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Abstract. An aim of the study is to develop an efficient numerical simulation technique that can handle
the two-scale analysis of fluid permeation filters fabricated by the partial sintering technique of small
spherical ceramics. A solid-fluid mixture homogenization method is introduced to predict the mechanical
characters such as rigidity and permeability of the porous ceramic filters from the micro-scale geometry
and configuration of partially-sintered particles. An extended finite element (X-FE) discretization
technique based on the enriched interpolations of respective characteristic functions at fluid-solid interfaces
is proposed for the non-interface-fitted mesh solution of the micro-scale analysis that needs non-slip
condition at the interface between solid and fluid phases of the unit cell. The homogenization and
localization performances of the proposed method are shown in a typical two-dimensional benchmark
problem whose model has a hole in center. Three-dimensional applications to the body-centered cubic
(BCC) and face-centered cubic (FCC) unit cell models are also shown in the paper. The 3D application is
prepared toward the computer-aided optimal design of ceramic filters. The accuracy and stability of the X-
FEM based method are comparable to those of the standard interface-fitted FEM, and are superior to
those of the voxel type FEM that is often used in such complex micro geometry cases.

Keywords: solid-fluid mixtures; porous media; permeation flow; incompressibility; homogenization
method; extended finite element method (X-FEM); level set method; fluid-solid interface; ceramic filters;
partial sintering.

1. Introduction

With the global expansion of industrial pollutions of air and water of late years, the demand for

high efficiency fluid filters continues to grow up as a core components of fluid purification systems,

in which they are usually utilized for providing air bubbles into bacteria tanks (i.e. aeration) or

directly be used for purifying sewage. Although there are various types of filters, porous ceramic

filters fabricated by the partial sintering technique (Greskovich and Lay 1972, Suwanmethanond et
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al. 2000, Krenar et al. 2006, Fukushima et al. 2008) of small ceramic particles or powder (Lin and

Burggraaf 1991, Nanjangud and Green 1995, Hardy and Green 1995, Lin and Tsai 1997, Isobe et

al. 2007) are now widely used as one of the aeration media in the bacteria tanks. Fig. 1 gives an

illustration of the partial sintering of the spherical ceramic particles (a) and a X-ray CT

(computerized tomography) photomicrograph of the actual microstructure of the particle-type

ceramic filter fabricated by the fourth and last authors of this paper (b), respectively. We are now

developing an advanced fabrication technique of the particle type filters so that we can give them

superior mechanical properties to the existing ones (Fukushima et al. 2008). A final target of this

collaborative study is to propose a guideline on how to design the particle-type ceramic filters under

the existence of trade-off relationships between their permeability and rigidity to the ceramics

engineers. We would maximize the permeability in order to obtain high aeration efficiency, but the

rigidity should be sufficient for running under the load pressure in the circulating sewage. The

trade-off relation is generally an inherent one, because the more the sintering densification

illustrated in Fig. 1(a) proceeds, the more the permeability of the filter decreases and the rigidity

increases.

To propose the useful guideline of designing it, we introduce a two-scale computational approach

based on the asymptotic homogenization method for porous media (Hornung 1997) and solid-fluid

mixtures (Terada et al. 1998, Murad et al. 2001, Wang et al. 2003) in grasping the aforementioned

relationship between the two mechanical characters. This homogenization method can handle the

two-scale analysis of the elastic porous media saturated with an incompressible viscous fluid, and it

enables us to evaluate the two characters from the homogenization analysis of periodic

microstructure model of it (Takano et al. 2002, Sawada et al. 2007a, b). In this study, we give the

priority to revealing how the rigidity and permeability of the sintered particles change according to

the depth of the neck parts of the sintered particles of Fig. 1(a) over the direct evaluation of them

from the actual microstructure shown in Fig. 1(b). The body- and face-centered cubic (BCC and

FCC) microstructure models are introduced to extract the relation without the undesirable

dependence on the random and uncontrolled factors for the ceramics engineers. That is, the role of

the CAE in this study is not to evaluate the two characters from actual microstructures, but to grasp

their tendencies introducing the idealized models of the actual structures. The direct evaluation

technique for the too complex microstructures is studied in Takano et al. (2003a, b) and Ikeda et al.

(2004) using a voxel mesh-like treatment of the actual structures, but only the evaluation technique

Fig. 1 Porous ceramics filter fabricated by partial sintering of small spherical particles
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for the stiffness is discussed in these papers.

