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Analysis of wave motion in micropolar transversely isotropic 
thermoelastic half space without energy dissipation
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Abstract. The propagation of waves in a micropolar transversely isotropic half space in the theory of
thermoelasticity without energy dissipation are discussed. After developing the solution, the phase
velocities and attenuation quality factor has been obtained. The expressions for amplitudes of stresses,
displacements, microrotation and temperature distribution have been derived and computed numerically.
The numerical results have been plotted graphically.
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1. Introduction

Micropolar elasticity theory introduced by Eringen (1968) incorporates the local deformations and

rotations of the material points of a body. The theory provides a model that can support body and

surface couples and display a high frequency optical branch of the wave spectrum. For engineering

applications, it can model composites with rigid chopped fibres, elastic solids with rigid granular

inclusions, and other industrial materials such as liquid crystals (Eringen 1968, 1992, Maugin and

Mild 1986). Several investigations revealing interesting phenomenon that characterize the micropolar

theory and some of its generalizations are contained in (Eringen 1999, 2001, Janusz 2003).

The classical theory of heat conduction predicts that if a material conducting heat is subjected to a

thermal disturbance, the effects of the disturbance will be felt instantaneously at distances infinitely

far from its source. This prediction is unrealistic from a physical point of view, particularly in

problems like those concerned with sudden heat inputs. This shortcoming of the theory stems from

the fact that the equation governing the temperature distribution (heat transport equation), on which

the theory is based, is a parabolic-type partial differential equation that allows an infinite speed for

thermal signals. During last three decades, nonclassical theories free from this drawback by using

modified version of classical Fourier's law of heat conduction have been formulated which involve

hyperbolic-type heat transport equation and admit finite speed for thermal signals.

The linear theory of micropolar thermoelasticity was developed by extending the theory of

micropolar continua to include thermal effects by Nowacki (1966) and Eringen (1970). Tauchert et

al. (1968) also derived the basic equations of linear theory of micropolar thermoelasticity. Dost and
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Tabarrok (1978) presented the micropolar generalized thermoelasticity by using Green -Lindsay

theory. One can refer to Dhaliwal and Singh (1987) for a review on the micropolar thermoelasticity.

Chandrasekhariah (1986) formulated a theory of micropolar thermoelasticity which includes heat-

flux among the constitutive variables.

Recently, the theory of thermoelasticity without energy dissipation, which provides sufficient

basic modifications to the constitutive equation to permit the treatment of a much wider class of

flow problems, has been proposed by Green and Naghdi (1993) (called the GN theory). The

discussion presented in the above reference includes the derivation of a complete set of governing

equations of the linearized version of the theory for homogeneous and isotropic materials in terms

of displacement and temperature fields and a proof of the uniqueness of the solution of the

corresponding initial mixed boundary value problem. Chandrasekharaiah and Srinath (1996) investigated

one-dimensional wave propagation in the context of the GN theory.

The aim of the present paper is to discuss the propagation of waves in the theory of

thermoelasticity without energy dissipation for micropolar transversely isotropic half space. The

importance of thermal stresses in causing structural damages and changes in functioning of the

structure is well recognized whenever thermal stress environments are involved. The phase

velocities and attenuation quality factors are obtained and plotted numerically. The expressions for

amplitude ratios of components of displacements, microrotation, stresses and temperature

distribution are also obtained. A particular case of interest is also deduced.

2. Basic equations

The basic equations in dynamic theory of the plain strain of a homogeneous and micropolar

transversely isotropic medium following Eringen (1999) and Green and Naghdi (1993) in the theory

of thermoelasticity of without energy dissipation in absence of body forces, body couples and heat

sources are given by

(1)

  i, j, k = 1, 2, 3 (2)

and heat conduction equation is given by

(3)

 The constitutive relations can be given as

(4)

where

(5)

