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Abstract.  The paper studies the fluid flow profile contained between the orthotropic plate and rigid wall under the 
action of the moving load on the plate and main attention is focused on the fluid velocity profile in the load moving 
direction. It is assumed that the plate material is orthotropic one and the fluid is viscous and barotropic compressible. 
The plane-strain state in the plate and the plane flow of the fluid is considered. The motion of the plate is described by 
utilizing the exact equations of elastodynamics for anisotropic bodies, however, the flow of the fluid by utilizing the 
linearized Navier-Stokes equations. For the solution of the corresponding boundary value problem, the moving 
coordinate system associated with the moving load is introduced, after which the exponential Fourier transformation 
is employed with respect to the coordinate which indicates the distance of the material points from the moving load. 
The exact analytical expressions for the Fourier transforms of the sought values are obtained, the originals of which are 
determined numerically. Presented numerical results and their analyses are focused on the question of how the moving 
load acting on the face plane of the plate which is not in the contact with the fluid can cause the fluid flow and what 
type profile has this flow along the thickness direction of the strip filled by the fluid and, finally, how this profile changes 
ahead and behind with the distance of the moving load. 
 

Keywords:  fluid flow profile; orthotropic plate; compressible viscous fluid; moving load; hydro-elastic 

system; Fourier transform 

 
 
1. Introduction 
 

The fluid flow and its profile in the “plate + fluid systems” is one of the main factors for the 

detailed analysis of the dynamics of these systems. A characteristic feature of this flow is that it is 

caused by a moving load acting on the fluid through an elastic plate which is in contact with this 

fluid. Consequently, the mentioned flow of the fluid can also be considered as the fluid response to 

the moving load. Another aspect of the mentioned dynamic process is the determination of the 

possibilities through which it can cause the fluid flow by the action of the moving load acting on the 
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plate in contact with this fluid. Therefore, the subject of the present paper which relates to the 

determination of the influence of the problem parameters on this flow in the “orthotropic plate+ 

compressible viscous fluid+rigid wall” hydro-elastic system has not only theoretical but also the 

practical significance.  

Note that in earlier, the dynamics of the moving load acting on the plate+fluid systems which are 

taken as the model for the floating bridge was studied in the papers (Wu and Shih 1998, Fu et al. 

2005, Wang et al. 2009, and others listed therein). However in these papers the fluid response to the 

plate on which the moving load acts, is taken into consideration within the scope the linear spring-

type model, according to which, the hydrostatic force (denoted by R) appearing as a result of the 

plate - fluid interaction, is determined through the relation, where is the vertical displacement of the 

plate and is the spring constant. It ıs evident that in the aforementioned investigations the fluid 

reaction to the moving load is taken into consideration only through this spring constant. Moreover, 

it is evident that the approach used in the foregoing works is a very approximate one and cannot 

describe fluid flow profile which appears as a result of the acting moving load on the plate. Note 

that such describing can be made within the scope of the approach developed in the works (Akbarov 

and Ismailov 2014, 2015, 2016, 2017, 2018, Akbarov et al. 2017, Akbarov and Panakhli 2017, 

Akbarov and Huseynov 2019 and others listed therein) which are employed for investigations of the 

dynamic response of the hydro-elastic (-viscoelastic) systems consisting of the plate, compressible 

viscous fluid and rigid wall to the time-harmonic moving load acting on the plate. The detailed 

review of these investigations is given in the paper (Akbarov 2018) and some parts of those are 

detailed in the monograph (Akbarov 2015). It should be indicated that in these works the motion of 

the fluid is described within the scope of the linearized Navier-Stokes equations and the motion of 

the plate within the scope of the exact equations and relations of elastodynamics. However, in these 

works, the concrete investigations are made for the fluid flow velocity and fluid pressure acting on 

the interface between the fluid and plate. Consequently, in these works, there are not any 

investigations on the fluid flow profile across the thickness of the strip filled with the fluid under the 

action of the moving load on the plate. 

Note that the study of the fluid flow profile in the fluid-plate systems, in general, was not the 

main subject of the related investigations which were started in the paper (Lamb 1921), which 

studied the natural vibrations of a circular elastic “baffled” plate-still water system by utilizing the 

so-called “non-dimensional added virtual mass incremental” (NAVMI) method. In the papers 

(McLachlan 1932, Kwak and Kim 1991, Amabili and Kwak 1996, Amabili 1996, Kwak 1997, Kwak 

and Han 2000 and many others listed therein) it was developed the aforementioned Lamb´s 

investigation. It should be noted that in all these investigations the fluid is modelled as an inviscid 

incompressible one and the motion of the plate is described within the scope of the Kirchhoff 

hypothesis and the main aim of these works is to establish the magnitude of the influence of the 

contact of the plate with the fluid on the values of the natural vibrations of the plate. 