In the extraction analysis, it becomes a practical but major obstacle that the solid-fluid mixture

homogenization method needs a complex interface-fitted mesh to perform the homogenization

analysis of the microstructures, because its unit cell is composed of solid and fluid phases with

interfaces, and non-slip velocity conditions are required to be satisfied at the interfaces. Such a

situation becomes worse especially in the extraction analysis where we change the depth of the neck

parts of Fig. 1(a) by little and little for the purpose of figuring out the trade-off relation. Supposed

that these analyses are carried out with the interface-fitted meshes, an appropriate mesh update

scheme or adaptive regeneration technique (Johnson and Tezduyar 1999, Stein et al. 2003, Sawada

and Hisada 2007c) is required to keep the interface-fitted mesh healthy at every numerical

evaluation points of the neck depth. Therefore, we propose in this paper an alternative method that

can handle the micro-structure analysis without the usage of the interface-fitted meshes. This

method is fundamentally based on the eXtended Finite Element Method (X-FEM) that was

proposed as the method for handling arbitrary discontinuities in finite elements (Moës et al. 1999,

Belytschko et al. 2001, Wagner et al. 2001, Nagashima et al. 2003, Legay et al. 2006, Sawada et al.

2007d). The eXtended finite element method proposed here is able to achieve the two-phase

microstructure analysis with a non-interface-fitted mesh. Such an approach is already applied to the

heterogeneous structures that have complex microstructure geometries (Moës et al. 2003); however,

precedent for studying the way of applying the X-FEM to the solid-fluid mixture homogenization

method is not reported yet to our best knowledge.

A main computational problem is how to deal with the non-slip velocity condition at the fluid-

solid interfaces of the unit cell under the usage of non-interface-fitted meshes. In this study, we

introduce a local enrichment function that can satisfy the interface condition without additional

constraint equations based on Lagrange-multiplier method or penalty method that are applied

generally in such cases (Legay et al. 2006, Sawada et al. 2007d). With the proposed method, we

have succeeded in revealing how the rigidity and permeability changes according to the depth of the

neck parts in the case of the idealized BCC and FCC microstructures. This method will also

become an effective tool to optimal designs of the ceramic filter in future stage where the shape of

the solid and fluid phases changes every iteration (Guest and Prévost 2006), because it does not

need to regenerate the unit cell mesh every iteration. Guest and Prévost (2006) solved the problem

using a voxel mesh-type approach.

In Section 2, we give a summary of the two-scale asymptotic homogenization method for fluid-

solid mixtures used in this study. The original homogenization method developed by Terada et al.

(1998) is not consistent to the incompressibility of the micro-scale flow in the porous media, so we

reformulate the homogenized equations so that they become consistent in both scales based on

Wang et al. (2003). And then, the extended finite element method, which is developed to discretize

the two-phase unit cell using the non-interface-fitted mesh, is described in Section 3. The local

enrichments functions introduced here automatically reproduce the fluid-solid interface conditions.

Computational performances of the proposed method are demonstrated in a two-dimensional test

analysis in Section 4, where the interface-fitted mesh method and voxel-type mesh method are

introduced to comparison studies. Three-dimensional applications of the method to the BCC and

FCC microstructure models are shown in Section 5, and then the trade-off relations between the

rigidity and permeability of the two microstructures are shown at the same time. Conclusions of this

study are summarized in Section 6.
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2. Homogenization method for solid-fluid mixtures

This section describes the homogenization method for the linear-elasticity porous media saturated

with an incompressible viscous fluid used in this study. Several types of the formulation and the

solving technique have already been proposed (Hornung 1997, Terada et al. 1998, Murad et al.

2001, Wang et al. 2003). We show the formulation that is consistent to the incompressibility of the

fluid in both scales, thus we use the displacement, velocity, and pressure mixed formulation for

describing the problem. Governing equations for describing the macroscopic behavior of the porous

media are derived from the homogenization method using the two-scale asymptotic expansion of

those for microscopic fluid and solid phases. Mechanical interactions between the fluid and solid

phases are taken into the formulation via the homogenization technique for the fluid pressure acting

at the fluid-solid interface.

2.1 Fundamental equations for two-scale asymptotic expansion

Fig. 2 shows the illustration of the homogenization procedure of the porous media Ωε with a

periodic microstructure (i.e. unit cell) Y that is composed of solid and fluid phases, Ys and Yf. The

vectors x and y denote the macro- and micro-scale coordinates, respectively. The micro-scale

coordinates is introduced to achieve the two-scale asymptotic expansion of the primitive variables of

the problem. It is defined as  with the representative scale ratio ε between the two

coordinates.

