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Abstract.  In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure 
built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer 
conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented 
as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong 
discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of 
modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane 
crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed 
model are governed by Darcy’s law and Fourier’s law for heat conduction, respectively. The pore pressure field and 
temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule 
for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay 
tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature 
degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical 
simulations are presented and discussed. 
 

Keywords:  coupled discrete beam lattice model; saturated porous medium; pore pressure; temperature; 

coupling; localized failure; temperature dependent parameters 

 
 
1. Introduction 
 

The pioneering works in the domain of isothermal solid phase-pore fluid interaction are 

Terzaghi’s theory of one-dimensional consolidation (Terzaghi 1944), and Biot’s theory of three-

dimensional consolidation (Biot 1941), with both theories being limited to the case of elastic porous 

media. The isothermal solid phase-pore fluid interaction is further extended to the nonisothermal 

case in order to account for the temperature effects in the saturated porous media. The pioneering 

work in the finite element analysis of thermo-hydro-mechanical coupling problem is the work of 
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Aboustit et al. (Aboustit 1983, Aboustit et al. 1985), followed by the works of (Britto et al. 1992, 

Lewis et al. 1986, Lewis et al. 1989, Noorishad and Tsang 1996, Gatmiri and Delage 1997, Cui et 

al. 2018).  

Taking these developments a one step further in order to be able to predict the overall safety of 

structure built of saturated porous media, a numerical model of the structure has to be able to capture 

cracking and localized failure in the structure subjected to extreme loads. Here, the extreme loads 

include not only the mechanical loads but the thermal loads as well (Ostermann and Dinkler 2014, 

Ngo et al. 2014). Namely, temperature changes can induce additional stresses in the structure as a 

result of restrained movement, which may contribute to cracking. Furthermore, the thermal actions 

can affect the stiffness and strength properties of the material, which has to be properly accounted 

for in order to provide a sound design of the structure. To be able to model these phenomena, which 

influence the overall safety and durability of the structure, the numerical model of the pore-saturated 

structure has to account for the thermal coupling. 

In this paper, we propose a thermo-hydro-mechanical coupled discrete beam lattice model of 

structure built of the nonisothermal saturated poro-plastic medium. The latter is the main novelty of 

the proposed model with respect to 2D plain strain coupled discrete beam lattice model presented in 

(Nikolic et al. 2015, Nikolic et al. 2016, Hadzalic et al. 2018a, b, c, Hadzalic et al. 2019). The plain 

strain coupled discrete beam lattice model is extended to the 3D case, and the thermal coupling is 

added to the model in order to account for the temperature effects in saturated poro-plastic media. 

The proposed 3D model is based on Voronoi cell representation of the domain with cohesive links 

as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of 

embedded strong discontinuities in axial and both transverse directions. The pore fluid flow and heat 

flow in the model are defined with Darcy’s law and Fourier’s law for heat conduction, respectively. 

The pore pressure field and the temperature field are discretized with linear tetrahedral finite 

elements, resulting with additional pore pressure and temperature degrees of freedom placed at each 

node of the Timoshenko beam finite element.  

The outline of the paper is as follows: In Section 2, we describe the equations governing the 

response of the nonisothermal saturated porous medium. In Section 3, we present the finite element 

formulation of the proposed thermo-hydro-mechanical coupled discrete beam lattice model, together 

with the computational procedure. In Section 4, we present the results of several numerical 

simulations with the aim to validate the proposed coupled discrete beam lattice model of structure 

built of a nonisothermal saturated porous medium, and to demonstrate its capabilities to predict 

response and cracking in the structure subjected to combined thermal and mechanical loads. In 

Section 5, we give some concluding remarks.  

 

 
2. Governing equations of nonisothermal saturated porous medium 

 
The equations governing the response of nonisothermal saturated porous medium are derived by 

combining equilibrium equation imposed on a porous medium, continuity equation imposed on a 

fluid flow and energy equation imposed on heat flow through such a porous medium (Aboustit 1983, 

Aboustit et al. 1985, Lewis et al. 1986, Lewis and Schrefler 1998). The governing equations are 

derived under the assumption that no phase change occurs and that the thermal equilibrium between 

the solid phase and the pore fluid is achieved. 