In some subsequent investigations, it is refused from the foregoing assumptions related to the 

fluid properties. For instance, in the paper (Jeong and Kim 2005) it is investigated natural 

frequencies of a circular plate submerged in a bounded compressible fluid. Moreover, in the papers 

(Atkinson and Manrique de Lara 2007, Kozlovsky 2009) it is taken the viscosity of the 

incompressible fluid into consideration, under investigation vibration of the plate which is in contact 

with this fluid. The fluid viscosity is also taken into consideration in the paper (Sorokin and 

Chubinskij 2008) in which it is considered the infinite plate fluid system and the motion of this plate 

is described within the scope of the various approximate plate theories.  

The model “an infinite plate - viscous fluid” is also used in the papers (Bagno et al. 1994, Bagno 
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2015 and others listed therein) and also in the papers the list and the review of which is detailed in 

the works (Bagno et al. 1997, Guz et al. 2016) and detailed in the monograph (Guz 2009). At the 

same time, in these works, the fluid is taken as compressible one and its flow is described through 

the linearized Navier-Stokes equations and the motion of the plate is described by utilizing the three-

dimensional linearized equations of wave propagation in elastic bodies with initial stresses and 

within these frameworks it is studied the wave propagation in the plate-fluid system. Note that the 

same equations and relations were also used in the works (Akbarov and Ismailov 2014, 2015, 2016, 

2017, 2018, Akbarov et al. 2017, Akbarov and Panakhli 2017, Akbarov and Huseynov 2019 and 

others listed therein), which are already noted above. We recall that in these works it was obtained 

the results related the stresses and velocity distribution on the interface plane between the fluid and 

plate in the cases where on the plate acts one of the following type load: the time-harmonic load, the 

moving load and the time-harmonic moving load. Note that these results can also be used as 

qualitative information on the pressure distribution under dynamic loading of the fluid-structure 

interaction systems the consideration of which was also made in the papers (Hadzalic et al. 2018, 

Kelvani et al. 2013, Mandal and Maity 2015 and in many others which are listed therein).  

In all the reviewed above papers, except the paper (Akbarov and Huseynova 2019), it was 

assumed that the plate material is a homogeneous and isotropic one. In connection with this, the 

results obtained in these papers cannot be applied for the cases where the plate, made of composite 

(or anisotropic) material, is in contact with the fluid. The examples for such cases are given in the 

papers (Shiffer and Tagarielli 2015, Das and Kapuria 2016, Kaneke et al. 2018, Gagani and 

Echtermeyer 2019). According to this statement, it was appeared the need to develop of the 

foregoing investigations carried out in the papers (Akbarov and Ismailov 2014, 2015, 2016, 2017, 

2018, Akbarov et al. 2017, Akbarov and Panakhli 2017 and others listed therein) for the cases where 

the plate material is anisotropic one. Such development was made in the paper (Akbarov and 

Huseynova 2019) in which it was investigated the forced vibration of the “orthotropic plate+ 

compressible viscous fluid+rigid wall” system and it was established the influence of the plate 

material anisotropy on the interface stresses and the interface velocities. 

In the present work, we attempt to develop the investigations started in the paper (Akbarov and 

Huseynova 2019) for the case where on the plate the moving load acts and to study the fluid flow 

profile across the thickness of the strip filled with this fluid. As well as to study the change of this 

profile with the distance from the point at which the moving load acts.      

 

      

2. Formulation of the problem and governing field equations and relations 
 

As in the paper (Akbarov and Huseynova 2019), consider the hydro-elastic system “ orthotropic 

plate-layer+compressible barotropic viscous fluid+rigid wall” schematically shown in Fig. 1, 

according to which, the Cartesian coordinate system 1 2 3Ox x x  is associated with the upper face 

plane of the plate. Within this coordinate system the region 1 2{ ; 0;x h x−   + −   −     

3 }x  + is occupied by the plate and the region 1{ x−  ; + dh h− −  2 ;x h − 3x− 

} + is occupied by the fluid, where h is the plate thickness and hd is the fluid depth, and the plane

2 dx h h= − −  illustrates the rigid wall. In Fig. 1 the Ox3 axis doesn’t shown this is because it is 

assumed that this axis direction is perpendicular to the Fig. 1 plane and the distribution of the 

external forces with intensity P0 which are located on the line −  3x  + ; 1x Vt= ; 2 0x = }  
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Fig. 1 The sketch of the hydro-elastic system consisting of orthotropic elastic plate, 

compressible viscous fluid and rigid wall under action moving load 

 

 

and move along the Ox1 axis with the constant velocity V doesn’t depend on the coordinate x3. 