Primitive variables of the problem are the velocity vε(x) and pressure pε(x) of the contained fluid,

and the displacement uε(x) of the porous media. Their superscript ε denotes the dependency on the

scale parameter; therefore, they include both the macro- and micro-scale effects. The asymptotic

expansion of the three primitive variables is given as follows, respectively:

(1a,b)

(1c)

where , , and  are the solutions corresponding to the n-th order of ε.

y x ε⁄≡

v
ε

x( ) ε
n
v

n( )
x y,( )

n 0=

∞

∑=      p
ε

x( ) ε
n
p

n( )
x y,( )

n 0=

∞

∑=,

u
ε

x( ) ε
n
u

n( )
x y,( )

n 0=

∞

∑=

v
n( )
x y,( ) p

n( )
x y,( ) u

n( )
x y,( )

Fig. 2 Homogenization of porous media with a periodic microstructure
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All of them have the -periodicity, where the vector  represents the periodic lengths of the unit

cell. The gradient operator  and Laplacian  are divided into the two-scale coordinates

according to the chain-rule associated with the scale parameter ε, which result in:

(2a,b)

The integration theorems for decoupling the true domain and surface integrals into the two scales

are given as follows, respectively:

 (3a,b)

where Ω and Γ are the macroscopic domain/volume and surface/area of the homogenized porous

media, respectively, and Y and S are those of the unit cell. The function ψ (x, y) represents the

arbitrary scalars, vectors, or tensors with the -periodicity, and those with the angle bracket < >

express the volume average of the function in the unit cell domain as follows.

(4a,b)

where Ya and Sa are the partial domain and surface of Y, respectively. These notations are

introduced for brief descriptions.

 

2.2 Homogenization of fluid phases

Fluid flow in microscopic pores of the porous media is modeled as the Stokes flow whose

Newtonian viscosity is assumed to be defined as  with µ f corresponding to the

micro-scale viscosity (see, Terada et al. 1998). The Stokes flow is governed by the following strong

form equations:

(5a,b)

(6a,b)

where  and  is the Cauchy stress tensor and mass density, respectively, g the body force

density, and I and  are the identity and stretching tensors, respectively. These equations yield

the bellow Laplacian form of Eqs. (5):

(7a,b)

Eq. (7a) denotes that viscous effects of the incompressible flow becomes negligible in the

homogenized behavior of the porous media; i.e., . The viscosity, therefore, does not

appear in the macro-scale governing equation. It appears as the Darcy law for macroscopic

permeation given by the homogenization method below. Boundary conditions of Eqs. (7) are

assumed to be given as:
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where  is the prescribed velocity at the corresponding fluid boundaries, , but except for the

fluid-solid interfaces  including complex microscopic geometries. In the present method, fluid

velocities at the fluid-solid interfaces are treated as a non-slip and their magnitude is zero for

matching the interface velocity with the steady state of the solid phase. This condition is written in

Eq. (8b).

The two-scale asymptotic expansion of Eqs. (7) requires the below equations using Eqs. (1) and (2):

(9a,b)

(10a,b)

From Eqs. (9), we obtain that  is independent from the micro-scale coordinates y, and

the y-scale volume average of the divergence of  becomes zero because of the -

periodicity of . These are written as:

 
(11a,b)

Thus, we cannot obtain the independence of  from the micro-scale coordinates y in this

homogenization problem, and then Eq. (11b) governs the macroscopic flow in the porous media as

a permeation.

Characteristic functions introduced here for decoupling the dependency of the micro-scale velocity

 and pressure  on the both scale coordinates are defined as follows, respectively

(Wang et al. 2003):

(12a)

(12b)

The function  is defined as the fluid velocity tensor in the unit-cell that is composed of the

three characteristic velocity vectors  (k = 1, 2, 3) under the action of the macroscopic unit

pressure gradient of ek-direction. The function  is composed of the three characteristic

pressures  (k = 1, 2, 3) in the same manner. These definitions are written as follows using the

orthonormal bases ek:

 (13a,b)

where the operator  is introduced to denote the tensor product. Using Eq. (12a), we can define the
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(15)

From these equations, a homogenized governing equation of the macroscopic behaviors of the flow

is given as follows in a strong form:

(16)

in the weak form:

(17)

where  is the flux of the permeation at the macroscopic boundary  resulted from Eq. (8a),

and n is the unit normal vector of the surface. We use the weak form for solving the problem

because of the usage of the finite element discretization. Eq. (10) give the following equations

governing the two characteristic functions, which in a strong form:

(18a,b)

in a weak form:
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This equation is solved with the zero characteristic velocity condition written in Eq. (8b) at the

solid-fluid interfaces of the unit cell Sfsi. The gradient operator with the superscript S has been

introduced to denote the symmetric form of it.
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(22a,b)

Boundary conditions of Eq. (20) are assumed to be given as:

(23a,b)

(23c)

where  and  are the prescribed displacement and surface force at the corresponding boundaries.

