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Abstract.  Dynamic responses of a laminated composite cantilever beam under a harmonic are investigated in this 
study. The governing equations of problem are derived by using the Lagrange procedure. The Timoshenko beam 
theory is considered and the Ritz method is implemented in the solution of the problem. The algebraic polynomials are 
used with the trivial functions for the Ritz method. In the solution of dynamic problem, the Newmark average 
acceleration method is used in the time history. In the numerical examples, the effects of load parameter, the fiber 
orientation angles and stacking sequence of laminas on the dynamic responses of the laminated beam are investigated. 
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1. Introduction 
 

Laminated composite structures have been used in a lot of engineering fields such as civil, 

mechanical and aerospace engineering projects because of higher strength and low density 

properties. With the development of production technology, the using of laminated composite has 

been increasing in engineering applications. In the laminated composite structures, the moving-load 

dynamic problems are very important topic as such in other structures elements. As is known, the 

mechanical results of dynamic loads are bigger than those of static loadings. Also, instantaneous 

failures and local cracks can be occurred affected by dynamically loads in contrast with other load 

types. So, learn to dynamical behavior of laminated composites are very important for their design 

in the dynamic load problems. 

In the literature, many researchers investigated the static, dynamic and stability analyses of 

laminated structures (Bozyiğit et al. 2020a, 2020b, 2020c, Phung-Van et al. 2017, 2019a, 2019b, 

Gillich et al. 2016, Thanh et al. 2019, Nguyen 2017, Al-Furjan et al. 2020a, 2020b, 2020c, Shariati 

et al. 2020, Alimirzaei et al. 2019, Bourada et al. 2020, Bousahla et al. 2020, Semmah et al. 2019, 

Belbachir et al. 2019, 2020, Draoui et al. 2019). Some investigations of dynamics of laminated and 

like composites are presented as follows; Wang et al. (2005) studied dynamics of the cracked fiber 

reinforced composites beams with bending and torsion effects. Palanivel (2006) performed the free 

vibration analysis of laminated composite beams by using two high-order shear deformation theory 

and finite elements method. Zenkour et al. (2010) investigated bending results of functionally  
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Fig. 1 A cantilever laminated composite beam under a dynamic point load at free end 

 

 

graded viscoelastic sandwich beams embedded elastic foundation. Eltaher et al. (2012) presented 

free vibration analysis of functionally graded nanobeams based on nonlocal elasticity theory by 

using finite element method. DeValve and Pitchumani (2014) investigated damping vibration 

analysis of rotating composite beams with embedded carbon nanotubes. Bahmyari et al. (2014) 

analysed the dynamics of laminated beams under distributed moving masses by using finite element 

method and first shear deformation theory. Tornabene et al. (2014) investigated static and vibration 

analysis of laminated doubly-curved shells and panels embedded in elastic foundation bycusing the 

generalized differential quadrature. Mohanty et al. (2015) investigated dynamic responses of 

functionally graded pre-twisted beams by using Timoshenko beam theory and finite element method. 

Akbaş (2014, 2015a, 2015b, 2017a, 2018c, 2018h, 2018i, 2019a) presented dynamic analysis of 

functionally graded beams with different mechanical cases. Hadji et al. (2017) analyzed wave 

propagation of functionally graded beams with higher order shear deformation theory. Akbaş (2013, 

2017b, 2018a, 2018d, 2018f, 2018g, 2019b, 2019f, 2019g) investigated geometrically nonlinear analysis 

of composite beams such as functionally graded, laminated composites by using finite element method. 
Li et al. (2018) investigated nonlinear dynamics of laminated beams under both blast and thermal 

loads. Ghayesh (2018) analyzed forced nonlinear vibration of axially functionally graded micro 

beams by using coupled stress theory. Draiche et al. (2019) presented static analysis of laminated 

reinforced composite plates based on first-order shear deformation theory by using the Navier 

method. Akbaş (2017c, 2018b, 2018e, 2019c, 2019d, 2019e) presented post-buckling, stability 

behavior of composite structures with functionally graded and laminated materials. Yaylı (2019) 

presented free lateral vibration behavior of a functionally graded nanobeam in an elastic matrix with 

rotationally restrained ends.  

The aim of this paper is to investigate dynamic analysis of a laminated beam under harmonic 

load by using Ritz method. The governing equations of problem are obtained by using the Lagrange 

procedure. In the solution of the forced vibration problem, the Newmark average acceleration 

method is used in the time history. The main purpose of this paper is to investigate the effects of 

fibre orientation angles and stacking sequence of laminas on the dynamic responses of the laminated 

composite beam under harmonic load in detail.   

