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Abstract. This study illustrates the differences between the elasto-plastic cap model and Lade’s model
with Cosserat rotation through the analyses of two large-scale geosynthetic-reinforced soil (GRS) retaining
wall tests that were brought to failure using a monotonically increasing surcharge pressure. The finite
element analyses with Lade’s model were able to reasonably simulate the large-scale plane strain
laboratory tests. On average, the finite element analyses gave reasonably good agreement with the
experimental results in terms of global performances and shear band occurrences. In contrast, the cap
model was not able to simulate the development of shear banding in the tests. In both test simulations the
cap model predicted failure loads that were substantially less than the measured ones. 
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1. Introduction

The cap plasticity model has been widely used in finite element analysis programs for a variety of

geotechnical engineering applications (e.g. Nelson and Baladi 1977, Baladi and Rohani 1979, Chen

and McCarron 1983, Minuzo and Chen 1984, Daddazio et al. 1987, McCarron and Chen 1987).

The cap model can reasonably describe soil behavior because it is capable of considering the effect

of stress history, stress path, and the effect of the intermediate principal stress (Huang and Chen

1990). It is important to note, however, that the cap model embodies a two-invariant formulation
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that does not account for dilatancy. The dilatancy phenomenon can be important when

characterizing the behavior of compacted soils, and that can be achieved using soil models with

three-invariant formulation (e.g. Lade and Nelson 1987) that are suited for detecting stress

localization (shear banding) synonymous with failure. In geosynthetic-reinforced soil structures the

presence of geosynthetic inclusions within the compacted soil may hinder the growth of the shear

band. More experience using such models for dilative soils with geosynthetic inclusions is desired.

Numerous researchers have attempted to calculate the failure loads of geosynthetic-reinforced soil

(GRS) retaining walls using nonlinear-elastic and elasto-plastic soil models with various degrees of

success. In a unique study, Lai et al. (2003) were successful in analyzing a GRS retaining wall

using the finite element method with Lade’s elasto-plastic model and provisions for shear banding.

The present study will illustrate the differences between the elasto-plastic cap model and Lade’s

model with Cosserat rotation through the analyses of two large-scale GRS retaining wall tests that

were brought to failure using a monotonically increasing surcharge pressure. 

First, a finite element analysis with Lade’s elasto-plastic soil model and Cosserat theory is carried

out to show that the finite element method is capable of realistically simulating the behavior of GRS

retaining walls and calculating their failure loads with reasonable accuracy. Lade’s elasto-plastic

constitutive model (Kim and Lade 1988, Lade and Kim 1988) along with Cosserat rotation

(Cosserat 1909), suited for detection of strain localization, is used for the analysis of two

geosynthetic-reinforced soil retaining walls: the RMC wall performed at the Royal Military College

of Canada and the Denver wall performed at the University of Colorado at Denver. These two

large-scale laboratory test walls were chosen because they were subjected to surcharge pressures

until failure upon which failure surfaces were developed within their reinforced zones. These failure

surfaces were accurately measured and documented (Bathurst et al. 1987, Wu 1992). 

Second, the elasto-plastic cap model is used for the analysis of the aforementioned GRS retaining

walls: the RMC wall and the Denver wall. The performance of the cap model is then compared

with that of Lade’s model with Cosserat rotation in term of their predictions of facing deformations,

geosynthetic strains, shear banding, and consequently, the failure loads. 

2. Lade’s single hardening model (SHM) and cosserat rotation

It has been acknowledged by many researchers that classical continuum mechanics laws fail to

describe the phenomenon of strain localization that takes place prior to failure in soils. This

drawback is due to the fact that the mathematical solution is ill posed and the numerical solution is

highly dependent on the discretization resolution. Therefore, an internal length scale is needed to

regularize the strain field and smoothly pass through the localization zones. Such length scales can

be accommodated into a micromechanical based formulations. Unfortunately, such formulations

don't exist in the shape that can be implemented into a finite element solution yet. However, macro

or continuum based formulations can be enhanced through either Cosserat theory or high order

gradient theories to accommodate the proper internal length scales. This way the solution becomes

less sensitive to the mesh size when performing a finite element analysis. Lade's single hardening

constitutive model for soils has been enhanced to incorporate internal length scales and some other

micromechanical parameters though Cosserat rotation (Cosserat 1909). The model was implemented

into the commercial finite element program ABAQUS® using User Element utility subroutine

(Alsaleh et al. 2006, Alshibli et al. 2006). Lade’s model is described in details in the papers by Kim
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and Lade (1988) and Lade and Kim (1988).

