direction. 
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(a) Regular discretization (b) Irregular discretization 

Fig. 8 Discretization in acoustic wave problem with Robin boundary condition 
 
 

(a) 6, 4k     

(b) 12, 4k     

(c) 12, 24k     

Fig. 9 Comparison of real part solution using regular mesh 
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When mesh becomes irregular, large error is observed in both linear FEM and quadratic FEM 
methods as depicted in Figs. 10(a)-(c). Strong mesh dependence in FEM solution can be observed 
by comparing Fig. 9(b) and Fig. 10(b). The pollution error increases dramatically for linear and 
quadratic FEM when the plane wave is oriented at an angle of β=π/24 as shown in Fig. 10(c). 
While FEM suffers from accuracy deterioration in irregular discretization, the present method is 
able to retain its superior performance, albeit to a lesser degree, when mesh is irregular and in 
different wave propagation directions. Results of this numerical example indicate that the global 
meshfree enrichments in VMS method substantially improve the accuracy of single-scale FEM 
method that is prominently sensitive to the mesh orientation and wave propagation direction in the 
two-dimensional acoustic wave analysis. 
 
 

(a) 6, 4k     

(b) 12, 4k     

(c) 12, 24k     

Fig. 10 Comparison of real part solution using irregular mesh 
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6. Conclusions 
 
We have presented a general framework for the global residual-free meshfree enrichment in the 

multi-scale finite element formulation. In this study, the present meshfree-enriched multi-scale 
finite element formulation is applied to the acoustic wave propagation problems. The fine-scale 
approximations in the present method are generated from the meshfree convex approximations 
constructed by the Generalized Meshfree approximation, and thus maintain the continuity of 
fine-scale fluxes across the finite element boundaries and do not require a complicated treatment 
on the jump terms. Since the global wave pattern is not incorporated in the fine-scale basis 
functions, no a priori knowledge of fundamental solution in the fine-scale approximation is 
assumed. The present multi-scale variational decoupling of the Helmholtz equation facilities 
accurate modeling of acoustic waves at different scales as demonstrated in the numerical examples. 
The extension of the formulation to the exterior Helmholtz equation as well as other PDEs is under 
developing and will be presented in the near future. 
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