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A transport model for high-frequency vibrational power 
flows in coupled heterogeneous structures
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Abstract. The theory of microlocal analysis of hyperbolic partial differential equations shows that the
energy density associated to their high-frequency solutions satisfies transport equations, or radiative
transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small)
wavelength. The main limitation to the existing developments is the consideration of boundary or interface
conditions for the energy and power flow densities. This paper deals with the high-frequency transport
regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency
power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results
may be used in subsequent computations to solve numerically the transport equations for coupled systems,
including interface conditions. Applications of this research concern the prediction of the transient
response of slender structures impacted by acoustic or mechanical shocks.
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1. Introduction

Elastic structures exhibit typical transport and diffusive behaviors in their higher frequency range

of vibration. Two approaches are currently used by engineers to predict and quantify such

phenomena. Statistical energy analysis (SEA), see e.g., Lyon and DeJong (1995) is a global

approach in the sense that it gives uniform estimates of the mean vibrational energy within

substructures of a complex mechanical system. A major difficulty of the method, which is still very

heuristic, is the estimation of the physical parameters of the formulation: loss factors, coupling loss

factors, modal densities, and input powers. The vibrational conductivity analogy of structural

acoustics, or power flow analysis (Nefske and Sung 1989), is a local model inasmuch as it intends

to estimate the vibrational energy and power flow densities. However its developments are restricted

to simple homogeneous structures (beams and more rarely plates) because it is based on some very

restrictive hypotheses which are difficult to fulfil - or are simply wrong - for more complex

structures (Bouthier and Bernhard 1992, Langley 1995, Lase et al. 1996).

The modern mathematical theory of microlocal analysis shows that the energy density associated

to high-frequency elastic waves satisfy Liouville-type transport equations (Gérard et al. 1997, Guo

and Wang 1999, Lions and Paul 1993, Papanicolaou and Ryzhik 1999). It generalizes both previous
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methods and alleviates a great deal of their inconsistency. The analysis is based on the use of a

Wigner transform and an explicit scaling of wave propagation patterns. The high-frequency, non-

negative limit of the Wigner transform is the so-called Wigner measure, which is an angularly

resolved energy density in time and phase space. This quantity also characterizes the power flows

within the medium, and may be used to track the energy paths. The main shortcoming of the

theory to date is the consideration of boundary and interface conditions for energetic observables

consistent with the boundary/interface conditions imposed to the displacement and stress fields.

Some preliminary results were given in Miller (2000) for the high-frequency solutions of a scalar

wave equation accross a sharp interface between two heterogeneous media, or in Akian (2006),

Burq and Lebeau (2001) for the Lamé system in a bounded smooth domain with Dirichlet

boundary conditions. Their generalization to arbitrary boundary conditions is the subject of

ongoing research. The energy density in bounded media may be characterized by the Wigner

measures of the true solutions as done in Akian (2003, 2006), Gérard et al. (1997), Guo and Wang

(1999), Lions and Paul (1993), Miller (2000), Papanicolaou and Ryzhik (1999), or the explicit

Wigner measures of approximate solutions (which coincide with the Wigner measures of the true

solutions) as initiated by Bougacha et al. (2007). Such approximate solutions are constructed as the

superposition of Gaussian beams for arbitrary initial conditions, and they allow to account for the

boundary conditions within convex domains. For non-convex domains, other classes of

approximations need be introduced. In this paper we focus on the formal development of boundary

and interface conditions for coupled heterogeneous beams or plates. Our derivation of power flow

reflection/transmission coefficients for the junction is based on a wave analysis, where the wave

components are obtained from the high-frequency transport properties of beams or shells (Savin

2004, 2005a). This approach also yields Dirichlet and Neumann boundary conditions for the

energy flux. Numerical simulations of the high-frequency energy propagation in a coupled system

may be performed assuming that a transport regime holds in each substructure, and that the power

flows at their junction are reflected and/or transmitted (with possible mode conversions) according

to the laws derived above. This analysis neglects the waves guided by the interface, although a

significant amount of energy may be transported by the latter. Note that Jin and Liao (2006) for

example have adopted the same strategy for the computation of high-frequency elastic waves with

an interface using the classical reflection/transmission coefficients between two semi-infinite elastic

media. 

The purpose of this paper is to expound a transport model for the high-frequency energy density

in slender structures such as beams or shells, with due consideration of the energy fluxes between

substructures. The objective of this research is to construct a general model of the high-frequency

energy evolution within complex structures, in order to predict, for example, their steady-state or

transient responses to broad-band excitations such as impact loads or shocks. The paper is organised

as follows. First, the transport regime for the energy density associated to the high-frequency

solution of a wave equation is recalled, as well as its adaptation to thick beams and shells. Then a

system of coupled transport equations is introduced in section 3 in order to account for the energy

transfers between two connected substructures. The coupling arises from the power flow boundary

conditions at their interface. The derivation of power flow reflection/transmission coefficients by a

wave component approach is detailed in section 4 for two coupled beams and two coupled plates.

