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Elastic local buckling of thin-walled elliptical tubes 
containing elastic infill material
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Abstract. Elliptical tubes may buckle in an elastic local buckling failure mode under uniform compression.
Previous analyses of the local buckling of these members have assumed that the cross-section is hollow, but it
is well-known that the local buckling capacity of thin-walled closed sections may be increased by filling them
with a rigid medium such as concrete. In many applications, the medium many not necessarily be rigid, and the
infill can be considered to be an elastic material which interacts with the buckling of the elliptical tube that
surrounds it. This paper uses an energy-based technique to model the buckling of a thin-walled elliptical tube
containing an elastic infill, which elucidates the physics of the buckling phenomenon from an engineering
mechanics basis, in deference to a less generic finite element approach to the buckling problem. It makes use of
the observation that the local buckling in an elliptical tube is localised with respect to the contour of the ellipse
in its cross-section, with the localisation being at the region of lowest curvature. The formulation in the paper is
algebraic and it leads to solutions that can be determined by implementing simple numerical solution techniques. A
further extension of this formulation to a stiffness approach with multiple degrees of buckling freedom is described,
and it is shown that using the simple one degree of freedom representation is sufficiently accurate for determining
the elastic local buckling coefficient.
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1. Introduction

Thin-walled circular tubes subjected to axial compression find widespread application in many branches

of engineering, and their buckling behaviour has been researched fairly extensively. On the other hand, the

structural behaviour and particularly the buckling response of elliptical tubes has been far less studied,

despite their growing use in engineering structures and related applications, especially in stainless steel and

advanced composite materials (Bortolotti et al. 2003, Mahdi et al. 2005, Chan and Gardner 2006, Gardner

and Chan 2006, Zhu and Wilkinson 2006). While it is widely known that imperfection sensitivity is

dominant in the buckling of thin-walled circular tubes and leads to sudden failures which must be

analysed by Donnell shell theory or the like (Teng 1996), the buckling of elliptical tubes is less explosive

insofar as failure may occur beyond the initial buckling load and the postbuckling range is not necessarily

accompanied by rapid strain softening (Hutchinson 1968).

It is also well-known, in practical applications in structural engineering, that the strength enhancement
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of infilling a hollow steel tube with concrete arises not only because of the inclusion of the strength of the

concrete infill itself, but because it also increases the local buckling capacity of the encasing tube by inhibiting

the buckling of the tube into the infill (Uy 2001). This latter effect was considered for circular tubes by

Bradford et al. (2002), who derived an analytical expression for the local buckling of a thin-walled circular

tube with a rigid infill in closed form. More generally, hollow tubes, and tubes with an infinitely stiff (or

rigid) infill, represent two extremes of a restraint condition, in which an elastic infill of quantifiable stiffness

may interact with the infinitesimal buckling deformations that accompany bifurcative local buckling of a

thin-walled tube. This possibility of the infill being elastic rather than rigid, and its influence on buckling,

was considered by Bradford and Vrcelj (2004) for square tubes and by Bradford and Roufegarinejad

(2006) and Bradford et al. (2006) for circular tubes. Related applications for circular tubes are suction

caissons (Pinna and Ronalds 2000) where the soil provides elastic restraint at the level of the seabed, as well

as in crashworthiness applications (Reddy and Wall 1988, Guillow et al. 2001) and the seismic design of

buckling restrained braces (Black et al. 2004). Hitherto, it appears the influence of an elastic infill (and even

a rigid infill of infinite stiffness) on the buckling of thin-walled elliptical tubes has not been reported. This

paper therefore considers the buckling of a thin-walled elliptical tube, in which a prebuckling plane stress

state (and with flexure caused by local buckling) in a scale of the order of the thickness of the tube interacts

with a plane stress state in the infill of the scale of the order of the tube diameter.

Sustained research outcomes on the stability of elliptical tubes appears to date from the work of

Marguerre (1951), who proposed a “mean value” of the curvature of the ellipse as a basis for an equivalent

radius of a circular tube, but the use of this concept led to erroneous predictions of the buckling stress.

This concept was explored further by Kempner (1962). Kempner’s work recognised the ‘localisation’

of the buckle of an elliptical tube, as shown in Fig. 1, where the buckle is localised in a region 2βa

adjacent to the position in the profile where the curvature is smallest, where a is the semi-major axis

of the ellipse and β represents a localisation parameter. This concept is used in the present paper. Several

other researchers have addressed the hollow elliptical tube buckling problem, including Tennyson et al. (1971),

Fig. 1 Localisation of buckling of elliptical tube
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Myers and Hyer (1999) and Hyer and Vogl (2001), but research of the topic has been far from extensive.

