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Abstract. The steady state response of a rotating generalized thermoelastic solid to a moving point load
has been investigated. The transformed components of displacement, force stress and temperature
distribution are obtained by using Fourier transformation. These components are then inverted and the
results are obtained in the physical domain by applying a numerical inversion method. The numerical
results are presented graphically for a particular model. A particular result is also deduced from the
present investigation.
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1. Introduction

Generalized thermoelasticity theories have been developed with the objective of removing the

paradox of infinite speed of heat propagation inherent in the conventional coupled dynamical theory

thermoelasticity in which the parabolic type heat conduction equation is based on fourier’s law of

heat conduction. This newly emerged theory which admits finite speed of heat propagation is now

referred to as the hyperbolic thermoelasticity theory, Chandrasekharaiah (1998), since the heat

equation for rigid conductor is hyperbolic-type differential equation.

There are two important generalized theories of thermoelasticity. The first is due to Lord Shulman

(L-S) (1967). The second generalization to the coupled theory of thermoelasticity which is known

as the theory of thermoelasticity with two relaxation times or the theory of temperature-rate-

dependent thermoelasticity. Muller (1971), in a review of the thermodynamics of thermoelastic

solid, proposed an entropy production inequality, with the help of which he consider restrictions on

a class of constitutive equations. A generalization of this inequality was proposed by Green and

Laws (1972). Green and Lindsay (G-L) obtained another version of the constitutive equations

(1972). These equations were also obtained independently and more explicitly by Suhubi (1975).

This theory contains two constants that act as relaxation times and modify all the equations of the

coupled theory, not only the heat equations. The classical Fourier law violated if the medium under

consideration has a centre of symmetry. Theory of thermoelasticity without energy dissipation is
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another generalized theory and was formulated by Green and Naghdi (1993). It includes the “ thermal-

displacement gradient” among its independent constitutive variables and differs from the previous

theories in that it does not accommodate dissipation of thermal energy.

The dynamical response of solid material subjected to moving loads is of great interest to a

number of engineering fields, such as civil engineering, ocean engineering, earthquake engineering

and tribiology. For example ground motion and stresses are induced in saturated soils by fast

moving vehicular loads or surface blast waves due to explosives.

Various researchers investigated the dynamic response of half space subjected to a moving point

load. Sneddon (1951) was the first to discuss the two dimensional problem of a line load moving

with constant sub-sonic speed over the surface of a homogenous elastic half space. Some of the

similar problems of the sub-sonic, transonic and supersonic were discussed by other researchers

(Cole and Huth 1958, Fung 1968, Fryba 1999). A homogenous three dimensional elastic half space

subjected to forces moving with a constant speed was studied by Eason (1965) using the double

Fourier transformation method. Payton (1967) considered the transient problem for a line load

applied suddenly and then moving with a constant speed on the surface of an elastic half space.

Frydrychowicz and Singh (1981) analyzed temperature and stress distribution for the case of

uniform load of finite width moving at sub-sonic velocity over the surface of an uncoupled

thermoelastic half space. Brock and Rodgers (1997) studied the steady-state response of thermo-

elastic half space due to thermal/mechanical loads. Lykotrafitis and Georgiadis (2003) discussed

three dimensional study state thermoelastic dynamic problem of moving sources over a half space.

Sharma, Sharma and Gupta (2004) investigated the steady-state response of an applied load moving

with constant speed for infinite long time over the top surface of a homogeneous thermoelastic layer

lying over an infinite half-space. 

Some researchers in past have investigated different problem of rotating media. Chand et. al.

(1990) presented an investigation on the distribution of deformation, stresses and magnetic field in a

uniformly rotating homogeneous isotropic, thermally and electrically conducting elastic half space.

Many authors (Schoenberg 1973, Clarke and Burdness 1994, Destrade 2004) studied the effect of

rotation on elastic waves. Ting (2004) investigated the interfacial waves in a rotating anisotropic

elastic half space by extendingthe Stroh (1962) formalism. Sharma and his co-workers (2006,

2007a, 2007b, 2008) discussed effect of rotation on different type of waves propagating in a

thermoelastic medium. Othman and Song (2008) presented the effect of rotation in magneto

thermoelastic medium. Ailawalia, Narah and Kumar (2009) discussed effect of rotation due to

various sources at the interface of elastic half space and generalized thermoelastic half space. 

In the present investigation we have obtained the expressions for displacement, force stress and

temperature distribution in a rotating generalized thermoelastic medium due to a moving load by

using Fourier transform. Such types of moving load problems in the rotating medium are very

important in many dynamical systems. A particular case has also been derived. No attempt has been

made so for to study the effect of rotation due to a moving load in generalized thermoelastic medium.

2. Formulation of the problem 

A homogeneous generalized thermoelastic medium rotating uniformly with angular velocity

 is considered where  is a unit vector representing the direction of the axis of rotation.

All quantities considered are functions of the time variable t and of the coordinates x and z. The

Ω Ωn̂= n̂
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displacement equation of motion in the rotating frame has two additional terms (Schoenberg and

Censor 1973): centripetal acceleration,  due to time varying motion only and 

where  is the dynamic displacement vector and angular velocity .

These terms do not appear in non-rotating media. 

We consider a normal point load moving in an infinite generalized thermoelastic medium. To

analyze the displacement, force stresses and temperature distribution at the interface of the medium,

the continuum is divided into two half-spaces defined by

i. half-space I,     ,     .     

ii. half-space II,     ,     .     