Consequently, according to this statement, it is appear the plane-strain state in the plate and plane 

flow of the fluid in the Ox1x2 plane. 

Assume that the plate material is an orthotropic one the elastic symmetry axes of which coincide 

with the coordinate axes Ox1, Ox2 and Ox3, and this assuming is the main one, according to which, 

the formulation of the problem in the present paper differs from the that given in the paper (Akbarov 

and Ismailov 2015). 

Thus, within the framework of the foregoing assumptions, we write the field equations and 

relations for the constituents of the hydro-elastic system. 

The equations of motion for the plate 

2
11 12 1

2
1 2

,
u

x x t

  
+ =

  

 
  

2
12 22 2

2
1 2
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x x t
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+ =
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 
               (1) 

 The elasticity relation 
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11 22 12
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=

−
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13 31
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22
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E

−  
= , 

13 1 31 3E E =  , 21 2 12 1E E =  , 32 3 23 2E E =   .         (3) 

The strain-displacement relations 

1
11

1

u

x


=


 , 2

22
2

u

x


=


 , 1 2

12
2 1

1

2

u u

x x

  
= + 

  
 .                 (4) 

The following notation is used in (3) and (4): E1, E2 and E3 are the modulus of elasticity of the 

plate material in the directions of the Ox1, Ox2 and Ox3 axes, respectively, G12 is the shear modulus 

in the Ox1x2 plane, vij ( ; 1,2,3i j =  ) is the Poisson’s coefficient characterizing the shorting (the 

lengthening) of the material fibers in the Oxi axis direction under stretching (under compressing) in 
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the Oxj axis direction; σij and εij ( 11;22;12ij = ) are the components of the stress and strain tensor, 

respectively; u1 and u2 are the components of the displacement vector in the Ox1 and Ox2 axes 

directions, respectively. 

Thus, the closed complete system of equations and relations given in (1)-(4) are the field 

equations related to the motion of the orthotropic plate.  

Also, consider the field equations and relations related to the fluid flow. According to the 

monograph (Guz 2009), it is assumed that the motion of the fluid is described with the following 

linearized Navier-Stokes equations. 

22 (1)
(1) (1) (1) (1)
0 ( ) 0

ji i

j j i j i

VV V p

t x x x x x
   
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− + − + =
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0 0
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t x



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, 

( )(1) (1) (1)2ij ij ijT p e= − + +    , 1 2
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V V

x x


 
= +

 
, 

1

2

ji
ij

j i

VV
e

x x
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 = +
  
 

. 
(1)

2
0 (1)

p
a


=


 , : 1,2i j =                    (5) 

In (5) it is made summation with respect to the repeating indices and the following notation is 

used: (1)
0  is the fluid density before perturbation, ρ(1) is the perturbation of the fluid density, p(1) is 

the perturbation of the hydrostatic pressure, V1 and V2 are the components of the fluid flow velocity 

vector in the directions of the Ox1 and Ox2 axes, respectively, Tij and eij are the components of the 

stress and strain velocity tensors in the fluid, a0 is the sound velocity in the fluid, λ(1) and μ(1) are the 

coefficients of the fluid viscosity.  

For the solution to the equations in (5), according to the monograph (Guz 2009), it can be used 

the following presentation for the velocities V1, V2 and the pressure p(1) 

1
1 2

V
x x

  
= +

 
, 2

2 1

V
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= −
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 + 
 =  −
 
 

 
 
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,            (6) 

where the potentials φ and ψ satisfy the following equations. 

(1) (1) 2

(1) 2 22
00 0

2 1
1 0

t a ta

  +  
  +  − =
    

 



, (1) 0
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 
 − = 
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  ,  

2 2

2 2
1 2x x

 
 = +

 
,         (7) 

In (7) v(1) is the kinematic viscosity, i.e., (1)(1) (1)
0=   . 

Supposing that (1)
11 22 33( ) 3p T T T= − + + , we obtain from the constitutive relations in (5) that 

(1) (1)2

3
= −   .                                (8)  

Thus, the complete system of Eqs. (5)-(8) describe the flow of the compressible viscous fluid. 

Now we consider the formulation of the boundary, compatibility and impermeability conditions. 