A brief description of Lade’s soil model is presented herein. This model is an elasto-plastic soil

model with a single yield surface expressed in terms of stress invariants. The hardening parameter

in this model is assumed to be the total plastic work (i.e. the plastic work done by shear strains and

volumetric strains), which is used to define the evolution of the yield surface. The model involves

11 parameters that can be determined from three CD triaxial compression tests and one isotropic

compression test.

The total strain increments are divided into elastic and plastic strain components:

(1)

For a given effective stress increment the elastic and plastic strain components are calculated

separately, the elastic strains by a nonlinear form of Hooke’s law and the plastic strains by a plastic

stress-strain law. 

The elastic strain increments are calculated using Eq. (2) that accounts for the nonlinear variation

of Young’s modulus with stress state (Lade and Nelson 1987): 

(2)

where, v is Poisson’s ratio,  is the first invariant of the stress tensor,  is the second invariant of

the deviatoric stress tensor,  is the atmospheric pressure expressed in the same units as E,  and

, M is the modulus number and λ is the exponent. Both M and λ are dimensionless constants.

The parameters M, λ, and v can be determined from the unloading-reloading cycles of triaxial

compression tests.

In Lade’s model, the relationship of stresses at failure (failure criterion) is expressed in terms of

the first and third stress invariants, I1 and I3:

(3a)

 at failure (3b)

The parameters  and m are dimensionless constants that can be determined from triaxial

compression test results. 

Plastic flow occurs when the state of stress touches the yield criterion fn causing the material to

undergo plastic deformations. The plastic strain increments are calculated from the flow rule:

(4)

where:  is the third invariant of the stress tensor, (σ) is the stress tensor, (ε)p is the plastic

component of the total strain tensor (ε),  is the proportionality factor (a positive scalar), and gp is

the plastic potential function given as:

 

(5)
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m of the failure criterion as suggested by Kim and Lade (1988):

(6)

The parameter  controls the intersection of the plastic potential with the hydrostatic pressure

axis, while the exponent µ determines the curvature of the plastic potential in the principal stress

space. 

Lade and Kim (1988) employed an isotropic yield function given as:

(7)

Where

(8)

The parameter h in Eq. (8) is determined based on the assumption that the plastic work is constant

along a yield surface. Define the stress level as:

(9)

in which fn is given by Eq. (3a), and  is the value of fn at failure (Eq. 3b). The stress level S

varies from zero at the hydrostatic pressure axis to unity at the failure surface (i.e. fn = η1). The

parameter q (Eq. 8) varies with S as follows:

(10)

where α is a constant that can be determined by fitting Eq. (10) to the results of triaxial

compression tests.

Work hardening occurs when the yield surface expands isotropically as the plastic work increases:

(11)

where ρ and D are constants. This means that  increases only if the plastic work increases. D

and ρ are given as:

(12)

and

(13)

The parameters C and p in Eqs. (12) and (13) can be estimated from the results of an isotropic

compression test by best fitting Eq. (14) with the test results:
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The yield surface is similar in shape to the failure surface. When a stress increment is applied, the

plastic work increases and the isotropic yield surface expands until the current stress state hits the

failure surface. 

For work softening, the yield surface contracts isotropically as such:

(15)

The constants A and B can be calculated from the value of  and the slope of the hardening

curve at the point of peak failure at which S = 1. 

The relationship between the plastic work increment and the proportionality factor dλp (Eq. 4) can

be expressed in terms of the plastic potential gp as:

(16)

The increment of plastic work in Eq. (16) can be calculated by differentiation of the hardening

equation and the softening equation. 