In this paper, the local buckling of thin-walled elliptical tubes containing an elastic infill under uniform

compression is studied theoretically using a generic approach. It is based on a consideration of the similar

problem for circular tubes reported elsewhere (Bradford and Roufegarinejad 2006, Bradford et al. 2006),

with a consideration of the observed localisation of the buckled shape that is peculiar to elliptical tubes in

order to simplify the analysis. The problem is stated in analytical form, from which numerical solutions

may be derived, and that are compared with finite element results obtained using ABAQUS (2006).

The use of a one-degree of freedom formulation for the problem is shown to be accurate when compared

with ABAQUS, and with the formulation herein when used with more than one degree of freedom. The

use of an approximate solution, again in closed form, is proposed and discussed.

2. Energy formulation for change in potential during buckling

The local buckling mode for an elliptical section shown in Fig. 2 is assumed to be infinitesimal and of

magnitude w in the local normal (s) direction, that is produced when a constant uniaxial strain ε0 applied in the

x-direction reaches its critical value ε0l at which elastic bifurcation buckling takes place. One local buckling

cell of wavelength L in the x-direction is considered here; this being one of a number of such cells that

are assumed to form lengthwise. The energy formulation (Bradford et al. 2006) requires statements of the

strain energy stored due to bending only (Ub), the membrane strain energy due to stretching (Um), the

strain energy stored in the elastic infill (Ur) as well as the work done during buckling (V).

The middle or reference surface normal and shear strains for the ellipse (where u and v are the axial

and circumferential displacements respectively) are

Fig. 2 Axes, buckled shape and buckling wavelength
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(1)

while the curvatures are

(2)

in which ρ is the local radius of curvature of the undeformed tube that varies around its elliptical

profile. The generalised curvatures in Eqs. (1) and (2) lead to the well-known strain energy stored

due to bending only as

(3)

in which

(4)

is the stiffness of the tube, E is Young’s modulus, ν is Poisson’s ratio and C denotes the elliptic

contour with the integration ( )ds being around this closed contour.

By using elementary elasticity theory (Timoshenko and Goodier 1970), the stresses through

the thickness (z  [−t/2, t/2)]) corresponding to εx and εs are

(5)

and

(6)

which lead to edge forces per unit length of

(7)

and

(8)

as well as

(9)

where γxs is the shear strain at the middle surface of the ellipse. At buckling, the axial force intensity is (ε0E)t,

which must be equal to Nx in Eq. (7), and which results in

(10)
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(11)

Solving Eqs. (10) and (11) simultaneously then leads to

(12)

During buckling, strain energy is also stored due to membrane stretching, and this is given by

(13)

and which using Eqs. (7) to (9) results in

(14)

During buckling, the end external compressive forces do work that is equal to the end load

multiplied by the axial shortening 1/2 2dx and by the change in axial length caused by

the change in strain εx – ε0 (Eq. 12), so that

(15)

Fig. 3 shows a cross-sectional view of a local buckling cell along a meridian, with an interface region

between the tube and elastic infill defined by Γ = [0, αL]. When x Γ, the local buckle in the thin-

walled ellipse penetrates the elastic medium which has a constant stiffness k (which has units of

force per area per unit length); when x Γ the tube buckles away analogous to a plate on a

tensionless foundation (Smith et al. 1998). For a given local buckle cell length L, the penetration

parameter α [0,1] defines the extent to which the buckle penetrates the medium and this is not
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εs

w

ρ
---- νε0–=

εx ε0

νw

ρ
-------–=

Us

1

2
--- Nxεx Nsεs Nxsγxs+ +( ) zd sd

 t 2⁄–

t 2⁄

∫
C

∫°=

Us

Et

2 1 ν2
–( )

---------------------- εx εs+( )2
2 1 ν–( ) εxεs

γxs

2

4
------–⎝ ⎠

⎛ ⎞– zd sd

 t 2⁄–( )

t 2⁄

∫
C

∫°=

∂w ∂x⁄( )∫

V Etε0= εx ε0–( ) 1

2
---
∂w

∂x
-------⎝ ⎠
⎛ ⎞

2

+ sd xd
C

∫°
0

L

∫

∈

∉

∈

∈

Fig. 3 Meridional cross-sectional view of local buckle in thin-walled tube and penetration region G in elastic
infill
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(16)

Prior to buckling, the strain energy stored in the tube due to axial compression is