According to the foregoing discussions, on the upper face plane of the plate it must be satisfied 

the following boundary conditions 
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2
21 0

0
x =

= , 
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22 0 10
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P x Vt 

=
= − − .                     (9) 

It is assumed the satisfying the compatibility conditions 

2
2

1
1

x hx h

u
V

t =−=−


=


 ,  

2
2

2
2

x hx h

u
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t =−=−


=


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2

2
21 21x h x h

T
=− =−

= , 
2

2
22 22x h x h

T
=− =−

= ,                 (10) 

on the interface plane between the fluid and plate.  

Finally, it is also assumed the satisfying the following impermeability conditions on the rigid 

wall 

2 d
1 0

x h h
V

=− −
= , 

2 d
2 0

x h h
V

=− −
= .                      (11) 

This completes the formulation of the problem under consideration and it should be noted that 

this formulation differs from the corresponding formulation made in the paper (Akbarov and 

Huseynova 2019) with the second boundary condition given in (9), i.e., in the paper (Akbarov and 

Huseynova 2019) it was written eiωt instead of δ (x1−Vt). Namely, this difference causes to develop 

the solution method with respect to the problem under consideration and to obtain the different 

results with respect to the fluid flow profile in the system under consideration.   

 

 
3. Method of solution 

 

As usual, the problems related to the moving load is solved by employing a moving coordinate 

system which is also employed in the paper (Akbarov and Ismailov 2015) and in other related papers 

listed therein and in the work (Akbarov 2018). Based on this provision, in the present paper we also 

use the moving coordinate system determined through the following relations. 

1 1x x Vt = − ,  2 2x x = .                         (12) 

Note that below we will omit the upper prime on the new moving coordinates in (12).  

Thus, rewriting the foregoing equations and relations in the new moving coordinate system we 

obtain that they are valid as are if it is made the replacing the operators ∂/∂t and ∂2/∂t2 with the 

operators −V∂/∂x1 and V2∂2/∂x1
2 respectively. 

Note that as a result of the fluid viscosity the problem under consideration the values of the 

sought quantities are not symmetric or asymmetric with respect to the line x1=0, i.e., with respect to 

point at which the moving load acts. Therefore for solution to the present problem unlike to the 

problem considered in the paper (Akbarov and Huseynova 2019) for solution to which it was 

employed the sinus or cosines Fourıer transforms we must employ to these equations the exponential 

Fourier transform with respect to the moving coordinate x1. 

1
2 1 2 1( , ) ( , )

isx
Ff s x f x x e dx

+
−

−

=  .                      (13) 
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Consequently, the originals of the sought values can be found through the integrals 

 1 2 11
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We introduce the dimensionless coordinates and dimensionless transformation parameter 

1 1x x h= , 2 2x x h= , s sh= ,                        (15)  

before the employing the Fourier transformation (13) and upper bars in (15) are omitted in all the 

subsequent solution procedure. 

Now we consider determination of the Fourier transforms of the sought values and begin this 

determination with the solution to Eqs. (1)-(4) related to the plate motion. Thus, employing the 

Fourier transform to these equations and doing some mathematical transforms we obtain the 

following ordinary differential equations for the components of the displacement vector.  
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The solution to Eq. (16) is found as follows 
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Using expressions (19) in the Fourier transforms of Eqs. (4) and (2) the following expressions 

for the Fourier transformations σ21F and σ22F of the stresses are determined. 
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2 2 2 212 22 12 22
3 3 2 2 4 2
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In this way we determine the Fourier transforms of the quantities related to the plate motion.  

Consider also the determination of the Fourier transforms of the quantities related to the fluid 

flow and begin this consideration with the determination of φF and ψF from the Fourier 

transformation of the equations in (7). Taking the relation  

2'F FsV h = −  , 2'F FsV h = −                           (22) 

into account, it can be written that 
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where  
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V h
N


= .                               (24) 

Note that the dimensionless parameter Ω1 in (24) characterizes the fluid compressibility, 

according to which, it may be considerable under high velocity of the moving load. Moreover, note 

that the other dimensionless parameter Nw in (24) characterizes the fluid viscosity, according to 

which, it may be considerable for the low velocity of the moving load and for thin plates.  