In this homogenization method, fluid-solid coupling effects on the microscopic fluid-solid interfaces

become the normal force loaded from the fluid phase pressure , taking into account of the ε 2

order fluid viscosity. This condition is written in Eq. (23c).
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This equation denotes that the effect of  does not appear in the homogenized governing

equation for micro-scale. From these results, the terms associated with ε 0 are decomposed into the

below macro- and micro-scale governing equations of the problem:

 (30)

(31)

where Eq. (26b) and the -periodicity that yields  have already been

substituted.

Characteristic functions introduced here for  are defined as follows (Terada et al. 1998):
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,    (37a,b)

As a notice for the homogenization method, the simultaneous equations constructed by Eqs. (17)

and (35) coincide with those derived from the classical two-phase theory for solid-fluid mixtures

(Biot 1956); however, in this homogenization method every material properties of the equation are

evaluated with Eqs. (15) and (36) via the micro-scale (unit-cell) analysis.

3. X-FEM for solid-fluid two-phase microstructures

The solid-fluid mixture homogenization method described in Section 2 generally needs an

interface-fitted finite element mesh for solving the microstructure model (i.e., unit cell) of the

porous media (Terada et al. 1998, Takano et al. 2002). The interface-fitted method is required to

discretize the fluid and solid phases respectively, and to prescribe the non-slip velocity conditions at

the interface via the node-base essential boundary condition. In this section, we describe an

alternative approach based on the eXtended finite element method (X-FEM) (Moës et al. 1999,

Belytschko et al. 2001, Legay et al. 2006, Sawada et al. 2007d) that is developed to discretize the

two-phase unit cell without the usage of interface-fitted meshes. This approach in particular is

suitable for meeting our demand for grasping how the macroscopic material properties represented

by rigidity and permeability of the porous media change according to the depth of sintered parts of

the ceramic particles as shown in Fig. 1(a) (Sawada et al. 2007a,b).

3.1 Level-set representation of fluid-solid interface

The method proposed here introduces local enrichments to the finite element interpolation spaces

of the respective characteristic functions for fluid velocities, pressures, and solid displacements

across the fluid-solid interfaces in the unit cell. The local enrichments give the non-interface-fitted

mesh the capability of reproducing not only the discontinuity of the three primitive variables but

also the non-slip velocity condition at the interfaces. Fig. 3 gives a simple two-dimensional

illustration of the non-interface-fitted finite elements around the fluid-solid interface in the unit cell.

The white and black square nodes in Fig. 3 are the standard fluid and solid nodes without

enrichment, respectively. The gray nodes are the enriched ones that construct finite elements

crossing the fluid-solid interface of the two-phase unit cell.

Respective enrichment functions for the characteristic velocities  and pressures  of the

fluid phase (k = 1, 2, 3), and those for the displacements ,  of the solid phase

(kh = 11, 22, 33, 12, 23, 31), are determined by the level set method using the below signed distance

function  . The level set function is constructed so that the domain of f > 0 corresponds to the

fluid phases Yf, f < 0 to the solid phases Ys, and f = 0 to the fluid-solid interfaces  as shown in

Fig. 3.
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where  is the nodal values of the level set function,  the finite element shape functions, 

the arbitrary spatial position vector at the fluid-solid interface , and  is the unit normal

vector pointing the fluid phase from the position . Q expresses one finite element of the unit cell

mesh. The combination of Eqs. (38) and (39) decreases the computational cost of the level set

function as compared to the following direct evaluation of  without the finite element

approximation of Eq. (38):

     in Y (40)

3.2 Local enrichment functions around fluid-solid interface

In order to give the non-interface-fitted mesh the capability of reproducing the sharp discontinuity

of the four characteristic functions at the fluid-solid interfaces, we introduce the step- and edge-type

enrichment functions defined as:

(41)

(42)

(43)

The enrichment function  is the typical step function that jumps from one to zero sharply

at the fluid-solid interface. When the superscript of  is plus as is the case of Eq. (41), the

step function defines the enriched variables only in the fluid phases. By contrast, when it is minus

as Eq. (42), it is defined only in the solid phases. The enrichment function  defined in Eq.

(43) is the one-side edge-type function that is introduced to make the fluid velocities at the

interfaces satisfy the non-slip velocity condition with a zero value. The edge function is equal to
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Fig. 3 Two-dimensional illustration of fluid-solid interface and non-interface-fitted finite elements



56 Tomohiro Sawada, Shogo Nakasumi, Akira Tezuka, Manabu Fukushima and Yu-ichi Yoshizawa

one almost in the fluid phase, but it becomes linearly to zero at the fluid-solid interface from the

fluid nodes that construct fluid finite elements crossing the interface. These enrichment functions are

illustrated in Fig. 4 as a simple one-dimensional example.