 

2.1 Equilibrium equation 
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The strong form of equilibrium equation is written as 

+ =σ b 0  
(1) 

where σ is the nominal stress tensor, and b is the body forces vector.  

Following Terzaghi’s principle of effective stresses, the nominal stress is decomposed into 

effective stress and pore pressure, written as 

'σ σ Ibp= −  (2) 

where σ’ is the effective stress tensor, I is the second order identity tensor, p is the pore pressure 

(assumed positive if compression), and b is Biot’s constant.   

Furthermore, the effective stress tensor can be decomposed into mechanical part σu resulting 

from nonhomogeneous displacements and thermal part σT, resulting from corresponding changes in 

temperature, written as 

' u T= −σ σ σ  (3) 

with σT computed as 

( )0T T T T= −σ β  (4) 

where T0 is the reference temperature, and βT is the thermal stress tensor for isotropic case defined 

as 

T T= I  (5) 

 
2.2 Continuity equation 
 
The continuity equation governing the fluid flow through a nonisothermal porous medium (for 

the usual temperature dependence of the solid density neglected) can be written as 

1
0sf

f

k
p b T p

M

 
+   −  −   = 

  

u  (6) 

where M is Biot’s modulus, k is the coefficient of permeability of the isotropic porous medium, γf is 

the specific weight of the fluid and sf is the thermal expansion coefficient of the mixture defined 

as  

( )sf s fb n n = −  +   (7) 

with n as the porosity, 
s as the thermal expansion coefficient of the solid phase and f as the 

thermal expansion coefficient of the pore fluid.  

 

2.3 Energy equation 
 
The energy equation for porous medium under the assumption that both the solid phase and pore 

fluid have the same temperature at the coincident point and with convection ignored is written as 

0T TC T s + − =q  (8) 
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where qT is the heat flux, s is the heat source, and ρCT is the effective heat capacity defined as 

( )1 s f

T s T f TC n C n C = −  +   (9) 

with ρs, 
s

TC  as the mass density and heat capacity of the solid phase and ρf, 
f

TC as the mass density 

and heat capacity of the pore fluid. 

The heat flux qT is defined with the Fourier’s law for heat conduction, written as 

T Tk T = − q  (10) 

where kT is the coefficient of thermal conductivity of the isotropic porous medium. 

In the formulation of the energy equation, the convection, the pressure and temperature 

dependence of the solid and fluid densities, and mechanical contributions to energy balance are 

neglected. These simplifications are, in many cases, justified and result in an uncoupled form of the 

energy equation (Lewis et al. 1986, Lewis and Schrefler 1998, Booker and Savvidou 1985). 

 

 
3. Coupled discrete beam lattice model of nonisothermal pore-saturated structure 

 
The starting point for our work on coupled discrete beam lattice model of the nonisothermal pore-

saturated structure is the 2D plain strain coupled discrete beam lattice model presented in (Nikolic 

et al. 2015, Nikolic et al. 2016, Hadzalic et. al 2018a, b, c, Hadzalic et. al 2019) for the isothermal 

case.  

For the numerical representation of the structure built of a nonisothermal saturated poro-plastic 

medium, we extend the proposed 2D plane strain coupled discrete beam lattice model to the 3D 

setting, and we introduce the thermal coupling into the model. For the construction of the discrete 

lattice model in the 3D framework, we exploit the duality property between the Voronoi cell 

representation and Delaunay tetrahedralization of the domain (Fig. 1). The end result of Delaunay 

 

 

 

Fig. 1 Voronoi diagram and Delaunay tetrahedralization 
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Fig. 2 Displacement, pore pressure and temperature fields finite element approximations 

 

 

tetrahedralization is the mesh of tetrahedra. Every edge of tetrahedra connects the centers of two 

adjacent Voronoi cells and is perpendicular to the polygon shared between these two cells. We place 

along each edge of tetrahedra a cohesive link, whose behavior we model with the beam finite 

element. The cross-section of each beam finite element is the polygon shared between two adjacent 

cells. In general case, the polygonal cross-section for every beam finite element is of a different 

shape. To simplify these computations, we replace the polygonal cross-section for every finite 

element with an equivalent circular cross-section (Fig. 1). More precisly, we compute the diameter 

of an equivalent circular cross-section from the condition that the area of the polygon obtained from 

Voronoi cell representation is equal to the area of a circular cross-section. 