Thus, using the foregoing notation and assumptions, the solutions to the equations in (23) are 

found as follows 
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According to (25), (26), (6) and (5) the following expressions are obtained for the Fourier 

transforms of the velocities, pressure and stresses. 
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1 2 1 2 1 2 1 2(1) 2 2 2 2
21 1 5 1 7 6 81 1

( ') 2 2 ( ) ( )
x x x x

FT sV s Z e s Z e s Z e s Z e
       − − = − − − + + + +

  
, 

( )1 2 1 2(1) (1)
0 5 7( ')

x x
Fp sV R Z e Z e

  −
= − + ,                        (27) 

where 

2 2
21

0 2 2
1

4

3 1 4 (3 )
w

w

s
R isN

i s N




= − +

−

.                          (28) 

Finally, the following system of equations with respect to the unknowns Z1, Z2,…, Z8 which enter 

the expressions of the Fourier transforms of the sought values in (19), (21) and (27) are obtained 

from the boundary conditions in (9), the compatibility conditions in (10) and impermeability 

conditions in (11).  

( )
2

21 12 1 11 2 12 3 13 4 140
0F x

G Z Z Z Z
=

= + + + =     , 

( )
2

22 12 1 21 2 22 3 23 4 24 0 120F x
G Z Z Z Z P G

=
= + + + = −     , 

2
2

1
1 1 31 2 32 3 33 4 34( )F
F x h

x h

u
V i Z Z Z Z

t
    

=−
=−


− = + + + −


 

5 35 6 36 7 37 8 38( ) 0h Z Z Z Z+ + + =     , 

2
2

2
2 1 41 2 42 3 43 4 44( )F

F x h
x h

u
V i Z Z Z Z

t
    

=−
=−


− = + + + −


 

5 45 6 46 7 47 8 48( ) 0h Z Z Z Z+ + + =      , 

( ) ( )
2 2

21 12 21 12 1 51 2 52 3 53 4 54x h x h
G T G Z Z Z Z

=− =−
− = + + + −      

5 55 6 56 7 57 8 58( ) 0M Z Z Z Z+ + + =     , 

( ) ( )
2 2

22 12 22 12 1 61 2 62 3 63 4 64x h x h
G T G Z Z Z Z

=− =−
− = + + + −      

5 65 6 66 7 67 8 68( ) 0M Z Z Z Z+ + + =    , 

2 d
1 5 75 6 76 7 77 8 78( ) 0F x h h

V h Z Z Z Z    
=− −

= + + + = , 

2 d
2 5 85 6 86 7 87 8 88( ) 0F x h h

V h Z Z Z Z    
=− −

= + + + =              (29) 

where  

(1)

12

'V
M

G


=  .                                (30) 

It is not given here the expressions of the coefficients αnm (n;m=1,2,…,8) in (29) because they 

may be easily determined from Eqs. (19), (21) and (27). 

Thus, we determine the unknown constants Z1, Z2,…,Z8 as follows  
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det

det

k
nm

k
nm

Z



=  , 1,2,...,8k = ,                         (31)  

where the matrix ( )k
nm  is obtained from the matrix ( )nm  by replacing the k th−  column of 

the latter with the column 0 12(0, / ,0,0,0,0,0,0)TP G− . 

Now we consider the algorithm which is used under calculation of the integrals in (14) and for 

this purpose, firstly we note the following reasoning. If we take the Fourier transformation parameter 

s as the wavenumber, then the equation  

det 0nm = , ; 1,2,...,8n m = ,                        (32) 

coincides with the dispersion equation of the waves with the velocity V propagated in the direction 

of the Ox1 axis in the system under consideration. Therefore, Eq. (32) must have complex roots only 

with respect to the s for the system under consideration and this is caused by the viscosity of the 

fluid. However, as usual, the viscosity of the Newtonian fluids is insignificant in the quantitative 

sense and therefore in some cases within the scope of the PC calculation accuracy, the Eq. (32) may 

have “real roots” under which the integrated expressions in (14) have singularity. 

In such cases the corresponding calculation algorithm was discussed in monograph (Akbarov 

2015) and other works listed in this monograph. According to this algorithm, in the mentioned cases 

the wavenumber integrals (14) may be evaluated along the Sommerfeld contour examples for which 

is shown in the monograph (Akbarov 2015).  

Fortunately, in the present investigations under calculation of the integrals in (14) the 

aforementioned “real roots” do not appear and according to expression in (14), the sought values are 

determined through the following relation: 

  1 2 11 12 22 1 2 11 12 22 1 2 11

1
; ; ; ; ; ; ; ; ; Re ; ; ;

2
F F Fu u v v T T T u u

+

−


= 


   


 

 1
12 22 1 2 11 12 22; ; ; ; ; ;

isx
F F F F F F Fv v T T T e ds  


.                    (32) 

Note that under calculation procedures, the improper integrals 1( )cos( )dsf s sx
+

−   and 

1 1( )sin( )df s sx s
−

−  which follows from (32) are replaced by the corresponding definite integrals 

*
1

*
1

1( )cos( )ds
S

S
f s sx

+

−  and 
*
1

*
1

1( )sin(( ) )d
S

S
f s s x s

+

− , respectively. The values of *
1S  are determined 

from the convergence requirement of the numerical results.  