 

 
2. Theory and formulation 
 

A cantilever laminated composite beam under a dynamic point load 𝑄(𝑡) at free end with the 

length L, the height h and width b with three layers. Three identical laminas are considered in the 

laminated beam. The dynamic point load 𝑄(𝑡) is assumed to be sinusoidal harmonic in time domain 
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as following 

𝑄(𝑡) = 𝑄0sin (̅𝑡),     0 ≤ 𝑡 ≪ ∞                        (1)    

Where, 𝑄0 and ̅ indicate the amplitude and the frequency of the dynamic load.  

The axial strain (εz) and shear strain (γzy) are given according to the Timoshenko beam theory 

as follows                       

                   𝜀𝑧 =
𝜕𝑢0

𝜕𝑧
− 𝑌

𝜕∅

𝜕𝑧
                                (2a) 

 𝛾𝑧𝑦 =
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑧
                               (2b) 

where,𝑢0, 𝑣0 and ∅ are axial displacement, vertical displacement and rotation, respectively. The 

equivalent Young's modulus of ith layer for Z direction (𝐸𝑧
𝑖) is used considered as following model 

with temperature function (Vinson and Sierakowski 2008) 

 
1

𝐸𝑥
𝑖 (𝑇)

=
𝑐𝑜𝑠4(𝜃𝑖)

𝐸11(𝑇)
+ (

1

𝐺12(𝑇)
−

2𝜈12

𝐸11(𝑇)
) 𝑐𝑜𝑠2(𝜃𝑖) 𝑠𝑖𝑛2(𝜃𝑖) +

𝑠𝑖𝑛4(𝜃𝑖)

𝐸22(𝑇)
             (3) 

where, E11 and E22 are the Young's modulus in Z and Y directions, respectively. G12, G13, G23 indicate 

the shear modulus. 𝜃  is the fiber orientation angle, m=cos  𝜃  and n= sin  𝜃 . The constitutive 

equations are presented as follows;  

          𝜎𝑥𝑥 = 𝐸𝑥
𝑖 (𝑇) (

𝜕u(𝑋,𝑡)

𝜕𝑋
− 𝑌

𝜕∅(𝑥,𝑡)

𝜕𝑋
)                        (4a) 

              𝜏𝑥𝑦 = 𝑘𝑠 𝐺12𝑥
𝑖 (𝑇) (

∂𝑣

∂x
− ∅(𝑥, 𝑡))                        (4b) 

where, 𝜎𝑥𝑥 and 𝜏𝑥𝑦 are the normal and shear stresses, respectively. 𝑘𝑠 is the shear correction 

factor. The strain energy (U), the kinetic energy (K) and potential energy of the external loads (𝑈𝑒) 

are presented as follows 

𝑈 =
1

2
∫ (𝐴0 (

𝜕𝑢

𝜕𝑋
)

2
− 2𝐵0 (

𝜕𝑢

𝜕𝑋
) (

𝜕∅

𝜕𝑋
) + 𝐷0 (

𝜕∅

𝜕𝑋
)

2
+ 𝐴5 (

∂𝑣

∂x
− ∅(𝑥, 𝑡))

2
)

𝐿

0
𝑑𝑋         (5a) 

    𝐾 =
1

2
∫ (𝐼0 (

𝜕𝑢

𝜕𝑡
)

2
− 2𝐼1 (

𝜕𝑢

𝜕𝑡
) (

𝜕∅

𝜕𝑡
) + 𝐼2 (

𝜕∅

𝜕𝑡
)

2
+ 𝐼0 (

𝜕𝑣

𝜕𝑡
)

2
)

𝐿

0
𝑑𝑋                (5b) 

𝑈𝑒 = −𝑄(𝑡) 𝑣(𝑧𝑝, 𝑡)                                        (5c) 

where, A0, B0, D0, A5, 𝐴𝑋𝑇, 𝐴𝑌𝑇, I0, I1, I2 are given as follows; 

A0 = ∑ bEx
i (yi+1 − yi )n

i=1                               (6a) 

B0 =
1

2
∑ bEx

i (yi+1
2 − yi

2)n
i=1                               (6b) 

   D0 =
1

3
∑ bEx

i (yi+1
3 − yi

3)n
i=1                               (6c) 

      A55 =
5

4
∑ bQ55

i (zi+1 − zi −
4

3h2 (yi+1
3 − yi

3))n
i=1                     (6d) 