(17)

and so the total change in potential during buckling is

(18)

The circumference S of an ellipse with semi-major axis a and semi-minor axis b is

(19)

which when using the change of variable defined by

(20)

with

m = a4 − a2 z2 + b2 z2        and        n = a2 − z2 (21)

produces

(22)

It is worth noting that Eq. (22) can be conveniently stated using Ramanujan’s first approximation as

. (23)

Using the contributions in Eqs. (3) and (14) to (17) in Eq. (18), the change in total potential during

buckling can be written as

     

    

     

     . (24)

Eq. (24) is solved herein by invoking the Ritz-based solution technique described in the following.
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3. One degree of freedom solution

In order to implement the Rayleigh-Ritz technique, the axial strain at elastic buckling ε0 in Eq.

(24) is determined by making the change in potential Π stationary with respect to all variations of

the buckled shape w which is chosen to satisfy the kinematic boundary conditions for buckling of

the elliptical cylinder. The function xw(x) defined in the in the domain x  [0, L] (or the function
xw(ξ) where ξ = x/L  [0, 1]) that is chosen is given by

(25)

in which x∆ is a deflection parameter. This function satisfies the kinematic boundary conditions that

(26)

and
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In addition, because
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Note that for a circular tube for which a = b, Eq. (31) produces ws = s∆ which represents an axisymmetric ring

buckling mode and which is the same as that assumed by Bradford et al. (2002, 2006). In addition,

when b/a → 0, the oval tube tends towards a flat plate that is fixed at the edges z = ± a, Eq. (31)

reduces to

(33)

For a flat plate which is built-in at its edges, the plate may buckle across its entire width and so the

localisation parameter is β = 1, and using this in Eq. (33) reduces the term in square brackets to the

cubic interpolation function for the buckling of a plate built-in along its edges.

The axisymmetric buckling deformation w   for the thin-walled elliptical cylinder that satisfies the

boundary conditions may be obtained from the one-dimensional representations in Eqs. (25) and
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(40)

in which

(41)

For the special case of a circular tube for which a = b = r, the axisymmetric nature of the problem

dictates that  and so Eqs. (39) and (40) lead to

(42)

which is the same as that derived by Bradford et al. (2006).

A convenient algorithm for solving the buckling problem is described in the following. The
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. (46)

By rewriting Eq. (44) as

(47)

where Φ(η) is the function in Eq. (31), Eq. (44) may be expressed compactly as the scalar product
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in which q = {q1, q2, , qn-1}
T is the vector of buckling degrees of freedom, f = { f1, f2, , fn-1}

T is the

vector of shape functions that is given by

(49)

When Eqs. (48) and (49) and their appropriate derivatives are substituted into Eq. (24), the change in total

potential can be written as the quadratic form in q as

           

           (50)

in which K1, K2, …, K10 are matrices of order (n-1)×(n-1) given by 
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Minimising Eq. (50) with respect to q produces the stiffness equations

K4

K8

(52)

which represents an (n-1)th order eigenproblem of the form

(53)

for which K is a function of the variables α, β and L. Eq. (53) can be solved for the eigenvalue ω in the

same way as for the one-degree of freedom system, by using a suitable eigensolver, and using the results of

the one-degree of freedom solution as a starting point for (β, L).

5. Illustrative examples

The solutions using n = 1 and 2 for an ellipse with a = 1.5, b = 150 mm (taking ν = 0.3) are given in

Table 1 for various thicknesses of the elliptical tube, and with infill an stiffness of k ≈ (k = 1014 N/mm3)

so that a ≈ 0. It can be seen from this table that to an accuracy commensurate with the physical

observation that the localisation takes place over a finite region defined by the parameter β, the one-degree

of freedom representation is satisfactory.

Two additional cases have been considered for verification; one for an ellipse without infill (α = ½) and

one for an ellipse with a rigid infill (k→∞, α = 0) The two ellipses used had the dimensions a = 150 mm, b

= 100 mm and a = 200 mm, b = 100 mm (this second ellipse was analysed using ABAQUS by Zhu and

Wilkinson (2006)), and the results are shown in Tables 2 and 3 for different values of the tube thickness.
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Table 1 Convergence of solution (n = 1 and 2) for k ≈ (α ≈ 0)

Thickness t (mm) Degrees of freedom n Local buckling coefficient ωcrit (β, L)crit (L in mm)

0.5 1 1.029 (0.45, 27.65)

2 0.996 (0.46, 32.0)

1.0 1 1.042 (0.54, 39.0)

2 1.009 (0.54, 45.1)

5.0 1 1.100 (0.795, 85.6)

2 1.066 (0.80, 99.2)

10.0 1 1.149 (0.93, 119.4)

2 1.114 (0.93, 138.5)

∞
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The tables also show the approximate buckling stress σapp that can be determined from the closed form

solution (Bradford et al. 2006) using an equivalent diameter of d = 2a2/b (σ0l is the local buckling stress).