Under calculation of the mentioned definite integrals, the integration interval * *
1 1[ , ]S S− +   is 

further divided into a certain number of shorter intervals, which are used in the Gauss integration 

algorithm. The values of the integrated expressions at the sample points are calculated through the 

Eqs. (19), (21) and (27). All these procedures are performed automatically with the PC programs 

constructed by the authors in MATLAB.  

This completes the consideration of the method of solution to the problem under consideration.  
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4. Numerical results and discussions 
 

For numerical investigation we assume that the fluid is Glycerin with viscosity coefficient 

μ(1)=1.393 kg/m·s), density (1) 3
0 1260kg m=  and sound speed a0=1927 m/s (Guz 2009). As in the 

paper (Akbarov and Huseynova 2019), the parameters k1 and k2 determined as 

(1)
10 k=   , 2 0 2c a k= , 2

12 2( )G c=                        (32) 

are introduced for determination the density and shear modulus of elasticity in the Ox1x2 plane of 

the plate material through the mechanical properties of the fluid. Consequently, if we know the 

density of the fluid, then giving the values for the k1 we determine the density of the plate material, 

as well as if we know the sound speed in the fluid, then giving the values for the k2 we determine 

the values for the shear modulus G12  

Thus, selecting the values for the constants k1 and k2 we determine the density and shear modulus 

of the plate material through the density and sound speed of the fluid material, and an increase in 

the values of the k1 (of the k2) means an increase in the values of the density (of the shear modulus) 

of the plate material and under fixed value of the fluid density (under fixed sound speed in the fluid). 

Moreover, we use the following ratios which characterize the anisotropy of the plate material. 

1 12/E G , 1 2/E E , 2 3/E E , 1 3/E E ,                        (33) 

and assume that  

12 13 23 0.3 =  =  = ,  1
21 12

2

E

E
 =   , 1

31 13
3

E

E
 =  , 2

32 23
3

E

E
 =  .          (34) 

At the same time, we assume that 

2 3E E= , 1 2/ 1.5E E =                              (35) 

In this way through the ratio E1/G12 we can characterize the influence of the anisotropy of the 

plate material on the fluid flow profile which is the main aim of the present numerical investigations. 

Consequently, in the present paper we will consider the numerical results illustrating the influence 

of the V/h, x1/h, hd/h, E1/G12, k1 and k2 on the fluid flow profile which is caused as result of the 

moving load action on the plate which is in contact with fluid and we assume that h=0.001 m.  

Note that, according to the convergence investigations carried out in the paper (Akbarov and 

Ismailov 2017), under obtaining numerical results it is assumed that *
1 9S =  the interval * *

1 1[ , ]S S−  

is divided into 4000 shorter subintervals in each of which it is used the Gauss integration algorithm 

with ten sample points.  

The convergence of the numerical results in the selected numbers of the subintervals and in the 

selected length of the integration interval was illustrated not only in the papers (Akbarov and 

Ismailov 2016, 2017 and 2018) and in others listed therein. Therefore, the convergence of the 

numerical results doesn’t analyzed here. The trustiness of the used PC programs which are used 

under obtaining the numerical results is also used under obtaining of the numerical results given in 

the paper (Akbarov and Huseynova 2019) tested with obtaining in the particular cases the known 

results and with agreeing the obtained results with the physico-mechanical considerations. We do 

not consider here examples for such testing and begin to analyze the numerical results illustrated the 

fluid flow profile in the system under consideration.   

299



 

 

 

 

 

 

Surkay D. Akbarov and Tarana V. Huseynova 

   

   

   
Fig. 2 Fluid flow profile in the Ox1 axis direction obtained for various moving load velocity V/h and in various 

distance x1/h from the moving load in the case where E1/G12=3 and hd/h=3 

 

   

Fig. 3 Fluid flow profile in the Ox1 axis direction obtained for various moving load velocity V/h and in various 

distance x1/h from the moving load in the case where E1/G12=10 and hd/h=3 
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Fig. 3 Continued 

 

   

   

Fig. 4 Fluid flow profile in the Ox1 axis direction obtained for various moving load velocity V/h and in various 

distance x1/h from the moving load in the case where E1/G12=50 and hd/h=3 
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Fig. 4 Continued 