Some numerical simulations are presented and discussed in section 5. The final section of the paper

offers a few conclusions.
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2. Energy estimates and transport regime

In this section the basic results obtained in Akian (2003), Gérard et al. (1997), Guo and Wang

(1999), Papanicolaou and Ryzhik (1999) for the transport properties of high-frequency waves in an

isotropic, elastic medium are summarized. An energy estimator, namely the Wigner transform and

its high-frequency limit, is introduced and its evolution properties are outlined. Then these results

are specialized to beams and shells.

2.1 Notations and hypotheses

Let us consider an isotropic, elastic medium of density (x) > 0 and elasticity tensor C(x). They

both depend on the position x in the domain O (bounded or not) of Rd occupied by the elastic body,

with d = 1, 2 or 3, and the elasticity tensor depends on two parameters solely. For small

perturbations of its motion around a static equilibrium, its celerity v and stress fields σ are solutions

of the homogeneous Navier equation:

tv = Divσ (1)

with the constitutive equation:

(2)

Here ε stands for the linearized strain tensor,  is the symmetrized tensor product,  is the

gradient vector, and t ∈ R+ is the time variable. The associated mechanical energy density E ∈ R+

and power flow density Π ∈ Rd are given by:

(3)

where  is the euclidean scalar product of two vectors u and v,  is the complex

conjugate of u, A : B = Tr(ABT) is the usual tensor scalar product, Tr is the trace of a matrix, and

AT stands for the matrix transpose. High-frequency waves are considered introducing the rescaled

variables t →  and x→ , where ε is a small arbitrary parameter which is sent to 0 in the high-

frequency limit, e.g., the wavelength. If u = (v, σ)T ∈ Cn is the state vector, then the constitutive and

Navier Eq. (2) and (1), respectively, may be written as a generic system:

ε tuε + P(x, εD)uε = 0,  x ∈O, t >0 (4)

where , and P(x, D) is a classical pseudo-differential operator on S(Rd) (the Schwartz

space of all  functions on Rd which are rapidly decreasing toward 0 at infinity as well as all their

derivatives) of matrix-valued symbol P(x, k). Here the standard form of the Fourier transform in

L2(Rd) is:

, and the pseudo-differential operator K(x, D) of symbol K(x, k) ∈ S(T*Rd) (a smooth
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(5)

The phase space is T* . Eqs. (1) and (2) for example yield:

At last, “high frequencies” are initiated in the system of Eq. (4) by, say, “ε-oscillatory” initial

conditions (Gérard et al. 1997) of the form:

2.2 Wigner transform, Wigner measure and transport properties

A Wigner transform of the state vector  is considered in order to build up the corresponding

high-frequency energy and power flow densities. The former is defined for two functions  and

 in S'(Rd), the set of temperate distributions on Rd, by:

(6)

Provided that the sequence ( ) lies in a bounded subset of L2(Rd), the complex n × n matrix-valued

sequence Wε( ): = Wε[ , ] has (up to an extracted subsequence) an Hermitian weak-* limit in

[S'(T*Rd)]n,n as ε→ 0 which is also a non-negative measure, the so-called Wigner measure W of

 (Gérard et al. 1997, Lions and Paul 1993). Furthermore, it satisfies:

PW + WP* = 0

where A* stands for the conjugate transpose. Therefore it writes:

(7)

where  is the right eigenvector of the dispersion matrix L = −iP on T*Rd \ {(x, k); k = 0}

associated to the eigenvalue λα(x, k) of which order of multiplicity is Rα for an eigenmode α

among the M existing ones, with M ≤ n and . Rα is assumed to be independent of (x, k).

The left eigenvectors denoted by  are normalized such that · = δαβ δij, and one has

. These scalar coefficients are called phase-space energy densities, or specific

intensities hereafter 2 The space-time energy density of 
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the medium is then:

(8)

and its space-time power flow density vector is given by:

(9)

The Rα × Rα Wigner matrices Wα, with Wα, ij = , are finally shown to satisfy the Liouville

transport equations:

t Wα + {λα, Wα} + WαNα − NαWα = 0 (10)

{ f, g} =  is the usual Poisson’s bracket and Nα is a skew-symmetric matrix

with elements:

(11)

The transport equations characterize the propagation of angularly resolved energy densities (the

specific intensities) in O along rays defined by their wavenumber |k|, direction = , and

weight TrWα for a mode α among the M existing ones. The overall energy density (8) and power

flow density (9) are reconstructed by a summation over all directions and wavenumbers. These

results are adapted to elastic waves in slender structures or porous media in Savin (2004, 2005b, a),

but they also apply to acoustic waves, electromagnetic waves, or the Schrödinger equation (Gérard

et al. 1997, Guo and Wang 1999, Lions and Paul 1993, Papanicolaou and Ryzhik 1999). Visco-

elastic media with memory effects have also been studied by Akian (2003).