3. Cosserat rotation and internal length scale

According to Alsaleh (2004), Bauer and Huang (2001), Huang et al. (2002), Vardoulakis and

Sulem (1995), Gudehus and Nubel (2004), Pasternak and Mühlhaus (2002), Rubin (2000),

Tejchman and Bauer (1996), and Tomantschger (2002), the additional degree of freedom, which is

the Cosserat rotation is employed in the formulation to capture the effect of particle micro-rotation

and enable incorporating an internal length scale in granular materials modeling. 

The Green or the Lagrangian strain tensor can be decomposed into linear and non-linear

components as:

(17a)

(17b)

and;

(17c)

The definition of the quantity ui,j is the displacement field derivative with respect to the current
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one might define vector as ω i
c = ωc. The objective or Cosserat strain rate tensor now can be

redefined as:

(18a)

and;

(18b)

where, Ω and Ωc are defined below and  is defined here as the spatial objective strain rate

tensor. The strain rate tensor defined in Eq. (18) produces non-symmetry in the stress tensor. The

curvature vector of deformation or the gradient of particle rotation can be defined as:

(19a)

where Eq. (19a) will reduce into the following form for plane-strain case:

     i = 1, 2 (19b)

Eq. (18) shows that there is one type of strain rate and two types of spin tensor, those are the

classical strain - rate tensor, , and the classical spin tensor:

(20)

and the Cosserat spin tensor that can be written as:

(21a)

where eijk is the Ricci permutation tensor and again for a plane-strain problem (21a) will collapse

into:

(21b)

Lade’s model is a stress-invariant dependent model that requires all three stress invariants to

update all state variables. The second stress invariant was rewritten to accommodate the couple

stresses as follow:

(22)

where, 

h1 and h2 are weighing factors (h1 = ½ and h2 = 1 are used in the present study). 

Vardoulakis and Sulem (1995) have used similar approach to modify stress second invariant;

m1 and m2 are couple stresses and 

ls is an internal length scale (= mean particle size d50). 

In a plane strain Cosserat continuum and for simplicity in finite element implementation, the

stress matrix can be expressed in the following vector (Eq. (23a)). 
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length scales, one is the contact surface and the other is the arm of rotation. 

It is more convenient to deal with time rates for stresses and strains as such:

(24)

where,  is the elasto-plastic stiffness matrix derived within Cosserat continuum.

Moreover, the micro-structural properties (particle shape, surface roughness and size) have been

incorporated into the model through the internal length scale quantity. Alsaleh (2004) showed that

the solution for the shear band thickness is not highly dependent on the element size because of the

non-local theory employed. A lower limit for the element-to-internal length scale size ratio of about

4-6 is recommended. Higher ratios can be used and can provide same level of accuracy at lower

computational cost.

4. Cap model

The Drucker-Prager/Cap plasticity model has been widely used in finite element analysis

programs for a variety of geotechnical engineering applications because it is capable of considering

the effect of stress history, stress path, and the effect of the intermediate principal stress. The yield

surface of the modified Drucker-Prager/Cap plasticity model consists of three parts: a Drucker-

Prager shear failure surface, an elliptical “cap,” which intersects the mean effective stress axis at a

right angle, and a smooth transition region between the shear failure surface and the cap. 

The elastic behavior is modeled as linear elastic using the generalized Hooke’s law. The onset of

the plastic behavior is determined by the Drucker-Prager failure surface and the cap yield surface.

The Drucker-Prager failure surface is given by: 

(25)

where β is the soil’s angle of friction and d is its cohesion in the p-t plane. In this equation t is a

measure of shear stress (reduces to stress deviator in a triaxial stress state) and p is the mean

effective stress.

The cap yield surface is an ellipse with eccentricity = R in the p-t plane. The cap yield surface is

dependent on the third stress invariant. The cap surface hardens (expands) or softens (shrinks) as a

function of the volumetric plastic strain. When the stress state causes yielding on the cap,

volumetric plastic strain (compaction) results causing the cap to expand (hardening). But when the

stress state causes yielding on the Drucker-Prager shear failure surface, volumetric plastic dilation

results causing the cap to shrink (softening). The cap yield surface is given as: 

(26)

Where, R is a material parameter that controls the shape of the cap, α is a small number (typically

0.01 to 0.05) used to define a smooth transition surface between the Druker-Prager shear failure

surface and the cap: 

(27)
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volumetric plastic strain. The hardening/softening behavior is simply described by a piecewise linear

function relating the mean effective (yield) stress, pb, and the volumetric plastic strain, . This

function can be easily obtained from the results of one isotropic compression test with unloading/

reloading cycles. Consequently, the evolution parameter, pa, can be calculated as:

(28)

For this model, the flow potential surface in the p-t plane consists of two parts. In the cap region

the plastic flow is defined by a flow potential that is identical to the yield surface, i.e., associated

flow. For the Drucker-Prager failure surface and the transition yield surface a nonassociated flow is

assumed: the shape of the flow potential in the p-t plane is different from the yield surface. 