              I0 = ∑ b𝜌i(yi+1 − yi )n
i=1                                (6e) 

              I1 =
1

2
∑ b𝜌i(yi+1

2 − yi
2)n

i=1                               (6f) 
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              I2 =
1

3
∑ b𝜌i(yi+1

3 − yi
3)n

i=1                           (6g) 

where n is number of layers, 𝜌i is the mass density of ith layer and Q55
k  is given below 

Q55
i = G13(𝑇)cos2(θi) + G23(𝑇)sin2(θi)                     (7) 

The Lagrangian functional of the problem is presented as follows 

𝐼 = 𝐾 − (𝑈𝑖 + 𝑈𝑒)                                     (8) 

In the solution of the problem in Ritz method, approximate solution is given as a series of i terms 

of the following form 

𝑢0(𝑧, 𝑡) =  ∑ a𝑖 (𝑡)𝛼𝑖(𝑧)∞
𝑖=1                           (9a) 

𝑣0(𝑧, 𝑡) =  ∑ b𝑖 (𝑡)𝛽𝑖(𝑧)∞
𝑖=1                           (9b) 

∅(𝑧, 𝑡) =  ∑ c𝑖 (𝑡)𝛾𝑖(𝑧)∞
𝑖=1                            (9c) 

where ai, bi and ci are the unknown coefficients, 𝛼𝑖(𝑧, 𝑡), 𝛽𝑖(𝑧, 𝑡), 𝛾𝑖(𝑧, 𝑡) are the coordinate 

functions depend on the boundary conditions over the interval [0,L]. The coordinate functions for 

the cantilever beam are given as algebraic polynomials 

               𝛼𝑖(𝑧) = 𝑧𝑖                                 (10a) 

              𝛽𝑖(𝑧) = 𝑧(𝑖+1)                                (10b) 

               𝛾𝑖(𝑧) = 𝑧𝑖                                 (10c) 

where i indicates the number of polynomials involved in the admissible functions. 

After substituting Eq. (9) into energy Eq. (5), and then using the Lagrange’s equation gives the 

following equation 

                      
𝜕𝐼

𝜕𝑞𝑖

−
𝜕

𝜕𝑡

𝜕𝐼

𝜕�̇�𝑖

= 0                                (11) 

where qi is the unknown coefficients which are ai, bi and ci. After implementing the Lagrange 

procedure, the motion equation of the problem is obtained as follows; 

                [K]{q(t)} + [M]{q̈(t)} = {F(t)}                           (12) 

where [𝐾], [𝑀] and {F(t)} are the stiffness matrix, the mass matrix and load vector, respectively. 

The detail of these expressions are given as follows 

               [𝐾] = [

𝐾11 𝐾12 𝐾13

𝐾21 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

]                              (13) 

where 

K11 = ∑ ∑ ∫ A0
L

0

∂αi

∂x

∂αj

∂x
dxm

j=1
m
i=1  , K12 = 0, 

K13 = − ∑ ∑ ∫ B0
L

0

∂αi

∂x

∂γj

∂x
dxm

j=1
m
i=1 ,  K21 = 0, 

K22 = ∑ ∑ ∫ A55
L

0

∂βi

∂x

∂βj

∂x
dxm

j=1
m
i=1 , 

K23 = − ∑ ∑ ∫ A55
L

0

∂βi

∂x
γjdxm

j=1
m
i=1   
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K31 = − ∑ ∑ ∫ B0
L

0

∂γi

∂x

∂αj

∂x
dxm

j=1
m
i=1   

K32 = − ∑ ∑ ∫ A55γi
L

0

∂βj

∂x
dxm

j=1
m
i=1   

        K33 = ∑ ∑ ∫ D0
L

0

∂γi

∂x

∂γj

∂x
dxm

j=1
m
i=1                       (14) 

               [M] = [

M11 M12 M13

M21 M22 M23

M31 M32 M33

]                         (15) 

where 

M11 = ∑ ∑ ∫ I0
L

0
αiαdxm

j=1
m
i=1  , M12 = 0, 

M13 = − ∑ ∑ ∫ I1
L

0
αiγjdxm

j=1
m
i=1 ,  M21 = 0, 

M22 = ∑ ∑ ∫ I0
L

0
βiβjdxm

j=1
m
i=1 , 

M23 = M32 = 0 

M31 == − ∑ ∑ ∫ I1

L

0

γiαjdx

m

j=1

m

i=1

 

        M33 = ∑ ∑ ∫ I2
L

0
γiγjdxm

j=1
m
i=1                         (16) 

              {F(t)} = 𝑄𝛽𝑗                              (17) 

The governing equation of motions Eq. (12) is solved numerically by using implicit Newmark 

average acceleration method in the time domain.  