2.3 Application to beams

The following results were given in Savin (2005a) for a thick beam (Timoshenko kinematics) of

which deflection is denoted by w, axial motion by u, and section bending angle by θ. Let R(x) be its

radius of curvature, (x) be its mass per unit length, E(x) its Young’s modulus, κG(x) its reduced

shear modulus, where κ is the usual shear reduction factor depending on the cross-section geometry

and Poisson’s coefficient, and r(x) =  its radius of gyration where I and S are respectively the

cross-section inertia and area. The axial force N, shear force T, and bending moment M are given

by:

(12)
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(13)

Let u = , then Eqs. (12) and (13) are written as a system (4) with d = 1,

n = 6, and P(x, k) = iL(x, k) + Ω(x), where:

(14)

and:

Throughout the paper Ij is the j × j identity matrix. The eigenvalues of the dispersion matrix L for

 are given by:

 each with multiplicity 1

 each with multiplicity 2 (15)

where  and the associated eigenvectors are:

(16)

Mode T corresponds to the transverse shear energy, and the coupled modes P correspond to the

compressional and bending energies. Let (x, k, t) be the 2 × 2 Wigner matrices of specific

intensities for the axial and bending waves corresponding to eigenvectors (x, k) and (x, k).

Then they satisfy the following transport equations:

(17)
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and they are uncoupled from the P modes. Observe that necessarily (x, k, t) = (x, −k, t) and

(x, k, t) = (x, −k, t), so that the energy density of the beam is estimated by:

(19)

while the power flow density is estimated by:

(20)

2.4 Application to shells

The following results were derived in Savin (2004). Let us consider a thick curved shell Σ × (−h/2, h/2)

of which vibrations are described by the model of Naghdi and Cooper (1956). The (regular) middle

surface Σ is parametrized by its curvilinear coordinates x = (x1, x2)
T and its gradient vector is

; thus d = 2 with the notations of section 2.1. The associated natural tangent basis is

denoted by (e1, e2) such that e1 = x and e2 =  x. The tangent motions of the middle surface are

denoted by uΣ, w is the normal displacement, and θ is the vector of changes of slope of the unit normal 

(e1 ×e2) / (|e1 ×e2|) to Σ; see Fig. (1). The second-order, normal curvature tensor B of the shell

is:

and it is symmetric. Its inverse trace (TrB)−1, the mean radius of the shell at each point of Σ, is

assumed to be much larger than the thickness h, which in turn is significantly lower than a typical

wavelength of the excitations.

Let (x) be the mass per unit surface of the isotropic material constituting the shell and let C be its

fourth-order elasticity tensor. Let E(x) be its Young’s modulus, G(x) its shear modulus such that G = 

 its shear reduction coefficient and ν its Poisson’s coefficient. The constitutive equation

is written:
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and bending moments tensor M are given by:
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The equations of motion are:

(22)

Let u = ( )T, where N and M are the three-component vector counterparts of

N and M, respectively, which are symmetric. For the model of Naghdi and Cooper considered in

this analysis, the normal curvature tensor is  if R is the radius of the circular cylindrical

shell. Then Eqs. (21)-(22) are equivalent to the system (4) for n = 13 and P(x, k) =iL(x, k) + Ω(x),

where:
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Fig. 1 An elastic shell structure occupying the domain Σ × (−h/2, h/2) of R3. Σ is the middle surface of the
shell, h is its thickness and (e1, e2) is its natural tangent basis at the point x = (x1, x2).  is the unit
mormal outward to the middle surface.

n̂



A transport model for high-frequency vibrational power flows in coupled heterogeneous structures 61

with:

and k = (k1, k2)
T, K(k) = diag {k1, k2}, m(k) = (k2, k1)

T. The skew-symmetric matrix Ω is given by:
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--- Ehm Î( ) Î 0 0 0, , ,⋅, , , ,⎝ ⎠

⎛ ⎞
T

=

bT

±
0

1

2
---------- 0 0 0

κGh

2
-----------k̂ 0 0, ,+−, , , , ,⎝ ⎠

⎛ ⎞
T

=

bSb

±
0 0

h

2 I
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2
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(25)

Modes 0 are non-propagative vortical modes, the mode T corresponds to a pure transverse shear

energy, and the coupled modes P and S correspond to in-plane and bending energies. Given the

projection (7) of the Wigner measure (on A), let (x, k, t) be the 2 × 2 Wigner matrices of

specific intensities for bending and in-plane waves corresponding to eigenvectors (x, k) and 

(x, k). Similarly, let (x, k, t) be the 2 × 2 Wigner matrices of specific intensities corresponding

to eigenvectors (x, k) and (x, k). Then they satisfy the following transport equations:

(26)

since rotation matrices (x, k) and (x, k) as given by Eq. (11) are null for the present case. As

regards shear waves, specific intensities (x, k, t) satisfy the equations:

(27)
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The energy rays τ→ xα (τ) for each mode α are characterized by their tangent vector Dτ xα = cα t

with |Dτ xα| = 1 and Dτ t = −|t| ; after eliminating t, a generalized Snell-Descartes law is obtained

in the form:
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3. Energy transport in coupled structures

The derivation of section 2 is used to model the high-frequency energy flows in coupled

structures by the transport theory. Firstly, one considers that the transport regime holds in each

substructure. Then the power flows in each of them are reflected/transmitted by their interfaces

assuming that the reflection/transmission efficiencies are known operators. In a subsequent section

4, we show how to formally compute these operators for coupled beams or plates by a dedicated

analysis which is coherent with the transport characteristics of such structures.