In the cap region the elliptical flow potential surface is given as: 

(29)

The elliptical flow potential surface portion in the Drucker-Prager failure and transition regions is

given as: 

(30)

The two elliptical portions, Gc and Gs, provide a continuous potential surface. Because of the

nonassociated flow used in this model, the material stiffness matrix is not symmetric. Thus, an

unsymmetric solver should be used in association with the Cap model. 

5. The RMC geosynthetic-reinfoced soil retaining wall 

5.1 Analysis of the RMC wall using Lade’s model

In this section, the capability of Lade’s model/Cosserat theory embodied in a finite element model

to capture the collapse mechanism behind a full-scale geosynthetic-reinforced soil wall with a

continuous facing panel is illustrated. The Royal Military College (RMC) retaining wall involves a

full-scale 3.5-m high GRS wall model with a continuous facing panel in a plane strain condition.

The backfill soil is loaded to failure by surface surcharge using an air bag. Details of the full-scale

model and experiments are presented by Bathurst and Benjamin (1990). There are several reasons

for selecting the RMC wall test as a benchmark test for the present study: the RMC wall is a full-

scale plane strain test that represents a real size structure and yields realistic results. The RMC wall

test exhibited a distinct failure surface that developed during testing through the reinforced zone.

Also, the facing of the RMC wall consisted of a continuous aluminum panel which is easier to

analyze than wrap-around and segmental facing types.

The RMC test configuration, finite element mesh, and boundary conditions are shown in Fig. 1.

The backfill soil is contained in a 6-m-long, 2.4-m-wide, and 3.6-m-high reinforced concrete box

with low friction side walls and a rough concrete bottom. The wall facing consisted of a 3-m-high

continuous aluminum panel pinned at the base and supported by external supports until the full

depth of the soil behind the wall has been placed and compacted. The geosynthetic reinforcement
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consisted of four layers of 3-m-long geogrid. The backfill material was uniform sand with some fine

gravel placed and compacted in 125 mm lifts. The surcharge pressure was applied on top of the

backfill in increments of 10 kPa with a 100-h-duration each. Failure occurred in the reinforced soil

zone during the 80-kPa loading increment. Inspection revealed a failure scarp in the soil

approximately 1 m behind the top of the wall; the surface of the faulted soil mass was observed to

have dropped approximately 65 mm. Careful excavation of the backfill revealed a clear failure

plane with a log-spiral shape and a ruptured upper layer of geogrid at the connection with the

facing.

A 4-node isoparametric plane strain element with four integration points is used for the sand, a 2-

node beam element is used for the wall, and a 2-node truss element is used for the geosynthetic

reinforcement. The base of the sand layer is fixed in all directions. The right hand side boundary of

the sand layer is fixed in the horizontal direction but free in the vertical direction. The backfill soil

and the facing panel are interfaced using penalty-type interface elements with an interface friction

angle of 20°. The same type of interface is also employed between the soil and the geosynthetic

layers.

The backfill soil has a unit weight of 17 kN/m3 and an internal friction angle of 41o. The results

of triaxial compression tests carried out on the same sand are shown in Figs. 2a and 2b (Bathurst et

al. 1987). The dilative behavior of the backfill soil is apparent from the figure, and therefore, the

soil is assumed to behave as a dilative elasto-plastic material with the Lade’s model parameters,

given in Table 1, that were deduced from the triaxial test results, and from the assumed isotropic

compression test results shown in Fig. 2c. The isotropic compression test results were taken from a

similar soil because of the lack of such test results on the backfill soil of the RMC wall. 