In these relations,we have used the following notations

ρ is the density,

tj i j, ρu··i=

mik i,   ∈ i jk tij+ ρ φ
··
k=

κijT,i j ρC
*∂2

T

∂t2
-------- To

∂2

∂t2
-------βijui j,+=

ti j Ai jklεkl Gi jklΨkl βijT, mi j–+ Gijklεkl Ψkl+= =

εij uj i,   ∈ j ik φk Ψij,+ φi j,= =
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 permutation symbol,

ui components of displacement vector,

φk component of microrotation vector,

tij components of the stress tensor,

mij components of the couple stress tensor,

εij components of micropolar strain tensor,

κij = κiδij (i not summed) = (λ + 2µ)C* are the characterstic constants of the theory,

C* is specific heat at constant strain,

βij = βiδij (i not summed) are the thermal elastic coupling tensor.

3. Formulation of the problem

We consider homogeneous, micropolar transversely isotropic medium under the theory of

thermoelasticity without energy dissipation, initially in an undeformed state and at uniform

temperature To. We take the origin of coordinate system on the top plane surface and x3 axis

pointing normally into the half-space, which is thus represented by x3 ≥ 0 (Fig. (a)). We consider

plane waves in plane such that all particles on a line parallel to x2-axis are equally displaced.

Therefore, all the field quantities will be independent of x2 coordinate. So, we assume the

components of the displacement and microrotation vector for two dimensional problem of the form

(6)

With the aid of Eq. (6), Eqs. (1)-(4) reduced to

 ∈ jik

U u1 0 u3, ,( ) φ, 0 φ2 0, ,( )= =

Fig. (a) Geometry of the problem
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(7)

(8)

(9)

(10)

where

For simplification we use the following non-dimensional variables

(11)

where L is a parameter having dimensions of length and c1 is the longitudinal wave velocity of the

medium.

4. Solution of the problem

The solution of the considered physical variables can be decomposed in terms of normal modes as

(12)

where ξ is the wave number, ω = ξc is the angular frequency and c is phase velocity of the wave, m

is the unknown parameter which signifies the penetration depth of the wave,  are

respectively, the amplitude ratios of displacement u3, microrotation φ2 and temperature T to that of

displacement u1.

Using Eqs. (11) and (12) in Eqs. (7)-(10), we obtain four homogeneous equations in four

unknowns, which on solving for the non trivial solution yields a biquadratic equation in q(= m2) of

the form

(13)

where
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The complex coefficients implies that four roots of this equation may be complex. The complex

phase velocities of the quasi-waves, given by qi, will be varying with the direction of phase

propagation. The complex velocity of a quasi-wave 'j ' i.e., qi = qR + ιqI, defines the phase

propagation velocity Vi = ( ) / qR and attenuation quality factor = −2qI / qR for the

corresponding wave. Therefore, the four waves propagating in such a medium are attenuating

waves. The same directions of waves propagation and attenuation vectors of these waves make

them homogeneous waves. These waves are called quasi-waves because polarizations may not be

along the dynamic axes. The waves with velocities q1, q2, q3, q4 may be named as quasi-longitudinal

displacement(qLD)wave, quasi thermal wave (qT), quasi transverse microrotational (qTM)wave and

quasi transverse displacement(qTD)wave, that are propagating with the descending phase velocities

Vi, (i = 1, 2, 3, 4), respectively.

5. Boundary condition

We assume that the boundaries of the half space are stress free thermally insulated. Therefore, we

consider following types of boundary conditions:

Mechanical conditions: The mechanical boundary conditions at x3 = 0 for stress free boundaries

A ξ
 8
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 4
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are given by

(14)

where

(15)

(16)

(17)

Thermal conditions: The thermal boundary condition at x3 = 0 is given by

(18)

where h is the surface heat transfer coefficient;

h → 0 corresponds to thermally insulated boundaries and 

h →  refers to isothermal boundaries.