Let us consider two substructures which occupy the domains O1 and O2 of Rd such that their

junction  is a smooth manifold of codimension 1 of which outward unit normal

with respect to Or, r = 1, 2, is denoted by , with . Let P
x

= Id −
= Id −  be the orthogonal projection on the tangent space T

x
Γ at x. We introduce the

notation k' = P
x
k for k ∈ Rd or  for ∈ S

d − 1. The transport theory outlined in the

previous section holds in the interior of each subsystem. The transport equations are then Eq. (10):

(32)

written for each substructure. We assume that their eigenvalues (Hamiltonians) are 

, in accordance with the results obtained in sections 2.3 and 2.4. As in classical

mechanics, the Hamiltonians remain constant along the energy rays, even when they are reflected or

transmitted by an interface (Bal et al. 1999, Jin and Liao 2006) or diffracted by some random

heterogeneities (Guo and Wang 1999, Papanicolaou and Ryzhik 1999, Savin 2004, 2005b). Thus:

(33)

whenever r, s = 1, 2 and 1 ≤ α ≤ Mr, 1 ≤ β ≤ Ms where Mr is the number of energy modes in

subsystem r. The traces of the wave speeds  on Γ are defined by (x): = limh→ 0 (x −h ),

x ∈ Γ. The condition (33) holds for either reflected (r = s) or transmitted ( ) energy rays and can

be used to determine the reflected and transmitted wavenumbers  from either side of the

interface given an incident wave vector k. Also the tangent wave vector k' is constant across the

junction: k' = P
x
k =  for r = 1 or 2 and 1 ≤ α ≤ Mr, owing to Snell-Descartes law. The normal

wavenumbers  on the interface from Or, r = 1, 2, are defined by ,

such that  for the wave vector of a mode α in Or, with: 

Here ω(k') is the constant in Eq. (33) for a given incident wave vector k. We consider only propagating

waves because the energy in evanescent waves is exponentially small away from the boundary.

Therefore we assume above that the normal wavenumbers  are real and the support of  is

uniformly inside the ball . Then the transported energy in O1 flowing away from

the boundary after reflection and transmission is written (see for example Bal et al. 1999):
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 on TΓ (34)

and the transported energy in O2 flowing away from the boundary is:

 on TΓ (35)

where TΓ is the tangent bundle of Γ.  is the power flow reflection coefficient in Or for the

conversion of an incident ray in the eigenmode βj into a reflected ray in the eigenmode αi, and  is 

the power flow transmission coefficient for the conversion of an incident ray in the eigenmode βj in

Os into a transmitted ray in the eigenmode αi in Or, . In the next section, we show how to

compute them for coupled beams or plates. They shall satisfy the following energy flux

conservation law:

(36)

where the equality holds for a lossless interface. This equation states that the total flux impinging

the junction in a given eigenmode is either reflected or transmitted, with or without losses. In the

following we consider only conservative interfaces. The glancing region where  is also

neglected in the above formulation, not because gliding rays (those which are possibly trapped by a

non-convex interface) are unlikely to occur but because we lack a theoretical model to describe

them. This issue is the subject of ongoing research as it has important practical applications in

engineering. It is known from experiments in structural dynamics that the energy is very much

likely to propagate along the junctions and stiffened elements. Thus the derivation of a transport

theory for such guided waves is needed.

4. High-frequency power flow reflection/transmission coefficients in beam and plate

assemblies

In this section, power flow reflection/transmission coefficients, also called efficiencies in the

literature, of wave components in two coupled, semi-infinite beams or plates are computed. This

issue is everything but new, and similar results have been reported recently by Ouisse and Guyader

(2003) for Euler-Bernoulli beams and Kirchhoff-Love plates, or Norris (1998) for thick shells,

among many other examples. However these studies are dedicated to the low-frequency range. In

the high-frequency range, the energy wave components have a particular structure as shown in
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section 2, and an adapted analysis has to be developped. It is detailed here for Timoshenko beams

and then Mindlin plates.