Consequent to obtaining Lade’s model parameters, the parameters were used to generate the

triaxial test results and isotropic compression test results as shown in Fig. 2. The model predictions

are compared with the experimental results reported by Bathurst et al. (1987) as shown in the same

figure. 

Fig. 1 Finite element mesh of RMC wall
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The aluminum facing panel (wall) is assumed to be linear elastic with a cross-dimensional area of

0.025 m2/m, an elastic modulus of 3×108 kPa, and a shear modulus of 1.25×108 kPa. The

geosynthetic reinforcement (Geogrid) has a stiffness (EA) of 204 kN/m at 2% strain, and an

ultimate tensile strength of 12 kN/m at 14% strain. An elasto-plastic model is used to simulate the

geosynthetic behavior. 

The finite element analysis of the RMC retaining wall consists of three steps. In Step 1, the

gravity load was applied to the sand backfill while the wall was restrained from lateral movement.

In Step 2 the lateral restraint of the wall was gradually removed and a one-second rest time was

Fig. 2 (a,b) Triaxial test results of backfill sand used in RMC wall; (c) assumed isotropic compression test
results
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employed to ensure equilibrium. In Step 3, a monotonically increasing surcharge pressure was

applied at the top surface of the backfill soil until failure occurred. 

The finite element analysis indicated that failure occurred at a surcharge pressure of

approximately 84 kPa. The shear strain contours at failure, shown in Fig. 3, clearly illustrate the

presence of a failure plane passing through the heel of the retaining wall and also through the

reinforced zone. The experimentally detected failure surface agrees with the predicted one as shown

in the same figure. The failure plane predicted by Rankine active earth pressure theory is also

Table 1 Lade’s model parameters for RMC wall

Parameter Value

Failure Criterion

m 0.382

η1 60

Elastic Parameters

M 120

λ 0.5

υ 0.2

Plastic Potential Function

ψ2 -3.1

µ 2.1

Work Hardening Law

C 0.00005

p 1.4

Yield Function

α 0.6

h 0.38

Fig. 3 Failure surfaces: experimental versus numerical results
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shown in the figure for reference. 

Figs. 4a and 4b show respectively the measured and predicted lateral displacements at points A,

B, C, D, and E located on the facing panel at different heights. Reasonable agreement is noted

between the measured and calculated displacement. Note that the measured results included a 100-h

creep period for each 10 kPa surcharge pressure increment. The present finite element analysis

neglects creep--the soil model used herein (Lade’s model) is time-independent and not suited for

creep predictions. Nonetheless, the present finite element model is reasonably capable of predicting

the failure load as indicated in Fig. 4b. Finally, Fig. 5 shows comparisons between measured and

predicted axial strains in the four reinforcement layers at failure. Reasonable agreement between

measured and predicted strains is noted in the figure.

Fig. 4 Wall deformation versus pressure: (a) experimental (after Bathurst and Benjamin 1990), and
(b)numerical results



Strain localization and failure load predictions of geosynthetic reinforced soil structures 247

5.2 Analysis of the RMC wall using Cap model

The analysis of the RMC wall, described above, is repeated in the exact manner with only one

Fig. 5 Strain in geosynthetic layers at failure: experimental versus numerical results

Table 2 Cap model parameters for RMC wall

Elasticity Plasticity

E = 15000 kPa
v = 0.2

d = 1 × 10-5 kPa

β = 59.2o for triaxial condition

β = 47.2o for plane strain condition

R = 0.2

Initial Yield = 0.0

α = 0.1

K = 1

Yield Stress (kPa) Volmectric Plastic Strain

2.83 0.000

9.92 0.0005

18.4 0.0011

20 0.0013

26.4 0.0015

30 0.0018

35.4 0.0020

45 0.0021

60 0.0026

100 0.0035

400 0.0043

675 0.0048



248 Mustafa Alsaleh, Akadet Kitsabunnarat and Sam Helwany

exception: the cap soil model is used instead of Lade’s model with Cosserat rotation. The cap model

parameters were obtained from the three triaxial compression tests and the (assumed) isotropic

compression test results on the RMC backfill sand. These parameters are given in Table 2. The

parameters were used to reproduce the results of the three triaxial compression tests and the

isotropic compression test as shown in Fig. 6. The figures indicate good agreement between the cap

model and the Lade’s model predictions, except for the volumetric strain versus axial strain curves

shown in Fig. 6b. As indicated earlier, the cap model is not capable of describing soil dilatancy-it

assumes compressive volumetric strains during shearing as indicated in the figure.