 

3.4 Enriched interpolations at fluid-solid interface

Extended interpolations for the respective characteristic functions for velocity and pressure of the

fluid phase, and those for displacement of the solid phase are given as follows, respectively:

     (k = 1, 2, 3) (44)

     (k = 1, 2, 3) (45)

     (kh = 11, 22, 33, 12, 23, 31) (46)

(47)

where the scalars and vectors with the subscript α denote the nodal values of them; for instance, the

vectors  are nodal values of the characteristic velocity vectors . With the appropriately-

selected local enrichment functions, the characteristic velocities and pressure are defined only in the

fluid phases, while those for the displacement are only in the solid phase, even if the non-interface-

fitted mesh is used for the discretization. Fig. 5 shows how the linear interpolation is modified by

the two enrichment functions,  and , in a simple one-dimensional case. The non-slip

velocity condition required to be satisfied at the fluid-solid interface is reproduced exactly by the

enrichment function  without any manipulations of nodal characteristic velocities around the

interface. This is the main advantage as compared to the Lagrange multiplier-based methods that

requires additional constraint equations to reproduce the zero-velocity condition.
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Fig. 4 Step- and edge-type enrichment functions around solid-fluid interface



 Extended-FEM for the solid-fluid mixture two-scale problems with BCC and FCC microstructures 57

3.5 Equal order interpolation of velocity and pressure

As is the case of Fig. 5, we use the Q1 element that has linear category shape functions NI for the

eXtended finite element interpolation of all characteristic functions. The Q1 element degenerates

into the two-node line element in one-dimensional cases such as Fig. 5. In two-dimensional cases, it

corresponds to the four-node quadrilateral element with bi-linear shape functions, and it becomes

the eight-node hexahedral element with tri-linear shape functions in three-dimensional cases. For

relaxing the rocking phenomena that arises from the usage of equal-order interpolation element (i.e.

Q1Q1 element) in solving the velocity and pressure mixed formulation with incompressibility

constraints, the pressure-stabilizing/ Petrov-Galerkin (PSPG) formulation (Tezduyar et al. 1992,

Tezduyar 2003) is applied as the Petrov-Galerkin form of Eq. (19). This stabilization technique

enables us to use the Q1Q1 element in the V/P formulation for incompressible flow.

4. Performance assessments of interfacial enrichments

In this section, we compare the localization and homogenization performances of the following

three methods in order to demonstrate the computational advantages of the proposed eXtended finite

element approach. The first method is the standard finite element method (S-FEM) using an simple

interface-fitted mesh, the second is the voxel-type method (V-FEM) whose mesh does not fit the

interface exactly, and the last is the proposed method (X-FEM) that introduces the local enrichments

at the interfaces.

4.1 Problem set-up

Performance comparison among the three methods is carried out with a two-dimensional square

unit cell with a circular hole at center. Fig. 6 shows the finite element meshes of each method,

where only the quarter parts of the respective meshes are shown taking account of their

axisymmetrical geometry. The V-FEM and X-FEM adopt the uniform rectangular mesh as shown in

Fig. 5 Locally-enriched interpolations with step- and edge-type functions
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the corresponding figures (b) and (c). Finite elements per side are 30 for all methods. The side

length of the unit cell is  mm, and the diameter of the center hole D is 1 mm. With respect to

the V-FEM, we decide whether or not each element crossing the surface of the inner hole should be

included to the homogenization and localization analysis according to the in-and-out side judgment

of the center of the gravity of the elements as a commonly used voxel-type approximation. In the

benchmark analysis, we apply the periodic conditions at the outside boundaries of the unit cell.

Essential boundary conditions with the zero nodal velocity are prescribed to the S-FEM and to the

V-FEM at the nodes of the inside boundary of the mesh, while such boundary conditions are not

applied to the X-FEM near the inside boundary, because the non-slip condition is satisfied with the

introduced edge-type enrichment function.

 Using the finite element meshes, we carry out the homogenization and localization analyses of

fluid and solid terms both in the same domain (i.e. the outside domain of the inner hole), although

the actual solid phase is the inner domain of the circle. The reason for doing this is that the

homogenization results for the solid rigidity become undefined (i.e. zero) when the solid phase is

analyzed in the hole area due to no existence of periodicity conditions. In this case, the solid phase

becomes an floating object in the fluid, which results in zero stiffness. This treatment exerts no

inconsistency on the performance assessment, because the fluid and solid phases are decoupled in

the homogenization and localization process of the present homogenization method (Terada et al.

1998). Young’s modulus and Poisson’s ratio of the solid phase are 420 GPa and 0.25, respectively,

referring to the representative value of alumina ceramics. Viscosity of the fluid is that of the

ordinary air: 18.22 mPa s.