4.1 Reflection/ transmission coefficients for coupled thick beams

Let us consider two semi-infinite thick beams (Timoshenko kinematics) defined by their

curvilinear abscissa x such that x ∈ R− for beam #1 and x ∈ R+ for beam #2. φ is the angle of the

junction, see Fig. (2). The beams masses per unit length are j for either j = 1 or j = 2, Ej are the

Young's modulii, G'j = κjGj are the reduced shear modulii where κj < 1 are the usual shear reduction

factors, νj are the Poisson’s coefficients, and rj =  are the radii of gyration where Ij and Sj are

respectively the cross-section inertias and areas. The equations of motion for both beams are given

by Eq. (13), and the constitutive equations for their shear forces, bending moments and longitudinal

forces are given by Eq. (12) (with R =  for straight beams). Depending on the cutoff frequency

ωc = cT / r, the associated wavenumbers for plane waves propagating in beam #1 or beam #2 at the

frequency ω are (dropping subscript j for clarity purposes):

and:

for bending motions. They are kP(ω) = ω /cP for longitudinal (compressional) motions, and

kT(ω) = ω /cT for a pure transverse shear motion. In the high-frequency range, both bending

wavenumbers ka and kb are real. They may be written:

Ij Sj⁄

∞

ka ω( ) ω
2

2
------

1

cP

2
-----

1

cT

2
-----+⎝ ⎠

⎛ ⎞ ω
2

r
2
cP

2
---------

ω
4

4
------+

1

cP

2
-----

1

cT

2
-----–⎝ ⎠

⎛ ⎞
2

+=

kb ω( ) ω
2

2
------

1

cP

2
-----

1

cT

2
-----+⎝ ⎠

⎛ ⎞ ω
2

r
2
cP

2
---------

ω
4

4
------+

1

cP

2
-----

1

cT

2
-----–⎝ ⎠

⎛ ⎞
2

–=  if ω ωc>

kb ω( ) i
ω

2

r
2
cP

2
---------

ω
4

4
------+

1

cP

2
-----

1

cT

2
-----–⎝ ⎠

⎛ ⎞ 2 ω
2

2
------

1

cP

2
-----

1

cT

2
-----+⎝ ⎠

⎛ ⎞–=  if ω ωc<

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

Fig. 2 Two coupled Timoshenko beams
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where kE(ω) =  is the bending wavenumber of an Euler-Bernoulli (thin) beam, such that in the

high-frequency limit µ = kE / kP → 0 we have ka = kT and kb = kP . This remark and the results of

section 2.3 suggest the following wave decomposition at higher frequencies, which is also

compatible with Eq. (16).

An incident wave traveling in beam #1 in the direction of increasing x may be written either wi(x) =

 for a pure shear motion, or θi (x) =  for a pure bending motion, or ui(x) =  for

a longitudinal motion. Then the reflected waves are written:

wr(x) = , θr (x) = , ur (x) =  

and the transmitted waves are written:

wt(x) = , θt (x) = , ut (x) =

Coefficients A, B, C, D, F, and H are obtained from the continuity conditions of the displacements,

rotations, forces and moments at the junction x = 0. They yield the linear system [T]C = [U] for

C = (A, C, F, H)T, with:

(37)

and:

(38)
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for the incident waves; the first column of [U] corresponds to a shear incident wave, the second one

to a bending incident wave, and the third one to a longitudinal incident wave. Coefficients B and D

are null for shear or longitudinal incident waves, and:

(39)

for a bending incident wave. The associated power flows are derived from the generic formula of

the energy flux of plane waves propagating in a beam. The transient power flow is:

and then the time averaged power flow associated to traveling plane waves is:

The incident powers at the junction x = 0 are:

for the shear, bending and longitudinal components, respectively. The reflected power flows at the

junction are:

for the shear component, and:

for the bending and longitudinal components, respectively. Here the minus sign indicates a reversed

traveling direction. The transmitted power flows at the junction are:

for the shear component, and:

for the bending and longitudinal components, respectively.

These results are used to compute the various high-frequency power reflection/transmission

coefficients for coupled Timoshenko beams by:

(40)

They are independent of the frequency and are plotted as functions of the junction angle φ in the

range [0, π[ on Fig. (3) and Fig. (4). Fig. (3) is for two identical beams: E1 = E2, I1 = I2, 1 = 2,
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Fig. 3 High-frequency power flow reflection/transmission coefficients for two connected, semi-infinite
Timoshenko beams; E1 = E2, I1 = I2, 1 = 2, and ν1 = ν2 =0.3.

Fig. 4 High-frequency power flow reflection/transmission coefficients for two connected, semi-infinite
Timoshenko beams; 2E1 = E2, I1 = I2, 1 = 2, and ν1 = ν2 =0.3.
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and ν1 = ν2 = 0.3, and Fig. (4) is for two different beams: 2E1 = E2, all other parameters being

unchanged. The high-frequency power flow reflection coefficients of a semi-infinite beam for either

Dirichlet (E1 / E2 → 0) or Neumann (E2 / E2 → 0) boundary conditions at its end are directly obtained

from these results. Computations show that they are all equal to 1 without mode conversion of any

type.