The calculated lateral displacement at mid-height of the facing panel of the RMC wall test is

Fig. 6 (a,b) Stress-strain relationship: cap and Lade’s models; (c) plastic volumetric strain-confining pressure
curves used for the hardening rules of cap and Lade’s models
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shown in Fig. 7 for the analyses using the cap model and the Lade’s model with Cosserat rotation.

The finite element analysis with cap model indicates that failure occurred at a surcharge pressure of

approximately 77 kPa as shown in the figure. This is comparable to the at-failure surcharge pressure

of 84 kPa predicted by Lade’s model with Cosserat rotation. However, the shear strain contours at

failure predicted by the cap model, shown in Fig. 8, do not indicate the presence of a failure plane

Fig. 7 Lateral displacement at mid-height of facing panel of the RMC wall test: comparison between cap and
Lade’s models

Fig. 8 Shear strain contours of RMC wall at failure: comparison between cap and Lade’s models
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that is clearly present in the case of Lade’s model, also shown in Fig. 8, in which a distinct failure

plane passing through the heel of the retaining wall and through the reinforced zone is observed. It

is clear from Fig. 8 that the predicted at-failure surcharge pressure using the cap model (Fig. 7) is

due to premature local shear failures of the soil between the geosynthtic layers adjacent to the soil-

wall interface. This type of failure does not agree with the failure plane observed in the RMC test

shown in Fig. 3. 

Fig. 9 shows the predicted lateral displacements of the facing panel at different heights using both

Fig. 9 Lateral displacement of facing panel at failure in the RMC wall test: comparison between cap and
Lade’s models

Fig. 10 Axial strain in geogrid layers: comparison between cap and Lade’s models
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models. It is noted from the figure that the displacements predicted by the cap model are

substantially greater than those predicted by Lade’s model even though the displacements predicted

by the cap model are taken at a pressure of 77 kPa while the displacements predicted by Lade’s

model are taken at a greater at-failure pressure of 84 kPa. 

Fig. 10 shows comparisons between predicted axial strains in the four reinforcement layers at

failure for the two models. It appears that there is a reasonable agreement between the two

especially in terms of maximum strains. But a careful look will reveal that the strain distribution

predicted by Lade’s model is affected by the location of the shear band predicted by this model (i.e.

large strains occur at the intersection of the shear band with the geosynthetic layers, Fig. 8). 

6. Denver geosynthetic-reinforced soil retaining wall

6.1 Analysis of the Denver wall using Lade’s model

The Denver wall test and its testing facility are described in detail by Wu (1992). The reasons for

selecting the Denver wall test as a benchmark test are similar to those of the RMC wall test: the

Denver wall test is a full-scale test that exhibited distinct failure surfaces through its reinforced

zone. The Denver test configuration is simple to analyze since it is in a plane strain condition and

has well-defined boundaries, also, the facing of the Denver wall consisted of inter-connected timber

logs with plywood packing which is easy to analyze as a continuous beam. 

The Denver wall, shown in Fig. 11, is 3 m high, 1.2 m wide and 2.0 m deep. Ottawa sand was

Fig. 11 Finite element mesh of Denver wall
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used as backfill in the test and placed by the air pluviation method in an air-dried condition. A

geosynthetic reinforcement was placed at approximately 28-cm vertical spacing. The wall facing

comprised inter-connected timber logs with plywood packing. Uniform pressure increments of 35

kPa were applied to the top surface of the backfill soil utilizing a pair of air bags.

The backfill used in the Denver wall was sub-rounded silica Ottawa sand. The specific gravity of

the sand was 2.65 and the maximum and minimum unit weights were 17.7 kN/m3 and 15.3 kN/m3,

respectively. The placement unit weight was approximately 16.8 kN/m3. Triaxial compression tests

results for this sand at confining pressures of 70, 210, and 345 kPa are shown in Figs. 12a and 12b.