4.2 Localization performance

As a localization example, we prescribe the macro pressure p(0) 500 Pa for the localization of the

solid, and the macro pressure gradient  Pa/cm (i = 1, 2) for the fluid. These values

correspond to those that are supposed to be under the actual circumstance of our ceramic filters

under development. Von Mises stresses obtained with the localized solution of the microscopic

displacement of Eq. (32) are shown in Fig. 7 for the three methods (S-FEM, V-FEM, and X-FEM).

Microscopic velocity norms obtained by Eq. (12a) with the characteristic velocities are shown in

Fig. 8. Magnitude of the deformation of the localization analysis is slight, because the prescribed

2

∂p
0( ) ∂xi 100=⁄

Fig. 6 Three type finite element meshes for two-dimensional benchmark analysis
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pressure is negligible in the deformation sense of the alumina.

In Fig. 7, it is observed that the distribution of the von Mises stress of the X-FEM (c) is nearly

equal to that of S-FEM (a) with a sufficiently smooth solution around the interface in spite of using

a non-interface-fitted mesh in the analysis. This is one of the essential merits of introducing the

local enrichments for characteristic displacements. In contrast to the smoothness of the X-FEM

solution, that of the V-FEM (b) solution is disturbed due to the voxel mesh treatment, and the

inappropriate stress concentration is observed in the vicinity of the interface. From the microscopic

design of ceramic filters, the V-FEM does not meet the design demand that we want to grasp

concentration of the von Mises stress as possible as exactly that becomes an indicator of plasticity

failures and fatigues. From the detailed observation of the stress contours, that of the S-FEM (a)

shows the tendency to become gradually unsmooth as close to the corner of the unit cell due to the

increase of the aspect ratio of the finite elements, while the X-FEM (c) keeps a smooth contour if

the area is close to the corner. This result indicates that the X-FEM is able to surpass the S-FEM in

such situations (Terada et al. 2003, Terada and Kurumatani 2004), because all area is discretized by

the uniform rectangular mesh in the X-FEM. The numerical result of the S-FEM, however, can be

enhanced further if the adaptive mesh generation is applied to the inner hole problem.

In Fig. 8, it is observed that the norm contour of the fluid velocity of the X-FEM (c) is nearly

equal to that of S-FEM (a) from the viewpoint of not only the distribution but the magnitude. Non-

slip condition at the inner boundary is reproduced by the local enrichment for the velocity in spite

of not being applied any essential boundary conditions. In contrast to the desirable result of the X-

FEM, that of the V-FEM (b) shows a serrated contour near the inner hole that arises from the voxel

treatment of the non-slip boundary condition. The magnitude of the velocity of the V-FEM solution

is smaller than that of the S-FEM and the X-FEM solutions by about 10% all over the domain. This

result indicates that permeability tensor obtained as a volume average of the characteristic velocities

is underestimated by about 10%. This data is shown in the next comparison data of homogenization.

The reason why the serrated contour of the V-FEM appears is explained in Fig. 9. The chain line

is the actual surface of the inner hole, and the solid line is the one that are defined by the voxel

approximation using in-and-out side judgment of element gravity centers. The dash line

approximates the zero-velocity surface of the voxel-type mesh where the (bi-)linear finite element

interpolation is supposed to be applied to. In this case, the zero-velocity surface reproduced by the

V-FEM becomes slightly bigger than the actual one depending on the size of the finite element, and

Fig. 7 Colored norm contours of localized solid von Mises stress (Pa)
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of course, the converse situation is possible to take place depending on the position between the

actual surface and voxel finite elements. This situation is observed in Fig. 8(b). Hence, the V-FEM

has a somewhat random dependency on the size of the finite elements used in the analysis. The

mesh dependency will cause the instability in the evaluation of the trade-off relation that is our

target of the study. This is the reason why we introduce the X-FEM approach to the microstructure

analysis rather than the V-FEM approach.

 

4.3 Homogenization performance

 Next important factors are spatial convergence performance to the finite element mesh divisions,

and its stability to the topology changes between the interface and the mesh, because we suppose to

apply the method to optimal sizing and shape designs of the micro-scale structure of ceramic filters

in the future stage, where the topology change between the interface and the mesh will take place

with every iteration process of the optimal computations. Although the stability factor is already

discussed in the localization benchmark, we show the spatial convergence performance of the three

methods by changing the finite element divisions per side from 10 to 100 for all method meshes in order

to check them at the same time. Fig. 6 shown above corresponds to the case of 30 divisions per side.