The notation 195 ÷ 5 (and similar) in the ABAQUS column of Table 2 indicates that 5 wavelengths occurred

along a length of 195 mm, producing L = 39 mm. It can be seen from the tables that the results of the

present method are consistent with the ABAQUS results, and those of Zhu and Wilkinson (2006),

for a hollow elliptical tube. Disparities would be expected because the Rayleigh-Ritz solution technique

uses only one harmonic function for the buckled shape lengthwise, and a single cubic function in for the

projection of the meridional buckle onto the z-axis. For the case of an ellipse with a rigid infill, using a

buckling stress of (Bradford et al. 2002, 2006)

(54)

that uses  and r = a2/b produces acceptable buckling stresses for preliminary engineering design with

a rigid infill.

σ0 l a, pprox
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2
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------------------
t
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Table 2 Results for elastic buckling with a = 1.5b = 150 mm

t (mm) Result α = 0 α = ½ ABAQUS

0.5 ωcr 1.029 0.599

β 0.450 0.510

σ0l (N/mm2) 479.4 279.1 279.38

σapp/σ0l 0.972 0.964

2a/t 600 600 600

L (mm) 27.65 36.30 195÷5

1.0 ωcr 1.042 0.6085

β 0.540 0.600

σ0l (N/mm2) 970.6 567.0 561.41

σapp/σ0l 0.960 0.949

2a/t 300 300

L (mm) 39.00 51.10 275÷5

5.0 ωcr 1.100 0.651

β 0.795 0.865

σ0l (N/mm2) 5,125 3,034 2879.2

σapp/σ0l 0.909 0.887

2a/t 60 60 60

L (mm) 85.6 112.2 600÷5

10.0 ωcr 1.149 0.686

β 0.930 0.990

σ0l (N/mm2) 10,703 6,396 6156.8

σapp/σ0l 0.871 0.841

2a/t 30 30 30

L (mm) 119.4 156.3 320÷2
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6. Concluding remarks

This paper has described the development of an energy-based technique for determining the local buckling

stress for a thin-walled elastic elliptical tube subjected to uniform axial compression, and which contains an

elastic infill that inhibits the formation of a local buckle in the wall of the thin elliptical tube. The formu-

lation is founded on a statement of the change of total potential from the prebuckled to the buckled configu-

ration. Minimisation of this change in potential then leads to the familiar eigenvalue representation for the buckling

load.

The representation of the displacement function in the meridional and tangential directions satisfied all of

the kinematic boundary conditions; the tangential displacement function used the physically observed concept

of localisation of the buckle in the region of lowest curvature of the ellipse. This representation was used to derive

a one degree of freedom solution for the buckling stress in analytic form, but which needs a simple numerical

technique to extract the lowest local buckling solution. It as also used to derive a multi degree of freedom solution

for the buckling coefficient using stiffness matrices. The one degree of freedom solution is accurate in comparison

with the stiffness matrix solution, and was shown to be accurate compared with an ABAQUS modelling for a

hollow tube.

Table 3 Results for elastic buckling with a = 2.0b = 200 mm

t (mm) Result α = ½ Zhu and Wilkinson (2006) ABAQUS

0.5 ωcr 0.603 0.608

β 0.470

σ0l (N/mm2) 158.0 - 159.26

σapp/σ0l 0.958 0.950

2a/t 800 800

L (mm) 48.35

1.0 ωcr 0.607 0.620 0.621

β 0.503

σ0l (N/mm2) 318.0 325 325.8

σapp/σ0l 0.951 0.931 0.929

2a/t 400 400 400

L (mm) 68.3

5.0 ωcr 0.667 0.636 0.638

β 0.800

σ0l (N/mm2) 1,747 1668 1671

σapp/σ0l 0.8662 0.907 0.905

2a/t 80 80 80

L (mm) 148.3

10.0 ωcr 0.712 0.657 0.654

β 0.920

σ0l (N/mm2) 3,729 3445 3430

σapp/σ0l 0.812 0.878 0.882

2a/t 40 40 40

L (mm) 206.3
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