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A quasistatic crack propagation model allowing for 
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Abstract. While the classical theory of Griffith is the foundation of modern understanding of brittle
fracture, it has a number of significant shortcomings: Griffith theory does not predict crack initiation and
path and it suffers from the presence of unphysical stress singularities. In 1998, Francfort and Marigo
presented an energy functional minimization method, where the crack (or its absence) as well as its path
are part of the problem’s solution. The energy functionals act on spaces of functions of bounded
variations, where the cracks are related to the discontinuity sets of such functions. The new model
presented here uses modified energy functionals to account for molecular interactions in the vicinity of
crack tips, resulting in Barenblatt cohesive forces, such that the model becomes free of stress singularities.
This is done in a physically consistent way using recently published concepts of Sinclair. Here, for the
consistency of the model, it becomes necessary to allow for crack reversibility and to consider local
minimizers of the energy functionals. The latter is achieved by introducing different time scales. The
model is solved in its global as well as in its local version for a simple one-dimensional example,
showing that local minimization is necessary to yield a physically reasonable result.
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1. Introduction

The presented research is aimed at improving the understanding of brittle fracture formation and

propagation in materials. While classical applications include construction and machine design, the

continuing development of new technologies and new materials keeps expanding the interest in

fracture and failure research (de Borst et al. 2008, Bradford and Roufegarinejad 2008). New types

of ceramics are used in such different areas as aerospace engineering (e.g. vehicle design), power

generation (e.g. reactor design), and environmental technologies (e.g. diesel exhaust filters) to

mention just a few examples.

The classical theory of Griffith (1921) constitutes the foundation of modern understanding of

brittle fracture. However, it still has a number of significant shortcomings: Griffith theory does not

predict crack initiation and path and it suffers from the presence of unphysical stress singularities.

While the former problem is addressed, e.g., in Francfort and Marigo (1998), Dal Maso et al.
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(2005), and the latter problem is addressed, e.g., in Sinclair et al. (2005), this paper is directed at

including the ideas of Sinclair et al. (2005) for the removal of stress singularities into the

framework of Francfort and Marigo (1998), Dal Maso et al. (2005).

The approach of Francfort and Marigo (1998), Dal Maso et al. (2005) has the advantage that it

does not need to prescribe the presence of a crack or its path a priori, but the potential crack as well

as its path are part of the problem’s solution. It is founded on the global minimization of energy

functionals acting on spaces of functions of bounded variations, where the cracks are related to the

discontinuity sets of such functions. The idea of Sinclair et al. (2005) is to use cohesive forces of

Barenblatt-type (1962) to eliminate singularities at crack tips. In Barenblatt (1962), subsequent

simplifications provide the same predictions of material failure as Griffith theory, while Sinclair et

al. (2005) improves on this situation by avoiding such simplifications.

The model of the present article formulates modified energy functionals that account for

molecular interactions in the vicinity of crack tips and the cohesive forces in the spirit of Sinclair et

al. (2005). In contrast to Francfort and Marigo (1998), Dal Maso et al. (2005), the model also

allows for crack reversibility and considers local minimizers of the energy functionals, employing

different time scales. Solving the model for a simple one-dimensional example with a dead load, it

is shown that the local energy minimization yields the physically expected result in a situation

where the global minimization according to Francfort and Marigo (1998) fails.

The paper is organized as follows: The mathematical framework is described in Sections 2.1 and

2.2, where Sec. 2.1 deals with the static case, whereas Sec. 2.2 considers the time-dependent

(quasistatic) case. Boundary conditions are covered in Sec. 2.3. The energy functional allowing for

cohesive forces and crack reversibility are formulated in Sec. 2.4. The energy minimization problem

is stated in Sec. 2.5, first in its global version, then in its local version. Together with the energy

balance, this yields the quasistatic evolution problem in both its global and its local version. Finally,

in Sec. 3, the model is solved for a one-dimensional dead load example in both its global and its

local version.

2. Formulation of the model

2.1 Description of a strained and cracked body at a fixed time t

2.1.1 Reference configuration
Consider an N-dimensional elastic body, N ∈ {1, 2, 3}, and denote its uncracked reference

configuration by Ω R
N, where Ω is assumed to be nonempty, bounded, open, connected, with

Lipschitz boundary .

2.1.2 Special functions of bounded variation 

At each time t ∈ [0, T], T > 0, a strained and cracked configuration of the body is characterized

by a displacement field u : Ω → R
N together with a crack reversibility function r : Ω → {0, 1}. One

has to specify a suitable function space for the displacement field u, and the space of special

functions of bounded variation SBV (Ω, RN) is often considered to be the appropriate choice.