4.2 Reflection/transmission coefficients for coupled thick plates

Let us now consider two semi-infinite thick plates (Mindlin kinematics) defined by their local

coordinates (x, y) on the mid-surfaces, such that x ∈ R− for plate #1 and x ∈ R+ for plate #2. The

junction Γ is the line {x = 0} and φ stands for the angle between the plates, see Fig. (5). Their

masses per unit surface are j for either j = 1 or j = 2, Ej are the Young’s modulii,  are the

reduced shear modulii where κj are the usual shear reduction factors, νj are the Poisson’s coefficients,

, and hj are the thicknesses. The equations of motion for both plates are given Eq. (22),

and the constitutive equations for their shear forces, bending moments and longitudinal forces are

given by Eq. (21), with B = 0 for flat plates. Depending on the cutoff frequency ,

the associated wavenumbers for plane waves propagating in plate #1 or plate #2 at the frequency ω

are (dropping subscript j for clarity purposes) kP(ω) = , kS(ω) =  for the in-plane motions, and:
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for the bending motion, introducing kT(ω) =  and kE(ω) =  for the bending wavenumber of

a thin plate (Kirchhoff-Love kinematics such that θ = ). Observe that if kb is purely imaginary,

so is kc. In the high-frequency limit  we have ka = kT, kb = kP, and kc = kS.

The analysis in section 2.4 has shown that five propagating modes exist in this limit: two modes

with wavenumber kP, two modes with wavenumber kS, and one mode with wavenumber kT. These

wavenumbers are now written , and , where k ∈ R is the

tangent (parallel to the junction) wavenumber which is kept unchanged by the reflection/

transmission processes owing to Snell-Descartes law. It is always a real number for propagating

waves. However χP, χS, and χT may be either real for propagating, far-field waves, or purely

imaginary for evanescent, near-field waves, depending on the value of k with respect to kP, kS, and

kT, respectively. These remarks and the results of section 2.4 suggest the following wave

decomposition at higher frequencies, which is also compatible with Eq. (25).

Incident waves traveling in plate #1 in the direction of increasing x with an angle θ with respect

to the normal to the junction may be written either:

for quasi-shear motion, or:

for quasi-bending motions, or:

for in-plane motions. The transmitted waves in plate #1 may be written:
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for quasi-bending motions, and:

for in-plane motions. The transmitted waves in plate #2 may be written:

wt (x, y) = Jei(χ
T2
x + ky)

for quasi-shear motion,

for quasi-bending motions, and:

for in-plane motions. Coefficients A, B, F, H, I, J, K, L, M and N are obtained from the continuity

conditions at the junction x = 0, that is, if  is the unit normal to Γ, {uΣ, θ, w} and {N , M , T ·

} are continuous across the junction. These conditions yield two linear systems: [S]C = [U] for

C = (B, F, K, L), with:

(41)

and:

(42)

and [T] D = [V] for D = (A, H, I, J, M, N), with:

ur x y,( ) H

kP1

-------
χP1–

k⎝ ⎠
⎛ ⎞ e

i χ
P1
x ky–( ) I

kS1

-------
k

χS1
⎝ ⎠
⎛ ⎞ e

i χ
S1
x ky–( )

+=

θt x y,( ) i– K
χP2

k⎝ ⎠
⎛ ⎞ e

i– χ
P2
x ky+( )

i– L
k–

χS2
⎝ ⎠
⎛ ⎞ e

i– χ
S2
x ky+( )

=

ut x y,( ) M

kP2

-------
χP2

k⎝ ⎠
⎛ ⎞ e

i– χ
P2
x ky+( ) N

kS2

-------
k–

χS2
⎝ ⎠
⎛ ⎞ e

i– χ
S2
x ky+( )

+=

n̂ n̂ n̂

n̂

S[ ]

χP1

kP1

-------
k

kP1

-------–
χP2

kP1

-------–
k

kP1

-------

k

kS1

-------
χS1

kS1

-------
k

kS1

-------
χS2

kS1

-------

χP1

2
ν1k

2
+

kP1

2
------------------------ 2

χS1k

kS1

2
----------– 2h2

2

1h1

2
----------

χP2

2
ν2k

2
+

kP2

2
------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

2 2h2

2

1h1

2
----------

χS2k

kS2

2
----------⎝ ⎠

⎛ ⎞–

2
χP1k

kS1

2
----------

χS1

2
k

2
–

kS1

2
------------------ 2 2h2

2

1h1

2
----------

χP2k

kS2

2
----------⎝ ⎠

⎛ ⎞– 2h2

2

1h1

2
----------

k
2 χS2

2
–

kS2

2
------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

U[ ]  

θcos–
kS1

kP1

------- θ
 

sin

kP1

kS1

------- θ
 

sin θcos

 cos
2
θ ν1  sin

2
θ+ 2θ

 
sin–

kP1

2

kS1

2
------- 2θ

 
sin– 2θcos–

=



72 Éric Savin

(43)

(44)

f1 and f2 depend on the solution C of the previous system by:

The columns of [U] correspond to quasi-bending incident waves. The first column of [V]

corresponds to a quasi-shear incident wave, the second and third ones correspond to quasi-bending

incident waves, and the fourth and fifth ones correspond to in-plane incident waves. The associated

power flows are derived from the generic formula of the energy flux of plane waves propagating in

a plate. The transient power flow is:
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and then the time averaged power flow associated to traveling plane waves is:

The incident power at the junction x = 0 is thus:

for the quasi-shear component,

for the quasi-bending components, and:

for the in-plane components. The reflected power flows away from the junction are:

for the quasi-shear component,

for the quasi-bending components, and:

for the in-plane components. The transmitted power flows away from the junction are:

for the quasi-shear component,

for the quasi-bending components, and:

for the in-plane components.