 

   

Fig. 5 Fluid flow profile in the Ox1 axis direction obtained for various moving load velocity V/h and in various 

distance x1/h from the moving load in the case where E1/G12=50 and hd/h=6 

 

 

Thus, we consider the graphs given in Figs. 2, 3 and 4 which show the distribution of the 

dimensionless fluid flow velocity 1 12 0/V h G P  with respect to (x2−h)/h (along the fluid depth) in 

the cases where E1/G12=3, 10 and 50, respectively for various values of the load moving velocity 

V/h and for various distance in behind and in ahead from the point at  which the moving load acts 

(i.e., for various values of x1/h) under hd/d=3. Note that  these results are obtained in the case where 

k1=k2=1 which introduced through the relations in (32). 

It follows from the observation of the results given in Figs. 2, 3 and 4 that the fluid flow profile 

in the case under consideration in the near vicinity at the point at which the moving load acts is 

similar to the well-known Poiseuille flow between two plates. However, it also follows from these 

results that the mentioned similarity is violated with the distance from the moving load acting point, 

especially in behind of the moving load. Moreover, in behind of the moving load at a certain distance 

from that, the fluid flow velocity in the Ox1 axis direction changes its flow direction, i.e., fluid flow 

direction becomes vice-versa to this axis direction. This “certain distance” for the cases E1/G12=3, 

10 and 50 can be taken approximately as 1 1/ ( / )* 25x h x h=  − , −30 and −10. Namely, around 

these points, the fluid flow profile differs significantly from the Poiseuille flow and becomes 

complicated and in the cases where x1/h<(x1/h)* the fluid flow direction is vice-versa to that which 

is observed in the near vicinity of the cross-sections of the fluid-strip which are near to the point at 

which the moving load act. The comparison of the results illustrated in Figs. 2, 3 and 4 with each  
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Fig. 6 Fluid flow profile in the Ox2 axis direction obtained for various moving load velocity V/h and in various 

distanse x1/h from the moving load in the case where E1/G12=3 and hd/h=3 

 

 

other shows that the increase in the values of the ratio E1/G12 (i.e., the decrease of the plate stiffness 

with respect to the shear deformation) causes, in general, to decrease of the fluid flow velocity. 

Moreover, analyze the results obtained for various values of the moving load velocity shows that in 

the near vicinity of the moving load an increase in the values V/h causes an increase of the fluid flow 

velocity. However, after a certain distance from the moving load, this conclusion is violated and the 

character of the influence of the V/h on the fluid flow velocity depends on the mentioned distance.   

Note that the foregoing results are obtained only for the case where hd/d=3 which characterizes 

the influence of the fluid's depth on the fluid flow profiles under consideration. The study of the 

change the ratio hd/d on the fluid flow profile is also one of interesting fact which requires the detail 

investigations. However, here we do not consider this question in detail and as an example for such 

influence in Fig. 5 it is given some results related to the fluid flow profile obtained in the case where 

hd/d=6 under E1/G12=50. The comparison of the results given in Fig. 5 with corresponding ones 

given in Fig. 4 shows that an increase in the value of the ratio hd/d causes to decrease of the absolute 

maximum value of the fluid flow velocity in the Ox1 axis direction. 

Besides all of these, it should be noted that, according to the problem geometry and to the 

external load location, the fluid flow profile must be non-symmetric with respect to the middle 

plane of the fluid-strip, i.e., with respect to the x2=(hd−h)/2. However, the observation of the obtained 

results do not show clearly such non-symmetry, most likely these profiles are similar to the 

symmetric fluid flow profile with respect to the indicated plane. In fact, the detail analyses of the 

numerical data, according to which the graphs given in Figs. 2, 3 and 4 are constructed, shows that 

there are the mentioned non symmetry with respect to the plane x2=(hd−h)/2. However, the difference  
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Fig. 7 The influence of the parameter k1 on the fluid flow profile in Ox1 direction obtained for various moving 

load velocity V/h and in various distanse x1/h from the moving load in the case where E1/G12=50 and hd/h=6 

 

  

  

Fig. 8 The influence of the parameter k2 on the fluid flow profile in Ox1 direction obtained for various moving 

load velocity V/h and in various distanse x1/h from the moving load in the case where E1/G12=50 and hd/h=6 
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between the values of the V1 velocity obtained at the points which have the symmetric location with 

respect to the plane x2=(hd−h)/2 so few that the above-noted non-symmetry doesn't observed in the 

graphs given in Figs. 2, 3 and 4. At the same time, the non-symmetry character of the quantities 

related to the fluid flow clearly observed on the graphs related to the V2 velocity of the fluid. These 

graphs are given in Fig. 6 which are constructed in the case where E1/G12=3 and hd/h=3 for various 

moving load velocity V/h and in various distance from the load location point.  