Fig. 8. Colored norm contours of localized fluid velocity (m/s)

Fig. 9 Voxel approximation of the interface
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Fig. 10 shows the spatial convergence and stability of the volume ratio and the fundamental

components of the homogenized permeability and elasticity tensors of the three methods. The

volume ratio of Fig. 10(a) is scaled by the theoretical value of .  and  are

the first diagonal component of the permeability tensor and incompressibility compliance tensor for

volume change of the solid-fluid mixtures, respectively. The others are the rigidity for the stretching

, coupling , and shearing deformations , respectively, whose indexes are written in the

Viogt form for the forth order tensor . The tensor data are all normalized by the respective

converged values. The converged values are as follows:

= 535 mm2 / Pas, = 0.271

= 187 GPa, = 38.9 GPa, = 30.9 GPa

Other tensor components with non-zero values are given as follows:

K11 = K22, Q11 = Q22, C11 = C22, C12 = C21, C44 = C55 (48a,b,c)

 
From Fig. 10, it is shown that every solution of X-FEM has a nearly comparable performance to

the S-FEM not only in the spatial convergence but also in the stability. In contrast to the stable

response of the X-FEM to the change of divisions, that of the V-FEM shows oscillation tendencies

in all cases, and the convergence performance is not good particularly in the case of the

permeability matrix (b) as already discussed in the localization benchmark. This instability results

Ys Y 60.73%=⁄ K11

H
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H

C11

H
C12

H
C44

H

C
H

K11

H
Q11

H

C11

H
C12

H
C44

H

Fig. 10 Spatial convergence performances of S-FEM, V-FEM, and X-FEM
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from the voxel-type treatment of the non-slip velocity condition at the interface as explained in Fig.

9. The instability is the most one that we want to avoid. However, the results of the V-FEM are

allowable in the sense of their magnitude.

From these results, we have reached the conclusion that the proposed X-FE approach has the

computational advantages to the S-FEM and V-FEM in evaluation of the rigidity and permeability

of the BCC- and FCC-like microstructures that are introduced to extract the effects of the depth of

the neck part of the sintered particles as shown in Fig. 1(a) as the idealized model of the actual

microstructure of Fig. 1(b). The X-FEM does not need to construct the interface-fitted meshes, and

it has an allowable accuracy and stability in the evaluation.

5. Three-dimensional extraction analysis using BCC and FCC microstructures

In this section, we show the three-dimensional analysis of the body-centered cubic (BCC) and

face-centered cubic (FCC) models of the microstructure of the partially sintered ceramic filter in

order to extract the effects of the neck depth of the sintered ceramic particles of Fig. 1(a) without

random and uncontrollable factors of the actual microstructure as shown in Fig. 1(b). We have large

interests on how the sintered part of the small ceramic particles exerts on the macroscopic rigidity

and permeability of the ceramics filters so that we can reflect the computational results in

developing the fabrication technique of the particle type ceramics filters.

5.1 Problem set-up

A two-dimensional-like illustration of the BCC model is shown in Fig. 11, and that of the FCC is

omitted in this paper because of similarity between the two structures. Responses of the

macroscopic rigidity and permeability evaluated from the two models are examined as functions of

the distance between the two ceramic particles d. The distance is defined as that from the corner to

body-center particles for the BCC model as shown in Fig. 11, while it is defined by the corner to

face-center particles in the FCC model.

To extract the responses of the macroscopic rigidity and permeability to the distance, we change it

from 0.87D to 0.05D with the diameter of the ceramic particle fixed as D = 1.0 mm. Four

representative configurations of the BCC and FCC models are displayed in Figs. 12 and 13,

respectively. The sintered parts become bigger as the scaled distance decreases. The situation when

the scaled distance d / D introduced here becomes 1.0 corresponds to the standard BCC and FCC

structures where the corner and body/face-center particles contacts at the point theoretically, while

the corner particles collide with each other when  in the BCC model

theoretically. However, these situations take place at a little longer scaled length in the numerical

analysis due to the level set representation of the critical contacting point as shown in Figs.12 and

13. We consider that the gap between the theoretical and numerical values does not present critical

problems for the extraction analysis, because we need the tendency but the point-wise accuracy.

This will become a future theme of the proposed method. This point is discussed in Wagner et al.

2003. As a remark to the homogenization analysis, fluid and solid phases are distinguished

distinctly in the three-dimensional applications. This treatment differs from the previous two-

dimensional benchmark analysis. The solid phase corresponds to the particle domains of the unit

cells, and the fluid phases to their gap domains.

d D⁄ 3 2⁄ 0.87≈=
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5.2 Trade-off relationship between permeability and rigidity

Fig. 14 shows the response curves obtained by the homogenization analysis with the proposed

method. The finite element mesh used in the analysis is shown in Fig.15(a). The finite elements per

each direction are 34. Material parameters are Es = 420 GB, vs = 0.25, and µ f = 18.22 mPa s. The

homogenization tensors , and  are the same components as the previous two-

dimensional benchmark. Original values of the three rigidity components are respectively defined as:

(49a,b,c)

Other components with non-zero values are given as follows considering the asymmetric

geometry:

(50a,b)

(50c,d,e)