These results are used to compute the various high-frequency power reflection/transmission
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coefficients for coupled Mindlin plates by:

(45)

They are frequency-independent and plotted as functions of the junction angle φ ∈ [0, π[ on Fig. (6)

through Fig. (8) for various incidence angle θ and two identical plates: E1 = E2, h1 =h2, 1 = 2, and

ν1 = ν2 = 0.3. The high-frequency power flow reflection coefficients of a semi-infinite thick plate for

either Dirichlet or Neumann boundary conditions at its end are directly obtained from these results in

the limit cases E1 /E2 → 0 (Dirichlet) and E2 /E1 → 0 (Neumann). The analysis yields the expected

boundary reflection laws for a single plate with due consideration of the critical incidence angle:

and of course no transmission. The reflection coefficients as functions of the incidence angle θ are

plotted on Fig. (9) and Fig. (10) for both conditions with ν = 0.3, so that θc 36o. One can observe

that the quasi-shear flow is uncoupled from the in-plane and quasi-bending flows in both cases,

independently of the incidence direction. Mode conversions occur only for P and S components.

ραβ

11 Πr

α
n̂1⋅〈 〉

Πi

β
n̂1⋅〈 〉

----------------------–=   ταβ
12 Πt

α
n̂2⋅〈 〉

Πi

β
n̂1⋅〈 〉

----------------------–=   α β, T Pn Pb Sn Sb, , , ,{ }∈, ,

θc arc
1 ν–

2
------------sin=

 ≅

Fig. 6 High-frequency power flow reflection/transmission coefficients for two connected, semi-infinite
Mindlin plates; incidence angle θ = 0o, E1 = E2, h1 = h2, 1 = 2, and ν1 = ν2 =0.3.
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Fig. 7 High-frequency power flow reflection/transmission coefficients for two connected, semi-infinite
Mindlin plates; incidence angle θ = 45o, E1 = E2, h1 = h2, 1 = 2, and ν1 = ν2 =0.3.

Fig. 8 High-frequency power flow reflection/transmission coefficients for two connected, semi-infinite
Mindlin plates; incidence angle θ = 89o, E1 = E2, h1 = h2, 1 = 2, and ν1 = ν2 =0.3.
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Fig. 9 High-frequency power flow reflection coefficients for a semi-infinite Mindlin plates with Dirichlet
boundary condition; ν = 0.3.

Fig. 10 High-frequency power flow reflection coefficients for a semi-infinite Mindlin plates with Neumann
boundary condition; ν = 0.3.
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5. Numerical examples

In this section the transport equations (32) with the boundary conditions (34)-(35) and

Hamiltonians  are solved numerically by either a finite element method or a direct

Monte-Carlo method. Assemblies of two beams and two plates are considered, assuming that the

materials are homogeneous such that  for both systems, r = 1, 2. Then the transport

equations reduce to:

within each substructure. These equations have a trivial solution:

(46)

given the initial condition , but ignoring the boundary/interface conditions.

The latter induce scattering and mode conversions of the Wigner matrices , which otherwise

keep their initial wavefront shape as indicated by Eq. (46). The purpose of the numerical examples

presented here is to illustrate this transport regime and the scattering effects of the interfaces and

boundaries. 

5.1 Coupled beams

We first consider a system of two coupled Timoshenko beams] − L, 0[ ]0, L, L > 0, connected at

x = 0 and such that beam #2 forms an angle φ = 60o with beam #1. The transport equations (17) and

(18) written for each beam are solved numerically by a finite element method, where the energy

rays for the modes α = T or P are reflected/transmitted by the junction at x = 0 or the free

boundaries at x = ±L according to the scattering laws derived in section 4.1. The “Galerkin”

discontinuous finite element method used here is described in (Savin (2005a, 2007)). In this

method, the power flow reflection/transmission coefficients computed in section 4 are directly used

to define the numerical fluxes at the junctions between two adjacent substructures or elements. The

upward and downward flows are written as the superposition of reflected and transmitted flows

including all existing energy modes. The formulation is otherwise standard.

The initial condition is a shear load applied to beam #1:

The overall system is partitioned into 200 uniform spatial elements. Legendre polynomials up to

the second order are used as local basis functions, and Eqs. (17)-(18) are integrated in time by a

fifth-order Runge-Kutta-Fehlberg scheme. The energy density of Eq. (19) is displayed on Fig. (11)

and Fig. (12) for either E1 = E2 or 2E1 = E2, respectively; all other parameters are equal, with

ν1 = ν2 = 0.3. We choose x0 = −0.1 × L, r0 = 0.4 × L, and 0= +1 for the initial condition. The time

scale is , the time needed by the wavefront to reach the extremity x = L of beam #2

starting from the junction. The initial wavefront T is propagated from the left to the right (k0 > 0)

and reaches the junction at t = 0.1 × τ, where it is transmitted into two wavefronts T and P in beam

#2 as seen on Fig. (11) or Fig. (12) at t = 0.5 × τ. The reflected wavefront T can also be seen on

these plots, although for E1 = E2 its amplitude is relatively much lower than that of the transmitted
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Fig. 11 Evolution of the energy density in a beam assembly impacted by a shear load with φ = 60o, E1 = E2,
I1 = I2, 1 = 2, and ν1 = ν2 =0.3.