However, to guarantee compactness properties and the existence of minimizers for the energy

functionals, one sometimes has to consider larger function spaces: For example, in Dal Maso et al.

(2005), the space GSBV (Ω, RN) of generalized special functions of bounded variation turns out to

⊆
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be suitable, while, for the example mentioned in the last paragraph of [Sec. 4.6.7 in Ambrosio et al.

(2000)], BV (Ω, RN) is the appropriate space. To develop a mathematically rigorous existence theory

is beyond the scope of the present paper. Thus, for definiteness, the space SBV (Ω, RN) will be used

in the following. It is referred to Dal Maso et al. (2005) and Ambrosio et al. (2000) for the

definition of and background material on spaces of functions of bounded variation.

Functions in SBV (Ω, RN) have a structure that makes them particularly suitable for fracture

modeling. It is recalled that a function u ∈ SBV (Ω, RN) has a (distributional) derivative Du that can

be written as the sum of an ((N × N)-matrix-valued) integrable function u and an ((N × N)-

matrix-valued) Dirac δ-distribution concentrated on an HN−1-rectifiable so-called jump set Ju.

Technically, this can be stated as (quoting from [Eq. (4.1) in Ambrosio et al. (2000)])

Du = Dau + D ju = uLN + (u+ − u−)  HN−1
Ju

 (1)

i.e., interpreted as an (N × N)-matrix-valued measure, Du is the sum of N-dimensional Lebesgue

measure LN weighted by the function u ∈ L1(Ω, RN2

) and the (N − 1)-dimensional Hausdorff

measure HN−1 restricted to the jump set Ju weighted by the (N × N)-matrix-valued function (u+ − u−)

, where u+ and u− are the one-sided limits of u with respect to Ju, and  is the normal

vector with respect to Ju. The function u can now be used to describe a strained and cracked body,

where the location of the fracture or fractures is related to the discontinuity set Ju.

In Francfort-Marigo theory, e.g., in Francfort and Marigo (1998), Dal Maso et al. (2005), the

crack is some superset of Ju; it can be strictly larger than Ju due to irreversibility: It can happen that

Ju shrinks with time, such that, if cracks are not allowed to shrink, the crack must be allowed to be

bigger than Ju. In the model proposed in the following, the crack can be a subset of Ju, it can be a

superset of Ju, or it can be neither. However, the crack is still closely related to Ju, and it can be

determined from Ju together with the reversibility function r using Eq. (2) below. Let us first look at

the reversibility function r in more detail.

The function r is an accounting tool that, for each x ∈ Ω, records if there is an irreversible crack

at x or not: Set r(x) = 1 if, and only if, there is an irreversible crack at x. Thus, if r(x) = 0, then

there is either no crack at x, or there is a reversible crack at x. The crack will always be a superset

of r−1 {1} := {x ∈ Ω : r(x) = 1}. However, r−1{1} does not have to be contained in Ju: As in

Francfort-Marigo theory, where the crack has become irreversible, Ju can close, but the crack

remains open (see Fig. 1 for an illustration of the formation of an irreversible crack Γ and its

relation to Ju and r). As described below, irreversibility will be triggered by a crack having opened

more than a threshold value ath.

In contrast to Francfort-Marigo theory, here, it seems to make sense to allow situations, where

there are parts of Ju that are not part of the crack, at least if one wants to consider reversibility and

one does not want to restrict oneself to Mode I, i.e., tensile, loading: At a point x, where the crack

is still reversible (r(x) = 0), the crack should vanish if the normal distance of the crack lips has

returned to zero, even if x ∈ Ju with u+(x) u−(x) (i.e. if the discontinuity is perpendicular to Ju):

Cohesive forces will become active if the normal distance of the crack lips tends to zero, even if

there has been a shift parallel to the crack surface (this kind of discontinuity in the displacement

field could be interpreted as the presence of slip dislocations). Thus, the resulting definition of the

crack Γ(u, r) is

Γ(u, r) := r −1{1} {x ∈ Ju : ([u](x)) • (x) > 0} (2)

where [u] is the usual abbreviation for the jump of u:

∇

∇ ⊗ nJ
u

∇

⊗ nJ
u

nJ
u

≠

∪ nJ
u
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[u] : Ju → R
N, [u](x) := u+(x) − u−(x)  (3)

Note that the crack is determined by u and r, i.e., it does not have to be specified separately as in

Francfort-Marigo theory.