For the solution for surface waves, it is essential that motion is confined to free surface x3 = 0 of

the half-space, so that the characteristic roots qi must satisfy the radiation conditions Real (qi) ≥ 0. So,

we take the solution for the displacement, microrotation and temperature distribution of the form

(19)

6. Amplitudes of stresses, displacements, microrotation and temperature distribution

In this section the expressions for the amplitudes of the components of displacement,

microrotation, stresses and temperature distribution for plane waves can be obtained as
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where

7. Particular case

Taking

A11 = A33 = λ + 2µ + K, A55 = A66 = µ + K, A13 = λ, A56 = µ

B66 = B77 = γ, κ1 = κ3 = κ, β1 = β3 = β

with

−K1 = K2 = X / 2 =K

we obtain the corresponding expressions for the isotropic micropolar thermoelastic half space

without energy dissipation.

8. Numerical results and discussion

In order to illustrate the theoretical results obtained in the preceding sections, we now present

some numerical results. For numerical computation, we take the values of relevant parameters for

transversely isotropic micropolar thermoelastic solid as

A11 = 15.974 × 1010 Nm−2, A33 = 13.843 × 1010 Nm−2, A55 = 5.357 × 1010 Nm−2

A66 = 5.42 × 1010 Nm−2, A13 = 9.59 × 1010 Nm−2, A56 = 5.89 × 1010 Nm−2

B77 = 1.779 × 109 N, B66 = 2.779 × 109 N, ρ = 1.74 kg / m3, C* = 1.04 Cal / K, = 0.2 m2

For comparison with micropolar isotropic without energy dissipation thermoelastic solid,

following (Eringen 1984), we take the following values of relevant parameters of micropolar

isotropic solid for the case of Magnesium crystal like material as

ρ = 1.74 × 103 Kg / m3, λ = 9.4 × 1010 N / m2, µ = 4.0 × 1010 N / m2

γ = 0.779 × 10−9 N, = 0.2 × 10−19 m2, β = 2.58 N / m2 deg

Figs. 1 and 2 shows the variation of phase velocities Vi, i = 1, .. 4, and attenuation quality factors

, i = 1, .. 4. In these figures the solid curve represents the case of micropolar transversely
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isotropic half space in theory of thermoelasticity of without energy dissipation (MTIWOED), while

dotted curve represents the case of micropolar isotropic half space without energy dissipation

(MIWOED). The comparison in the values of MTIWOED and MIWOED, for two value of wave

number (ξ = .25, .45) have been shown in all the graphs. The curves without center symbol stand

for ξ = .25, while curves with center symbol stands for ξ = .45.

It can be seen from Fig. 1(a) that the value of phase velocity V1 start with sharp initial increase,

then become constant for some time and then again increases with increase in frequency. The

variation pattern remains same for all the cases, with slight difference in their amplitude. Also, the

value of phase velocity gets decreased due to anisotropy. Fig. 1(b) shows that the value of phase

velocity V2, in the case of MTIWOED and for ξ = .25, start with slow increase, then sharply

increases over the interval (1.2,3), then sharply decreases and again start increases with further

increase in frequency. While for ξ = .45, the variation pattern remain same except with difference

that the interval of sharp increase from (1.2,3) to (1,6). Here the amplitudes get increased due to

anisotropy. It is evident form Fig. 1(c) that the value of phase velocity V3 for the all the cases,

initially oscillates with very small amplitude, then increases with increase in frequency. The values

Fig. 1 Variations in the phase velocity (a) V1 (b) V2 (c) V3 (d) V4 of waves with respect to frequency
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for the case of MTIWOED are higher in magnitude as compared to those of MIWOED. Fig. 1(d)

represents the variation in the value of phase velocity V4 with frequency. It can be seen form this

figure that the variation pattern is similar to the case of Fig. 1(c) except with difference that the

initial amplitude of oscillations get very large in the present case.