A rectangular coordinate system  having origin on the surface  and z-axis pointing

vertically into the medium is considered. We assume a pressure pulse , which is moving

with a constant velocity U in the negative x-direction. Since the load has constant magnitude and

move with a constant speed, after a sufficiently long time the solid response may become stationary

in the reference system that is fixed to the load. In this paper we study possible pattern of this

stationary response. The deformation of the medium subjected to a moving point load has been

studied in particular for two theories of thermoelasticity viz. L-S theory (1967) and G-L theory (1972).

3. Basic equations

The field equations and constitutive relations in generalized linear thermoelasticity with rotation

and without body forces and heat sources are given by 

 (1)

 (2)

  (3)

where

 are Lame’s constants,  is the density,  is the displacement vector,  is stress tensor.

 are thermal relaxation times and .

4. Solution of equations
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  (5)

(6)

Following Fung (1968), a Galilean transformation 

 (7)

is introduced, then the boundary conditions would be independent of  and assuming the

dimensionless variables defined by

 (8)

where 

in Eqs. (4)-(6), we obtain the equations of motion in dimensionless form. 

Introducing displacement potentials q and  which are related to displacement components u1

and u3 as

 (9)

in the resulting dimensionless equations and applying the Fourier transform defined by

 

 (10)

we get

 (11)

 (12)

 (13)
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where 

,   ,   

 (15)

The solutions of Eq. (14) are

(16)

(17)

(18)

where  are the roots of Eq. (14) and  are coupling constants defined by

(19)

5. Boundary conditions

For a concentrated point force, we take , where  is Dirac-delta

function and F is the magnitude of force applied along the interface of two media. In moving

coordinates the boundary conditions at the interface z = 0 are,

(i) ,    (ii) 

(iii) ,     (iv) ,    T = 0 (20)
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(10) on the dimensionless boundary conditions and using (16) - (18) in the resulting transformed

boundary conditions, we get the transformed expressions for displacement, force stress, and

temperature distribution in a rotating generalized thermoelastic medium as

 (21)

 (22)

 (23)

 (24)

 (25)

 

6. Particular case

Neglecting angular velocity (i.e., ) in Eq. (1), we obtain the transformed components of

displacement, force stress and temperature distribution in a generalized thermoelastic medium due to

moving load at the interface as
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inserting  in Eqs. (21)-(25) and  in Eqs. (26)-(30).

7. Numerical results 

With a view to illustrating the analytical procedure presented earlier, we now consider a numerical

example for which computational results are given. The results depict the variations of temperature,

displacement and stress fields in the context of L-S and G-S theories. For this purpose magnesium

crystal like material is taken as the thermoelastic material for which we take the following values of

physical constants (Dhaliwal and Singh (1980)) at 

,   ,   

 
The computations are carried out for U < c0 on the surface  at  The graphical

results for normal displacement u3, normal force stress t33 and temperature distribution T for Ω = 0.3

and non dimensional thermal relaxation times τ0 = 0.1 and 0 = 0.2 are shown in Figs. (1)-(3), for

(i) thermoelastic solid with rotation (L-S theory) by solid line ( )

(ii) thermoelastic solid without rotation (L-S theory) by dashed line (---------)

(iii) thermoelastic solid with rotation (G-L theory) by solid lines with centered symbols

        (* * * )

(iv) thermoelastic solid without rotation (G-L theory) by dashed lines with centered symbols 

         (*----*----*). 

8. Special cases of thermoelastic theory 
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obtained when 
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where  is the relaxation time. Eq. (1) is the same as Eq. (32) and Eq. (2) has the form

(34)

8.3 For Green –Lindsay (G-L theory)

(35)

τ0

K∗∇2
T ρCE

∂
∂t
---- τ0

∂2

∂t
2

-------+⎝ ⎠
⎛ ⎞T υT0

∂
∂t
---- τ0

∂2

∂t
2

-------+⎝ ⎠
⎛ ⎞ e+=

n∗ n1 1    n0, 0    t1 0    , ϑ0 τ≥=
0

0>,= = =

Fig. 1 Variation of normal displacement u3 with horizontal distance x 

Fig. 2 Variation of normal force stress t33 with horizontal distance x
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where  are the two relaxation times. Eq. (1) remains unchanged and Eq. (2) takes the form

(36)

8.4 The equations of the generalized thermoelasticity for a rotating media, without energy

dissipation (the linearlized GN theory of type II) are obtained when

(37)

Eq. (1) is the same as Eq. (32) and Eq. (2) takes the form 

(38)

where  is constant which has the dimension of (1/sec) and 

 is a characteristic constant of this theory.

9. Discussions 

The values of all the quantities i.e., normal displacement, normal forces stress and temperature

distribution are very close for L-S and G-L theories. These variations of normal displacement and

normal force stress under the effect of rotation ( ) are oscillatory to a large extent. When the

rotation effect is neglected ( ), the variations of normal displacement for both L-S and G-L

theories increases linearly in the range . Similarly in the absence of rotation the values of
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normal force stress lie in a very short range and are close to zero in the range . These

variations of normal displacement and normal force stress are shown in Figs. 1 and 2 respectively.

When the medium is rotating with some angular velocity, the values of temperature distribution

are very less in magnitude. To compare the results between both the mediums, these values of

temperature distribution have been multiplied by 104. The variations of temperature distribution are

shown in Fig. 3.

10. Conclusions

The variations of all the quantities are similar in nature for L-S and G-L theories. As observed

from the graphical results, rotation plays an important role on the deformation of the body.
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Appendix A

The field equations and constitutive relations for Lord Shulman (L-S) (1967) theory are

The field equations and constitutive relations for Green-Lindsay (G-L) (1972) theory are

, and  
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