2.1.3 Boundedness
From a physical point of view, one would expect the displacement u to be bounded, i.e.,

u ∈ L∞(Ω, RN), since, otherwise, some parts of the body have been displaced arbitrarily far from the

reference configuration. Therefore, it seems reasonable to require that u ∈ SBV ∞(Ω, RN) := SBV (Ω,

R
N) L∞(Ω, RN) instead of just u ∈ SBV (Ω, RN).

2.2 Dependence on time

In the following, to describe time dependence of the displacement field, functions u will be

considered that, for each time t ∈ [0, T], assign a function u(t) : Ω → R
N, such that u(t) is the

function defined on Ω, describing the displacement at time t. As usual, for such functions, the

notation u(t, x) := u(t)(x) will be employed.

According to Sec. 2.1, one is seeking functions u : [0, T] → SBV ∞(Ω, RN) and r : [0, T] × Ω →

{0, 1}. A crack becoming irreversible once r(t, x) = 1 means that, for each x ∈ Ω , the function

r(·, x) has to be nondecreasing. Given u and the threshold distance ath > 0, one can actually define

r = ru in terms of u:

(4)

∩

ru t x,( )
0  if u[ ] t x,( )( ) nJ

u t( )
x( ) ath for all s t≤<•

1  otherwise⎩
⎨
⎧

=

Fig. 1 Formation of an irreversible crack Γ at the location of the set l: At the initial time t = 0, there is
neither a crack nor a displacement jump at l; at t = t0 there is a vertical displacement jump of size
bigger than the threshold value ath at l, i.e., bonds are permanently broken and an irreversible crack
has formed; at t1 the displacement discontinuity at l has vanished, however, the broken bonds do not
reform, i.e. the crack persists.
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Thus, ru can be seen as a memory function for u: The energy at time t does not only depend on u(t),

but also on ru(t), i.e., on the history of u.

2.3 Boundary conditions

Consider a decomposition of the boundary of Ω into a Dirichlet boundary DΩ and a Neumann

boundary NΩ:

 (5)

where  and  are relatively open subsets of Ω, and the closures in Eq. (5) are meant with

respect to the relative topology.

A Dirichlet boundary condition is assumed on : The deformation u is prescribed on 

according to a given function uD : [0, T] → L∞( ), that means, for each t ∈ [0, T], uD(t) should

be the trace of u(t) on :

uD(t) =  u(t) (6)

Surface forces are assumed to be given on the Neumann boundary . The surface forces are

assumed to be represented by a sufficiently regular function G : [0, T] × ( ) × R
N
→ R (see Sec.

2.4.4 below).

2.4 Energy functionals

For each time t, the goal is to determine the energy of the strained and cracked configuration

(u(t), r(t)). The total energy E (t) consists of several contributions which are considered in the

following.

2.4.1 Energy of the crack 

The energy Ecr of the crack is defined by 

Ecr (u, r) := (x, nΓ(x), [u](x), r(x))dHN−1(x)  (7)

where

κ : Ω × S
N−1 × R

N × {0, 1}→ (8)

S
N−1 denoting the (N − 1)-dimensional unit sphere, is a function that will have to satisfy various

regularity properties (typically something like lower semicontinuity) as part of a rigorous

mathematical existence theory. As mentioned before, this path will not be pursued in the present

article. The dependence of κ on x and nΓ(x) describes the location- and direction-dependent

toughness of the material. The dependence of κ on its third variable allows to account for

Barenblatt-type energies corresponding to cohesive forces depending on the normal distance of the

crack lips. Permitting κ to depend on the entire jump [u](x) instead of just on the jump in the

normal direction allows to include energy barriers for slip dislocations (jumps of u parallel to the

crack). The dependence on r(x) allows to account for crack reversibility: The idea is to use this as a

switch for the dependence of κ on its third variable: As cohesive forces should play no role once

the crack has become irreversible, κ should depend nontrivially on the third variable if, and only if,

∂
∂

∂Ω ∂DΩ ∂NΩ∪  ,     ∂DΩ ∂NΩ∩ ∅==

∂DΩ ∂NΩ ∂

∂DΩ ∂DΩ
∂DΩ

∂DΩ

tr∂DΩ

∂NΩ
∂NΩ
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Γ u r,( )

 

∫
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the fourth variable is 0. An example will be given shortly.