Fig. 2 represents the variation in the value of attenuation quality factors , i = 1, .. 4. It is

depicted from Fig. 2(a) that the value of attenuation quality  for the case of MTIWOED and for

both values of wave number, initially decreases, then shows a high jump in its value, to become

constant at the end. For MIWOED the variation pattern is similar with difference in their amplitude

(which is increased in this case). Fig. 2(c) and 2(d) represent the variations of attenuation quality

factor ,  with frequency. It can be seen from these figures that, for the case of MTIWOED

the value of attenuation quality factors show a hump within the interval (0,2) and then flatten out to

become constant at the end. The variation pattern for both  and  remains similar with

difference in the height of hump. It can be seen from Fig. 2(b) that the values of attenuation quality

factor  oscillate and ultimately become constant, for all the cases.

Figs. 3 and 4 show the variations in amplitude of stresses, temperature distribution and

Qi

1–

Q1

1–

Q3

1–
Q4

1–

Q3

1–
Q4

1–

Q2

1–

Fig. 2 Variations in the attenuation quality factor (a) Q1
−1 (b) Q2

−1 (c) Q3
−1 (d) Q4

−1 of waves with respect to
frequency
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components of displacement and microrotation with distance. All numerical computations are

carried out for single fixed value of wave number and for two given values of frequency 1.1494 and

.8210. The computations were carried out within the range 0 ≤ x1 ≤ 25. It is depicted from Fig. 3(a)

that the value of normal stress sharply decreases, then increases and decreases with increase in

distance for ω = 1.1494, while for ω = .8210, its value start with sharp increase and then decreases.

For MIWOED the variations for ω = 1.1494 is similar to the variations for MTIWOED when

ω = .8210 and vice versa, with difference in their amplitudes. Figs. 3(b) and 3(c) shows that the

variation of tangential stresses, for both the values of ω start with initial increase within the range

0 ≤ x3 ≤ 2.5 and then decreases with increase in distance from the surface x1 = 0 in the case of

MTIWOED. However for the case of MIWOED, its value oscillate with large and small amplitude

and then flatten to become constant, when ω = 1.1494 and ω = .8210, respectively. The variation in

amplitude get increased with increase in frequency.

Fig. 4 shows the value of amplitude ratios of the components of displacement, microrotation and

Fig. 3 Variations stresses (a) normal stress (b) tangential stress (c) tangential couple stress with respect to distance.
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temperature distribution with distance. It is illustrated from Fig. 4(a) that the value of normal

displacement in the case of MTIWOED and for both the values of frequency decreases to become

constant with distance, while for MIWOED its value oscillates with very large amplitude and then

the amplitude of oscillation decrease to become constant ultimately when ω = 1.1494 and for ω =

.8210 its value decreases to become constant. Figs. 4(b) and 4(d) depict the variations of amplitude

of tangential displacement and temperature distribution with distance. It can be seen from these

figures that for the case of MTIWOED, their values goes on decreasing and become constant as the

distance from the surface increases. While for MIWOED, their values sharply decreases over the

interval (0,7), then oscillates with small amplitude to become constant when ω = 1.1494, while

when ω = .8210 its value slowly decreases to become constant. It is observed from Fig. 4(c) that the

value of microrotation for both the frequencies, decreases to become constant in the case of

MTIWOED, while for the case of MIWOED its value oscillates with very small amplitude to

become constant.

Fig. 4 Variations in the values of (a) normal displacements (b) tangential displacements (c) microrotation (d)
temperature distribution of waves with respect to distance
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9. Conclusions

The propagation of waves in micropolar material has many applications in various field of science

and technology, namely, atomic physics, industrial engineering, thermal power plants, submarine

structures, pressure vessel, aerospace, chemical pipes and metallurgy. In this view propagation of

waves in a micropolar transversely isotropic half space with thermoelasticity of without energy

dissipation has been discussed. The phase velocities and attenuation quality factors has been

computed and plotted graphically. The expression for amplitudes of stresses, displacements,

microrotation and temperature distribution have been derived and computed numerically. The values

of phase velocity for the first waves, get decreased due to anisotropy, while for the rest waves, their

values get increased. Similarly, the attenuating quality factor of preceding 2 waves get decreased

due to anisotropy, which is reversed in the case of remaining waves.
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