In Figs. 1, 2, 3, 4 and 5 it is clearly observed the non-symmetry of the profiles of the fluid flow 

with respect to the point at which the moving load acts, i.e. with respect to the point x1/h=0. It should 

be noted that this non symmetry is caused with the fluid viscosity which is also observed in the paper 

(Akbarov and Ismailov 2015).     

Note that all the foregoing results are obtained in the case where k1=k2=1, i.e., in the case where 

the density of the plate material is equal to the fluid density and the sound speed in the fluid is equal 

to the shear wave propagation velocity in the plate material. Now we consider the results illustrated 

the influence of the parameters k1 and k2 on the fluid flow profile. The results illustrated this 

influence are given in Figs. 7 and 8 which are obtained for the various values of the k1 (under k2=1) 

and for various values of k2 (under k1=1) respectively. It follows from the analyses of the results 

given in Fig. 7 that an increase in the plate material density causes to increase fluid flow velocity in 

the load moving direction. As well as, it follows from the analyses of the results given in Fig. 8 that 

an increase of the shear wave velocity in the plate material also causes to increase the fluid flow 

velocity in the Ox1 axis direction.    

It is known that fluid flow and its flow direction is caused by the pressure gradient and if the 

projection of this gradient along the Ox1 axis is negative then the fluid flow direction must be 

coincide with the Ox1 axis direction, otherwise the fluid flow direction must be against wıth the Ox1 

axis direction. In connection with this, we consider the values of the pressure in the various cross 

section in the fluid strip which are illustrated with the graphs given in Fig. 9 obtained in the case 

where V/h=500 (1/sec), E1/G12=3 and hd/h=3. Moreover, in Fig. 10 in the same case it is shown the 

graphs of the pressure distribution along the fluıd strip thickness at the various distance from the 

moving load. It follows from these results that the values of the pressure can be taken as constant  

 

 

 

Fig. 9 The values of the pressure in various cross section of the fluid strip 
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Fig. 10 The distribution of the pressure along the fluid strip thickness 

 

 

along the thickness of the fluid strip thickness with accuracy 10-4. However, the values of the 

pressure depends significantly not only on the distance from the point at which the moving load acts 

but also on the moving load velocity. Consequently the graphs given above on the fluid flow profiles 

illustrate also a certain information on the distribution of the pressure gradient in this fluid which 

appear as a result of the action of the moving load acting on the plate which is in contact with the 

fluid. 

This completes the analyses of the numerical results.  

 

 

5. Conclusions 
 

Thus, the present paper studies the fluid flow profile in the system consisting of the orthotropic 

plate, compressible (barotropic) viscous fluid and rigid wall in the case where on the upper face 

plane of the plate the moving load acts. The plane-strain state in the plate and the plane flow in the 

fluid is considered. The motion of the plate is described within the scope of the exact equations and 

relations of the elastodynamics for anisotropic bodies and the fluid flow is described by the 

linearized Navier-Stokes equations. Numerical results are presented on the fluid flow profiles and 

on the influence of the problem parameters such as an anisotropy of the plate material, load moving 

velocity, fluid depth, the plate material density and shear wave propagation velocity are presented 

and discussed for the case where the fluid is Glycerin.  

According to these results it is established the following concrete conclusions: 

• In the near vicinity of the moving load in the ahead and in the behind of this load the fluid flow 

profile is similar to the corresponding Poiseuille flow profile.  
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• The amplitude of this profile decrease with the distance from the point at which this load acts. 

• In the direction which coincides with the load moving direction the form of this profile remain 

same with the distance from the moving load. However, in the direction which is against to the 

load moving direction the form of the fluid flow profile change significantly with the distance 

from the moving load and after a certain distance the fluid flows in the direction which is against 

with moving load direction. 

• An increase in the values of the ratio E1/G12 (i.e., a decrease in the shear modulus of the plate 

material) causes to decrease of the amplitude of the fluid flow profile. 

• An increase of the plate material density and as well as an increase of the shear wave 

propagation velocity of this material causes to increase the fluid flow velocity along the moving 

load direction. 

The results obtained in the present paper allows us to get the theoretical base for creating and 

controlling the fluid flow through the moving load acting on the plate which is in contact with the 

fluid.  
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