To prevent crack lip interpenetration, one might want to assume

κ (x, n, z, r) = ∞ whenever z • n < 0  (9)

i.e., such configurations would have infinite energy and, thereby, be excluded. From a multiscale

point of view, it does not seem unreasonable to allow a small amount of interpenetration, which can

be interpreted as a compression of interatomic bonds on the microscale. This has the advantage of

avoiding a discontinuity of κ at z • n = 0. As an example consider

κ (x, n, z, r) = |κLJ(x, n, z, r)| + κslip(x, n, z, r)  (10)

where κLJ is a Lennard-Jones-type function, e.g. (see Fig. 2)

κLJ(x, n, z, 0) := (11a)

κLJ(x, n, z, 1) := 2−6 − 2−12 0.0154  (11b)

and κslip is a periodic function providing a potential barrier for the occurrence of slip dislocations.

Summarizing, the toughness function κ should, at least, have the following properties:

(a) κ (x, n, z, r) < ∞ for each (x, n, z, r) ∈ Ω × S
N−1 × R

N × {0, 1} such that z • n ≥ 0.

(b) κ (x, n, z1, 1) = κ(x, n, z2, 1) for each (x, n, z1, z2) ∈ Ω × S
N−1 × R

N × R
N such that z1 • n ≥ 0

and z2 • n ≥ 0.

(c) For each (x, n) ∈ Ω × S
N−1, the function z κ(x, n, z, 0) is continuous on the set {z ∈ R

N : 0

≤ z • n ≤ ath}.

(d) κ (x, n, z, 0) = κ (x, n, z, 1) for each (x, n, z) ∈ Ω × S
N−1 × R

N such that z • n = ath.

∞– for z n ath–≤•

ath

ath z n•+
------------------------⎝ ⎠
⎛ ⎞

6 ath

ath z n•+
------------------------⎝ ⎠
⎛ ⎞

12

–⎝ ⎠
⎛ ⎞ for ath z n• ath≤<–

2
6–

2
12–

– 0.0154≈ for ath z n•≤⎩
⎪
⎪
⎨
⎪
⎪
⎧

≈

Fig. 2 Qualitative picture of the dependence of the function κLJ defined in Eq. (11a) on the normal separation
z • n.
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2.4.2 Strain energy of the bulk 
The strain energy Eb of the bulk is defined by

Eb(u) := (x, u(x))dx with a suitable function W : Ω × R
N2

→  (12)

Again, for the mathematical existence theory, W will have to satisfy suitable regularity properties. At

least, for each  should be measurable, and, for each  should be

continuous.

2.4.3 Energy of the body forces

The body forces are assumed to be represented by a function F : [0, T] × Ω × R
N
→ R such that

the energy of the body forces can be computed as F(t, u) := (t, x, u(x))dx. In particular, it is

assumed that, for each (t, z) ∈ [0, T] × R
N, F(t, ·, z) is measurable, and, for each (t, x) ∈ [0, T] × Ω,

F(t, x, ·) is continuous. Further regularity conditions on F will have to be imposed in a rigorous

existence theory.

2.4.4 Energy of the surface forces

The energy due to the surface forces G (cf. Sec. 2.3 above) can be computed as G(t, u) :=

(t, x, u(x))dx. In particular, it is assumed that, for each (t, z) ∈ [0, T] ×R
N, G(t, ·, z) is  measurable,

and, for each (t, x) ∈ [0, T] × NΩ, G(t, x, ·) is continuous. And, once again, further regularity

conditions on G will have to be imposed in a rigorous existence theory.

2.4.5 Total energy 

Given (u, r), the auxiliary total energy Eaux(t) at time t is determined by the energy of the crack,

the bulk energy, the energy of the body forces, and the energy of the surface forces:

Eaux(t)(u, r) := Ecr(u, r) + Eb(u) − F(t, u) − G(t, u)  (13)

Recall from Sec. 2.2 that, given u : [0, T] → SBV ∞(Ω, RN), the reversibility function ru
corresponding to u is defined by Eq. (4). Thus, at time t ∈ [0, T], the total energy E (t) of the time-

dependent displacement u : [0, T] → SBV∞(Ω, RN) is defined by

E (t)(u) := Eaux(t)(u(t), ru(t))  (14)

2.5 Energy minimization

2.5.1 Admissible displacement fields

An admissible displacement field u at time t ∈ [0, T] is a function u ∈ SBV ∞(Ω, RN) that respects

the Dirichlet boundary condition Eq. (6) on DΩ. That means, the set AD(t) of admissible

displacement fields at time t is defined by

AD(t) := {u ∈ SBV∞(Ω, RN) : uD(t) =  u}  (15)

As the trace operator : SBV (Ω, RN) → L1( DΩ, RN) is surjective and positive (cf. [Th. 3.87

in Ambrosio et al. (2000)] and its following paragraph), AD(t) is nonempty if, and only if,

uD(t) ∈ L∞( DΩ, RN).