 

 
3. Numerical results 
 

In this section, dynamical displacements of the laminated composite cantilever beam under the 

sinusoidal harmonic load are presented and discussed according to material and load parameters. 

The material constants of Graphite/Epoxy are E01=150 GPa, E02=9 GPa, G012=7,1 GPa, G023=2,5 

GPa, ν=0.3, =1800 kg/m3. The geometry values are selected as b=0.1 m, h=0.1 m and L=1 m. The 

magnitude of load is selected as Q0=1 kN. In the numerical results, number of the series term is 

taken as 10.   

In order to validate the used formulations,  the maximum vertical displacements (at the free end) 

of the 0/0/0 laminated beam are obtained and compared with ANSYS Workbench 14 structural 

analysis program ̅=80 rad/s in Fig. 2. It is seen from Fig. 2, that results of this study agree well 

with results of ANSYS Workbench14. 

In Figs. 3 and 4, effects of the fiber orientation angles (𝜃) on the lateral dynamical free-end 

displacements of the laminated beams are presented for different stacking sequence of laminas for 

̅ = 100 𝑟𝑑/𝑠 in time history. 

It is seen from Figs. 3 and 4, the dynamical displacements of the laminated composite beams 

increase with increasing of the fiber orientation angles (). This is because that with increasing the 

fiber orientation angles, the stiffness of the beam decrease according to the Eq. (3). The dynamical 

displacements of [/0/] are greater than those of [0//0]. The stacking sequence of [/0/] is more  
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Fig. 2 Comparison study: Time responses of the 0/0/0 laminated beam for ̅=2 rad/s 

 

 
Fig. 3 Time history of dynamic displacements at free end of laminated beam with different values 

of fiber orientation angles for /0/ stacking sequence 

 

 
Fig. 4 Time history of dynamic displacements at free end of laminated beam with different values 

of fiber orientation angles for 0//0 stacking sequence 
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Fig. 5 The relationship between of the maximum displacements and the frequency of the dynamic load 

(�̅�) of laminated beam with different values of fiber orientation angles for /0/ stacking sequence 

 

 
Fig. 6 The relationship between of the maximum displacements and the frequency of the dynamic load 

(�̅�) of laminated beam with different values of fiber orientation angles for 0//0 stacking sequence 

 

 

effect on the dynamical responses rather that the stacking sequence of [0//0]. The stacking sequence 

play important role on the dynamic responses of laminated beams.  

In Figs. 5 and 6, the relationship between of the maximum displacements and the frequency of 

the dynamic load (�̅�) of laminated cantilever beam is presented for different values the fiber 

orientation angles for different stacking sequence of laminas for t=0.1 s. 

In Figs. 5 and 6, the resonance frequencies can be observed in the values of amplitude hit. It is 

seen from Figs. 5 and 6, the resonance frequencies of the laminated beam decrease with increasing 

of fiber orientation angles. Because of increasing the fiber orientation angles, the laminated beam 

gets more flexible and so, the resonance frequencies decrease naturally. Also, the resonance 

responses of the laminated beams are more sensitive in the [/0/]. In [0//0], the resonance and 

dynamic responses of the laminated beams change very little.     

569



 

 

 

 

 

 

Ş.D. Akbaş 

4. Conclusions 
 

The dynamical displacements of a laminated composite cantilever beam under a sinusoidal 

dynamic load are studied based on the Timoshenko beam theory by using the Ritz method. The 

governing equations of problem are derived by using the Lagrange procedure. In the dynamic 

solution, the Newmark average acceleration method is used in the time history. In the numerical 

results, the effects of fibre orientation angles, stacking sequence and frequency of dynamic load on 

dynamically displacements of the laminated composite beam are investigated. 

It is observed from presented results that the stacking sequence of laminas have important role 

on the dynamic responses of laminated composite beams. The stacking sequence of [/0/] is more 

influence of the dynamical responses rather that the stacking sequence of [0//0]. Increasing the 

fiber orientation angles cause to increase dynamic responses of laminated beams significantly. With 

choosing suitable values of fiber orientation angles and stacking sequence, the dynamic effects can 

be reduced in the laminated beams. 
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