With respect to the three homogenized elasticities of Fig. 14, they decrease as nearly proportional

but nonlinear functions of the ceramic particles distance, while the permeability increases with a

nearly squared curve. It has become clear that the nonlinearity of the BCC results comes from the

topology changes as shown in Fig. 12. With the increase of the scaled distance, eight corner
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Fig. 11 Sectional illustration of body-centered cubic (BCC) model for partially-sintered ceramic particles

Fig. 12 BCC unit cells of the four representative value of d/D s



64 Tomohiro Sawada, Shogo Nakasumi, Akira Tezuka, Manabu Fukushima and Yu-ichi Yoshizawa

particles of the BCC unit cell gradually separate with each other. The separating point is observed

as the C1 discontinuity of the response curve of Fig. 12 around the 0.92 scaled distance. When the

scaled distance becomes nearly large than 1.05 as shown in the respective sub-figures (c) and (d) of

Figs. 12 and 13, the homogenized elasticities become zero due to the no existence of the sintered

parts of the particles. By contrast, response curves of the FCC model are comparatively smooth,

because the topology changes do not take place within the present ledge of the scaled distance

except for over 1.05 area. This tendency also applies to the compliance for the volume change .

And then, we can obtain from the response corves that the rigidity of the FCC microstructure is

larger than that of the BCC microstructure, and the permeability is smaller. These response curves

Q11

H

Fig. 13 FCC unit cells of the four representative value of d/D s

Fig. 14 Homogenized elasticity, incompressibility, and permeability matrix components as functions of
distance between center and body/face-centered particles
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become a useful guideline on fabricating the particle-type ceramic filter of Fig. 1(b). For instance,

the permeability efficient of the BCC model becomes a quarter of some reference value if we want

to obtain twice-large magnitude of the rigidity.

In the computational aspect, if we try to obtain the response curves with the S-FEM, we are

required to generate interface-fitted meshes at every plotting point. In the X-FEM, we have only to

update nodal level set values using a common voxel-type mesh. This is an essential merit of

introducing local enrichments for primitive variables.

5.3 Temporal localization example

The temporal localization results that are carried out for the BCC microstructure with the same

values of the previous two-dimensional application are shown in Fig. 15. This is the case of d / D =

0.97. Fig. 15(b) shows velocity vectors in the fluid phase, and (c) the von Mises stress contours of

the ceramics phases. These localization results show good behaviors as well as the pervious two-

dimensional benchmark simulation. The gap velocities satisfy non-slip conditions at the complex

interface between the two-phases. We can observe that the von Mises stress, which will become an

indicator of plasticity failures and fatigues, concentrates near the sintered parts. From these three-

dimensional applications, it is shown that the enrichment function introduced to meet the interface

conditions is applicable to such three-dimensional cases without other additional numerical

techniques.

6. Summary and concluding remarks

In this paper, we have proposed the way of handling the complex microstructures with solid and

fluid phases without the usage of interface-fitted meshes. This method is a combined approach of

the homogenization method for solid-fluid mixtures and the eXtended finite element method (X-

FEM). The method introduces local enrichment functions that automatically meet interface

conditions between the solid and fluid phases without additional constraint equations. A two-

dimensional simple benchmark simulation shown in the paper demonstrated that the proposed

Fig. 15 Three-dimensional application to BCC unit cell model of partially-sintered ceramic particles
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method has a comparable performance to the standard interface-fitted mesh approach (S-FEM) not

only in the homogenization aspect but also in the localization, and surpasses the voxel-type mesh

approach (V-FEM) in the simple two-dimensional benchmark.

The developed method is supposed to be used for the computer-aided optimal design of ceramic

filters fabricated with partial sintering technique of spherical particles or powders in a future stage.

We have shown that the method is applicable to the body-centered cubic (BCC) and face-centered

cubic (FCC) models of the microstructure of the ceramic filter without other additional techniques.

Using this method, we have revealed that, for instance, the rigidity of the BCC microstructures

decrease nearly proportional to the ceramic particles distance that reflects the level of the partial

sintering, while the permeability increases with a squared curve. This means that the permeability

efficient of the BCC model becomes a quarter of some reference value if we want to obtain twice-

large magnitude of the rigidity. These response curves obtained in this study will become a useful

date in fabricating the actual particle-type ceramic filters.

As a concluding remark from another viewpoint of the study, this paper provided not only the X-

FEM approach to the evaluation of the trade-off relationship but also the numerical accuracy and

stability of the usual S-FEM and V-FEM approaches. After reading this paper, if the readers judge

the X-FEM is too much for the homogenization method, and the accuracy and stability of the V-

FEM are insufficient or allowable, we recommend using the V-FEM because of the low cost of the

implementation. This paper gives a criterion for judging it.
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