Fig. 12 Evolution of the energy density in a beam assembly impacted by a shear load with φ = 60o, 2E1 = E2,
I1 = I2, 1 = 2, and ν1 = ν2 =0.3.
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signals. The reflected wavefront P is almost indistinguishable, but it is not nil. At t = 1.1 × τ the T

wavefront reaches the extremity x = L of the assembly and its amplitude here is twice the streaming

amplitude because the forward and backward waves sum up; the P wavefront has already been

reflected since cP > cT. The process of reflection and transmission at the junction and the free ends

continues at later times, spreading gradually the wavefronts over the entire system; see Fig. (11) or

Fig. (12) at t = 20 × τ. This smoothing of the energy levels corresponds to the emergence of a

diffusive regime, as explained more in detail in the next example.

5.2 Coupled plates

An assembly of two homogeneous thick plates with φ = 60o is now considered. Plate #1 is

impacted at t = 0 by a mechanical shock at x = x0 close to the junction line {x = 0} which initially

loads the shear mode T:

The transport equations (26) and (27) written for each plate are solved numerically by a direct

Monte-Carlo method (see e.g. Lapeyre et al. (1998)), where the energy rays for the modes α = P, S

or T are reflected/transmitted by the junction or the free boundaries (Neumann condition) according

to the scattering laws derived in section 4.2. Both plates have identical parameters with ν1 = ν2 =

0.3. The evolution of the energy density of Eq. (29) is displayed on Fig. (13), where , L is the

wT

1
x k̂ 0, ,( ) δ x x0–( )=

τ
L

cT

-----=

Fig. 13 Evolution of the energy density in a plate assembly impacted by a shear farce with φ = 60o, E1 = E2,
h1 = h2, 1 = 2, and ν1 = ν2 =0.3.
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length of the plates and L / 2 is their width. It can be observed that as soon as t 10 × τ the phase

information of the initial wavefront is almost lost, and a diffusive regime arises. In the diffusion

limit the specific intensities become independent of the wavefront direction . This regime, which

is due here to the presence of the junction and the boundaries, may also arise in the presence of

random heterogeneities of the medium at a length scale comparable with the (small) wavelength, as

shown elsewhere; see for example Papanicolaou and Ryzhik (1999), Savin (2006). It is important to

note at this stage that the presence of such singularities, namely interfaces, boundaries, or small

random heterogeneities, is essential in the emergence of a diffusive regime in elastic and other

media. The latter is obtained as the asymptotic limit of the transport regime described in section 2 at

late times or for a short scattering mean free path, which is the mean distance traveled by a wave

before it is scattered in some way. These fundamental and well-known results are in basic

contradiction with the vibrational conductivity analogy of the structural acoustics literature (Nefske

and Sung 1989), where a diffusive regime is assumed improperly for unbounded, homogeneous

media, ignoring the necessary conditions recalled above for its emergence. If these conditions are

not fulfilled, the scattering mean free path may be infinite and the transport regime is the sole

regime holding for the high-frequency energy density. 

6. Conclusions

In this paper a model of transport for the high-frequency vibrational energy density in a coupled

system has been introduced. It is assumed that (i) the transport equations derived elsewhere for a

single elastic structure hold in each subsystem, and (ii) the power flows at the interface between the

substructures are reflected and/or transmitted according to the laws obtained by a wave approach.

An analytical derivation of high-frequency power flow reflection/transmission coefficients for the

junction of two thick beams or plates has been outlined. It is based on a wave component analysis

coherent with the high-frequency transport properties of such structures, and accounts for possible

mode conversions at the junction. It also yields the reflection coefficients for a single semi-infinite

beam or plate with Dirichlet or Neumann boundary conditions at its end. Numerical examples have

been presented where the transport equations are solved by a finite element method or a direct

Monte-Carlo method. The emergence of a diffusive regime due to the presence of interfaces and/or

boundaries has been demonstrated numerically for an assembly of thick plates impacted by a shear load.

The proposed analytical model is readily useable in the discontinuous Galerkin finite element

scheme with weakly enforced generalized interface conditions derived in Savin (2007). What is

lacking at present is a transport model for the high-frequency guided waves possibly trapped by

non-convex interfaces. The issue of characterizing surface waves in the high-frequency regime is of

considerable interest for the many applications in electronics, solid-state physics, acoustics, or

geophysics for example. From experimental measurements and practice it is recognized that a

significant amount of vibrational energy is likely to be transported along the junctions and interfaces

in a complex structure. This fundamental problem is the subject of ongoing research.
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