W
Ω

 

∫ ∇ R0

+
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2.5.2 Global energy minimization 
Global energy minimization in the spirit of the condition of global stability in [Sec. 3.9 in Dal

Maso et al. (2005)] means that, for each t ∈ [0, T], u(t) needs to be a minimizer of the total energy

E (t) among all admissible v ∈ AD(t). For the precise formulation of this statement, one has to use

some care due to the presence of the reversibility function r. For a fixed time t ∈ [0, T], the goal is

to formulate the minimality condition that u(t) needs to satisfy. Due to the presence of the

reversibility function, to be able to formulate the condition at time t, one has to make use of the

function u already defined for times smaller than t:

Let v ∈ AD(t) be an admissible displacement field at time t, and let u : [0, t[ → SBV∞(Ω, RN) be

given. Then u can be extended to time t by v:

uv : [0, t] → SBV ∞(Ω, RN),      uv(s) := (16)

Thereby, v also gives rise to a reversibility function rv by letting

rv : [0, t] → {0, 1}, rv := ruv  (17)

With these preparations in place, one is in a position to state the global minimality condition at

time t: u(t) needs to satisfy

u(t) ∈ AD(t) and E (t)(uu(t)) ≤ E (t)(uv) for each v ∈ AD(t)  (18)

2.5.3 Local energy minimization

The condition for a global energetic minimum of the previous section has the advantage of being

conceptionally fairly simple: Under the assumption that quasistatic modeling is at all reasonable and

minimizers u(t) satisfying Eq. (18) exist for all t, the idea is, that, for each t, the system settles into

the global energetic minimum given by Eq. (18) according to some dynamics taking place on a

faster time scale. However, it might not be physically realistic that the system can always settle into

the global energetic minimum given by Eq. (18), since this global minimum might be barred from

“previous” states by an energy barrier, i.e. there is no “admissible path” to the global minimum.

The arising conceptional problems are the following: It is not obvious what exactly one would

mean by “previous” states given a continuous, but quasistatic time variable. Likewise, it is not

obvious what a “path” in the space of admissible displacement fields should be. Here, by a “path”,

one would usually mean a continuous function p : [0, 1] → SBV∞(Ω, RN); but continuous with

respect to which metric or topology on SBV∞(Ω,RN) ?

A physically reasonable distance function d on SBV∞(Ω, RN) should be such that, for small d(u,

v), the difference of the energies of u and v is likewise small. More precisely, if p : [0, 1] →

SBV ∞(Ω, RN) is a continuous path with respect to d, then a Energy(p(a)) should also be a

continuous function (the energy should change continuously along paths in SBV∞(Ω, RN)). Note

that one would need an exception to this assumption if one were to allow the energy to change

discontinuously to ∞ at [u] • n = 0 to avoid crack lip interpenetration.

Given the continuous dependence of κ on [u](x) according to condition (c) at the end of Sec.

2.4.1, the continuous dependence of W on u(x), the continuous dependence of F on u(x), and the

continuous dependence of G on u(x), a suitable distance function on SBV∞(Ω, RN) might be

proposed by the norm ||·||∞,1 on SBV∞(Ω, RN) defined by

u s( ) for s t<
v for s t=⎩

⎨
⎧

∇



A quasistatic crack propagation model allowing for cohesive forces and crack reversibility 39

||u||∞,1 := ||u||∞ + || u||1  (19)

where u is meant in the same sense as in Eq. (1).

To be able to define the set of admissible paths between states v1 and v2 at time t, (v1, v2) ∈ AD(t),

one needs to make use of the function u already defined for times s < t. As for the global energy

minimization in the previous section, this is due to the energy at time t depending on the history of

u via the reversibility function r.

Using the notation introduced in Eq. (16) and Eq. (17) in the previous section, for a fixed time

t ∈ [0, T], given u : [0, t[ → SBV∞(Ω, RN), define the set Pt(v1, v2) of admissible paths between

states v1 and v2, (v1, v2) ∈ AD(t) × AD(t), as the set of maps p : [0, 1] → AD(t) continuous with

respect to ||·||∞,1 (note AD(t) SBV∞(Ω, RN)), such that p(0) = v1, p(1) = v2, and such that the map

a E (t)(up(a)) is nonincreasing on [0, 1].