Isotropic compression test results are given in Fig. 12c. 

The reinforcement used in the test was a fairly light weight nonwoven heat-bonded polypropylene

Fig. 12 (a,b) Triaxial test results of backfill sand used in Denver wall; (c) isotropic compression test results of
backfill sand used in Denver wall



Strain localization and failure load predictions of geosynthetic reinforced soil structures 253

geotextile with a modulus elasticity of 4.45 kN at 10% elongation, and 60% elongation at break. An

elastic modulus of 36 MPa and a shear modulus of 13.9 MPa are estimated for the beam section of

the timber facing from the results of a loading test performed by Wu (1992) on a timber/plywood

unit supported along two lines at its bottom and subjected to two line loads of equal magnitude. 

The timber facing was represented by 2-node beam elements, the geotextile reinforcement was

represented by 2-node truss elements, and the soil was represented by a 4-node isoparametric plane

strain element with four integration points. 

The soil behavior was simulated by Lade’s model/Cosserat theory. The model parameters for the

sand used in the Denver wall were determined from the results of the triaxial compression tests and

the isotropic compression test. These parameters, shown in Table 3, were used to back calculate the

triaxial compression tests results. A good agreement between the model simulation and the triaxial

test results was obtained, as indicated in Fig. 12. 

The calculated and measured lateral displacements at the wall mid height are compared in Fig. 13.

The wall is assumed to have failed at the point where the slope of the pressure-displacement curve

changes abruptly. The experimental pressure-displacement curve shown in the figure indicates that

the failure load is approximately 186 kPa, whereas the predicted pressure-displacement curve

indicates a slightly smaller failure load of approximately 169 kPa. 

There exist several experimentally detected failure surfaces at failure as shown in Fig. 14a. The

calculated shear strain contours at failure, shown in Fig. 14b, clearly illustrate the presence of a

failure plane passing through the heel of the retaining wall and also through the reinforced zone.

This failure plane compares relatively well with the one measured in Denver test wall (Fig. 14a). 

The measured axial strain distributions along the geotextiles at three different elevations of the

Denver test wall are compared with the finite element results as shown in Fig. 15. It is noted that

the calculated and measured strains are in satisfactory agreement. 

It is to be noted that the Denver test wall, shown in Fig. 11, does not represent a typical cross-

Table 3 Lade’s model parameters for Denver wall

Parameter Value

Failure Criterion

m 0.13

η1 45

Elastic Parameters

M 769

λ 0.182

υ 0.24

Plastic Potential Function

ψ2 -2.2

µ 1.1

Work Hardening Law

C 0.00001

p 1.72

Yield Function

α 0.5

h 0.47
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section of a GRS retaining wall because it has very little backfill behind the reinforced soil zone.

Hence, the effects of retained soil are nearly excluded. The Denver test wall also restricted the

horizontal movement of the top of the facing of the wall. Nevertheless, in the above analysis, the

Denver test wall was merely treated as a “boundary value” problem which was utilized to

investigate the usefulness of the Lade’s model/Cosserat theory embodied in the finite element

method. Consequently, the validated code can be utilized, with some confidence, to analyze more

realistic GRS retaining wall configurations.

Fig. 13 Horizontal displacements versus surcharge (at mid-height)

Fig. 14 Failure surfaces: (a) experimental results [After Wu 1992], (b) numerical results
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6.2 Analysis of the Denver wall using cap model

To examine the performance of the cap model, the previous analysis of the Denver wall is

Fig. 15 Axial strain distribution in geosynthetic reinforcements

Table 4 Cap model parameters for Denver wall

Elasticity Plasticity
E = 172350 kPa
ν = 0.2

d = 1 × 10-5 kPa
β = 57.2o for triaxial condition
β = 45o for plane strain condition
R = 0.6
Initial Yield = 0.0
α = 0.05
K = 1