In analogy with the global minimality condition Eq. (18) above, at time t, the local minimality

condition is stated as follows:

u(t) ∈ AD(t) and there is ε > 0 such that:   
   E (t)(uu(t)) ≤ E (t)(uv)

                                                    for each v ∈ AD(t) satisfying ||u(t) − v||∞, 1 < ε         (20)

Now, condition Eq. (20) needs to be combined with the concept of quasistatic evolution. The idea

for doing that is to consider different scales for the time dependence:

A function u : [0, T] → SBV ∞(Ω, RN) will be called energetically admissible if, and only if, u

satisfies the following conditions (i) and (ii):

(i) u(t) satisfies (20) for each t ∈ [0, T].

(ii) There exists a finite sequence of times 0 = t0 < ··· < tn = T such that u is continuous with

respect to the ||·||∞, 1-norm on each interval [tν − 1, tν[, ν ∈ {1, ..., n}, and, for each ν ∈ {1, ..., n},

there is vν ∈ AD(tν) such that the map

uν : [tν − 1, tν] → SBV∞(Ω, RN),      uν (t) := 

is continuous with respect to the ||·||∞, 1-norm on the entire closed interval [tν − 1, tν], and such that

there is an admissible path pν ∈ (vν, u(tν))connecting vν and u(tν).

The explanation for condition (ii) is as follows: First, assume that the local minima in Eq. (20) are

strict. Then, the macro time scale is active as long as u(t) “naturally” sits in a local minimum for

the energy according to Eq. (20). This is the case inside each interval [tν − 1, tν[. The energy of u(t)

can actually increase with t, but, at each t, it is smaller than for any state in some ||·||∞, 1-

neighborhood of u(t). Since E (t) changes with time, so does the energy landscape. At the times tν,

ν ∈ {1, ..., n}, it has changed so much that what used to be a strict local minimum is no longer a

strict local minimum, and there exists an admissible path in AD(tν) to some state of lower energy.

The assumption of quasistatic evolution means that the system follows such a path on the micro

time scale, finding a new local energetic minimum. This happens instantaneously on the macro time

scale, namely at time tν.

The consideration of nonstrict, plateau-type local minima is somewhat more subtle (depending on

the energy functionals such plateaus might or might not exist). As condition (ii) is formulated, given

plateaus, it allows multiple solutions. The system can remain in each point of the plateau, but it can

∇

∇

⊆

u t( ) for t t
ν

<

v
ν

for t t
ν

=⎩
⎨
⎧

Pt
ν
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also explore the plateau to find admissible paths to even lower energies. Depending on the (micro)

time needed to explore such plateaus, it might be reasonable to revise condition (ii) to require the

system to move out of plateaus toward lower energies whenever an admissible path exists. This

would, in general, dramatically reduce the number of solutions. However, uniqueness could still not

be expected, as there can be multiple wells leading out of a given plateau.

Moreover, it could happen that E(t) changes in such a way that it has a plateau for each t ∈ [tν − 1,

tν], but not for any t > tν. For example, assume that m1 and m2 are the only local minima for t > tν.

Then the system would have to be in either m1 or m2 for t > tν, and, by continuity, also for t = tν.

So, in this situation, quasistatic modeling requires that the system would have to move to m1 or m2

for some t ≤ tν in anticipation of the change of E (t) at tν. In reality, this would occur within a short

(micro) time after tν. The anticipation seems to be the price one pays for not resolving the

microtime in this case.

It is remarked that, a priori, it is not clear if, and under what conditions, there exists u(t) satisfying

Eq. (20). And even if there does exist u(t) satisfying Eq. (20) for each t ∈ [0, T], then it is still not

clear if, and under what conditions, there is u : [0, T] → SBV∞(Ω, RN) that is energetically

admissible in the sense defined above. This question remains to be investigated in future research.

2.5.4 Energy balance

In analogy with [Eq. (3.50) and Rem. 3.12 in Dal Maso et al. (2005)], for each time interval, the

increment in stored energy plus the energy spent in crack increase (or recovered by crack closure)

needs to equal the work Wext of the external forces:

Wext(t)(u) − Wext(s)(u) = E (t)(u) − E (s)(u) for each (s, t) ∈ [0, T]2, s < t  (21)

As described in [Sec. 1 in Dal Maso et al. (2005)], there are three contributions to the work of the

external forces:

Wext(t)(u) = WD(t)(u) + WF (t)(u) + WG (t)(u)  (22)

where WD is the work arising from the prescribed deformation on the Dirichlet boundary DΩ, WF

is the external work of the body forces, and WG is the external work of the surface forces.

According to the formula in Dal Maso et al. (2005) before [Eq. (1.1) in Dal Maso et al. (2005)]:

WD(t)(u) = 2W(x, u(t, x)) uD(t, x) dHN−1(x)  (23)

In the absence of sufficient regularity, Eq. (23) has to be interpreted in a suitable weak sense as

described in Dal Maso et al. (2005) after [Eq. (3.46) in Dal Maso et al. (2005)]. Next, according to

[Sec. 3.9 in Dal Maso et al. (2005)], one has

WF (t)(u) = F(τ, x, u(τ, x))dx dτ,      WG(t)(u) = G(τ, x, u(τ, x))dx dτ (24)

2.5.5 Quasistatic evolution problem: global version 

A quasistatic evolution of globally minimizing energy configurations (QEGMEC) is a function u :

[0, T] → SBV∞(Ω, RN) satisfying the following conditions:

(a) For each t ∈ [0, T]: u(t) ∈ AD(t).

(b) For each t ∈ [0, T]: E (t)(uu(t)) ≤ E (t)(uv) for every v ∈ AD(t).

(c) Wext(t)(u) − Wext(s)(u) = E (t)(u) − E (s)(u) for each (s, t) ∈ [0, T]2, s < t.
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2.5.6 Quasistatic evolution problem: local version 
A quasistatic evolution of locally minimizing energy configurations (QELMEC) is a function u :

[0, T] → SBV∞(t) satisfying the following conditions:

 
(a) For each t ∈ [0, T]: u(t) ∈ AD(t).

(b) For each t ∈ [0, T], there is ε > 0 such that E (t)(uu(t)) ≤ E (t)(uv) for each v ∈ AD(t) satisfying

||u(t) − v||∞,1 < ε.

(c) There exists a finite sequence of times 0 = t0 < ··· < tn = T such that u is continuous with

respect to the ||·||∞,1-norm on each interval [tν − 1, tν[, ν ∈ {1, ..., n}, and, for each ν ∈
{1, ..., n}, there is vν ∈ AD(tν) such that the map

uν : [tν − 1, tν] → SBV ∞(Ω, RN), uν (t) :=

is continuous with respect to the ||·||∞,1-norm on the entire closed interval [tν − 1, tν], and such that

there is an admissible path pν ∈ (vν, u(tν))connecting vν and u(tν).

(d) Wext(t)(u) − Wext(s)(u) = E (t)(u) − E (s)(u) for each (s, t) ∈ [0, T]2, s < t.

In short, a QELMEC is an energetically admissible function in the sense of Sec. 2.5.3 that

satisfies the energy balance.

3 Example: dead load via a constant body force

3.1 General setting

In the following, a dead load example of the type [Sec. 5.2 in Francfort and Marigo (1998)] is

considered. The issue discussed in [Sec. 5.2 in Francfort and Marigo (1998)] is basically that the

energy minimization yields an unphysical result, namely failure for an arbitrarily small nonzero

load. This problem is due to the global energy minimization, and the following example shows that

introducing reversibility and cohesive forces does nothing to change the situation (see Sec. 3.2).

However, the local version of the energy minimization considered in Sec. 3.3 yields the physically

expected result that failure occurs only once the load surpasses a critical value.

Consider the following one-dimensional problem (see Fig. 3), letting

Ω := {x ∈ R : 0 < x < 2}, DΩ := {2}, NΩ := {0},

uD : [0, T] → L∞( DΩ, R), uD(t)(2) := 0, G : [0, T] × ( NΩ) × R→ R,      G(t, 2, z) := 0,

W : Ω × R→ ,      W(x, ξ) := ξ 2 / 2, F : [0, T] × Ω × R→ R,      F(t, x, z) := −t z,

ath := 1,      κ : Ω × S
N − 1 × R

N × {0, 1} → {∞},      κ (x, n, z, r) := |κLJ (x, n, z, r)|,

where κLJ (x, n, z, r) is according to Eq. (11).