Yield Stress (kPa) Volmectric Plastic Strain
1.44 0
4.40 0.00005
7.63 0.00006
10.8 0.00008
14.3 0.00009
17.1 0.0001
20.3 0.0002
23.5 0.00025
26.6 0.0003
29.8 0.0004
33.0 0.0005
35.6 0.0006
48.2 0.0007
69.0 0.00125
207 0.0022
345 0.0028
480 0.0032
680 0.00385
780 0.0042
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repeated in an identical manner but with the cap model used in lieu of Lade’s model with Cosserat

rotation. The cap model parameters were obtained from three triaxial compression tests and an

isotropic compression test results on Ottawa sand. These parameters are given in Table 4. Using one

axisymmetric finite element along with these cap model parameters, the results of the three triaxial

compression tests and the isotropic compression test were calculated as shown in Fig. 16. The

figures indicates good agreement between the cap model and the Lade’s model predictions, except

for the volumetric strain versus axial strain curves shown in Fig. 16b. This is expected since the cap

model is not capable of describing soil dilatancy as indicated earlier.

Fig. 16 (a, b) Stress-strain relationship: comparison between cap and Lade’s models; (c) isotropic
compression test results of backfill sand used in Denver wall
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The calculated lateral displacement at mid-height of the facing panel of the Denver wall test is

shown in Fig. 17 for the analyses using the cap model alone, and in Fig. 18 for both the cap model

and Lade’s model with Cosserat rotation. Fig. 17 indicates that the cap model predicts a “ductile”

failure without a distinct failure load. A failure load of approximately 152 kPa is obtained from Fig.

17 using the graphical method illustrated in the figure. In contrast, Lade’s model with Cosserat

rotation predicts a “brittle” failure at approximately 169 kPa as shown in Fig. 18. Note the well-

defined pressure at failure in this figure for Lade’s model. The shear strain contours at failure

predicted by the cap model, shown in Fig. 19, do not indicate the presence of a failure plane,

whereas a clear failure plane is predicted by Lade’s model as shown in the same figure. The type of

failure predicted by the cap model in Fig. 19 does not agree with the failure plane observed in the

Denver wall test (Fig. 14a). 

The predicted lateral displacements of the facing panel at different heights using both models are

shown in Fig. 20. It is noted from the figure that the displacements predicted by the cap model are

quite different from those predicted by Lade’s model especially in the upper portion of the facing

panel. 

Fig. 17 Horizontal displacement (at mid-height of facing) vs. surcharge for Denver wall using cap model

Fig. 18 Horizontal displacement (at mid-height of facing) vs. surcharge: comparison between cap and Lade’s
models
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Fig. 19 Shear strain contours at failure of Denver wall: comparison between cap and Lade’s models

Fig. 20 Lateral displacement at the facing: comparison between cap and Lade’s models
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Finally, comparisons between predicted axial strains by the two models in three reinforcement

layers are shown in Fig. 21. The at-failure strain distributions predicted by the two models are very

different even though their predicted maximum strains are comparable. It is noted from the figure

that the strain distribution predicted by Lade’s model is affected by the location of the shear band

predicted by this model, i.e., higher strains are calculated at the intersections of the shear band with

the geosynthetic layers (Fig. 19). 

7. Conclusions

Within the framework of finite element, Lade’s single hardening model with Cosserat theory was

capable of predicting the development of shear banding in the reinforced soil mass behind a GRS

retaining wall when the soil mass was subjected to a monotonically increasing surcharge pressure.

From the results presented above, the finite element analyses with Lade’s model were able to

reasonably simulate the large-scale plane strain laboratory tests on geosynthetic-reinforced soil

retaining walls. On average, the finite element analyses gave reasonably good agreement with the

experimental results in terms of global performances and shear band occurrences. Reasonably

accurate prediction of failure loads and shear bands for the RMC wall and the Denver wall were

possible using such a soil model. 

In contrast, the cap model was not able to simulate the development of shear banding in the RMC

wall and the Denver wall. In the RMC wall simulation the cap model predicted a failure load that

was substantially less than the measured one. This was attributed to the premature failure of soil

elements adjacent to the facing panel. No shear band was detected in this analysis. Also, in the

Denver wall simulation the cap model predicted a ductile failure without a distinct failure load. The

failure load was graphically estimated from the calculated pressure-displacement curve. The

estimated failure load was substantially less than the measured one. Again, no shear band was

Fig. 21 Axial strain distribution in geotextile reinforcement: comparison between Lade and Cap models
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detected at failure conditions using this model. 
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