From these functions, one can compute the total energy:
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Eaux(t)(u, r) = (x, nΓ(u,r)(x), [u](x), r(x))dHN − 1(x)

+ (x, u(x))dx − (t, x, u(x))dx − (t, x, u(x))dx

= |κLJ (x, nΓ(u, r)(x), [u](x), r(x))| dHN − 1(x)

+ ( u(x))2 dx + t u(x) dx  (25)

E (t)(u) = E aux(t)(u(t), ru(t))

= |κLJ(x, nΓ(u(t), ra(t))(x), [u(t)](x), ru(t, x))| dHN − 1(x)

+ ( u(t, x)) • ( u(t, x)) dx + tu(t, x) dx (26)

3.2 Global minimization

The following shows that the situation described in [Sec. 5.2 in Francfort and Marigo (1998)]

persists for the current model in the global version of the minimization problem. The interpretation

given in [Sec. 5.2 in Francfort and Marigo (1998)] is that the model unphysically predicts an

arbitrarily small force to break the body into at least two pieces, sending off one of the pieces to

infinity. In the setting of the present example, there is no t ∈]0, T] such that the minimization (b) of

the global version (see Sec. 2.5.5) has a solution.
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Fig. 3 Illustration of the dead load example considered in Sec. 3: Global energy minimization (Sec. 3.2)
predicts the unphysical result that a crack must appear for any nonzero load F (it can appear at the
location depicted in the middle drawing or at any other location). However, local energy minimization
(Sec. 3.3) predicts the physically reasonable result that no crack appears for small loading F, and a
crack appears at the top (as indicated in the right-hand drawing) once F surpasses a critical value.
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Define

Ωhigh := {x ∈ R : 1 < x < 2}, Ωlow := {x ∈ R : 0 < x < 1}  (27)

and, for each a ∈]ath, ∞[, consider

ua : [0, T] → SBV∞(Ω, R), ua := (28)

(this situation is depicted in the middle of Fig. 3). Then, since ua (t) = uD, it is ua(t) ∈ AD(t)

for each t ∈ [0, T]. The total energy amounts to

E(t)(ua) = κLJ(x, 1, a, 1)| dHN − 1(x) − t a dx = 2−6 − 2−12 − t a  (29)

Thus, for t > 0, E (t)(ua) → − ∞ for a → ∞, showing that the minimization (b) of the global

version has no solution.

3.3 Local minimization

For each t ∈ [0, T], let ue(t), ue(t) : Ω → R, ue(t) ≤ 0, be the solution for the “perfectly elastic”

limit of the material, i.e. ue(t) is the (global) minimizer of

Ee(t)(f ) := ( u(x)) • ( u(x))dx + t u(x) dx (30)

Now, the idea is to introduce a crack at y ∈ Ω. For each step function φa, b, y := −a 1[0, y[ + b 1]y, 2],

(a, b) ∈ R
2, one can investigate if the energy of ue(t) + φa, b, y is more or less than the energy of ue(t).

First, note that b = 0, as, in order for ue(t) + φa, b, y to satisfy the Dirichlet condition, 0 = ue(t)(2) +

φa, b, y (2) = 0 + b = b. Let φa, y := φa, 0, y. As φa, y = 0, one has (ue(t) + φa, y) = (ue(t)). Thus, the

energy of ue(t) + φa, y is

E(t)(ue(t) + φa, y) = κj(a) + ( ue(t, x)) • ( ue(t, x))dx + t (ue(t, x) + φa, y(x))dx

= Ee(t)(ue(t)) + κj(a) − t a y  (31)

where κj : ]ath, ∞[→ , κj(a) := |κLJ(1, 1, a, 0)| (cf. (11a)). Thus, E (t)(ue(t)) is a local minimum if,

and only if, a  κj(a) − tay has a local minimum at 0. This is clearly the case for small positive t,

and the solution is crack-free. Then, at a critical t > 0, a crack will appear at x = 2 (see the right-

hand drawing of of Fig. 3), which is the physically expected result.

4. Conclusions

We have described a new quasistatic model for the formation and propagation of brittle fracture

using the energy functional minimization method. New terms in the energy functional allow for the

molecular interactions occurring at crack tips to avoid stress singularities. The model was
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formulated in two versions, one requiring global energy minimization, the other requiring local

energy minimization. For the local version, it was necessary to introduce a second, faster time scale

into the quasistatic model. It was demonstrated for a simple example that it is necessary to use the

local energy minimization version of the model to arrive at the physically expected result. While the

global energy minimization has a nonsensical result, predicting failure under any nonzero load, the

local minimization correctly predicts failure under a critical positive load. It also correctly predicts

the location of crack formation.
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