The fracture behavior of cohesive links is modeled with inelastic Timoshenko beam finite 

elements enhanced with additional kinematics in terms of embedded discontinuities in axial and 

both transverse directions (Nikolic and Ibrahimbegovic 2015). Thus, enhanced Timoshenko beam 

finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I 

relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-

plane shear sliding. It is important to note that linear elastic parameters of Timoshenko beam finite 

element, Young’s modulus E and Poisson’s ratio  can be identified from the condition that no 

stiffness is gained or lost compared to the 3D continuum (Hadzalic et al. 2019). However, other 

parameters such as yield and fracture limits have to be identified through more elaborate parameter 

identification procedures such as those probability based ones (e.g., Karavelić et al. 2019). 

In a 3D numerical model of structure built of a nonisothermal saturated poro-plastic medium, we 

spread the pore fluid flow and heat flow across the mesh of tetrahedra (Tet4 - linear tetrahedral finite 

elements) that coincides with the mesh of tetrahedra obtained by Delaunay tetrahedralization of the 

domain. For numerical integration on tetrahedral finite elements, we choose nodal point rule, which 

positions the integration points at every node of tetrahedral (Gellert and Harbord 1991). The 

integration rule of this kind eliminates the contribution of two nodes that do not belong to the beam 

and only includes the contribution of the two nodes that belong to the Timoshenko beam finite 

element. This allows us to treat the pore pressure and the temperature as additional degrees of 

freedom placed at each node of the Timoshenko beam finite element (Fig. 2). 

Next, we present the finite element formulation of the 3D coupled discrete beam lattice model 

for nonisothermal pore-saturated structures.  

 

3.1 Finite element formulation 
 
3.1.1 Kinematics 
Consider a straight Timoshenko beam finite element of length Le and cross-sectional area Ae. All 

equations for Timoshenko beam finite element are expressed in a local coordinate frame, which can 

be easily adapted to the global frame by using standard local-global transformation (Fig. 3). 
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Fig. 3 Local and global coordinate frame 

 

 

Fig. 4 Timoshenko beam finite element in 3D framework 

 

 

The element has two nodes, and six degrees of freedom per node: axial displacement u along 

local x axis, transverse displacements v and w along local y and z axes, and rotations of cross-section 

θx, θy, θz around local x, y, z axes, respectively (Fig. 4). For simplicity, we considered a Timoshenko 

beam placed along the global x axis. The displacement fields are enhanced in axial and both 

transverse directions with embedded strong discontinuities in order to model the corresponding three 

modes of crack formation. The enhanced displacement fields are interpolated as 

s

u= +u N u M  (11) 

where 

 T , , , , ,x y zu v w=   u  

(12) 

 T

1 1 1 ,1 ,1 ,1 2 2 2 ,2 ,2 ,2, , , , , , , , , , ,x y z x y zu v w u v w=      u  

 T , , , 0, 0, 0u v w=     

 

1 2

1 2

1 2

1 2

1 2

1 2

1 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
; , 1 ,

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

s

u e e

N N

N N

N N x x
N N

N N L L

N N

N N

 
 
 
   

= = −   
  

 
 
  

N
 

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0,
; ;

0 0 0 0 0 0 1,

0 0 0 0 0 0

0 0 0 0 0 0

x x

M

M

M x x
M H N H

x x

 
 
 
  

= = − =  
 

 
 
  

M
 

Here, αu, αv and αw represent displacement jumps in axial direction, in-plane transverse and out-

of-plane transverse directions. 

The enhanced strain fields are interpolated as 
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s

u= +u N u M  (11) 

where 

 T , , , , ,

x

x

y

y z x y z y z y

z

z y z

ddu

dx dx

ddv

dx dx

ddw

dx dx
+


 =  =




=         = −  =



 =   =



 

(14) 

1 2

1 1 2 2

1 1 2 2

1 2

1 2

1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
; ;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s

u

B B G

B N B N G

B N B N G

B B

B B

B B

   
   

− −
   
   

= =   
   
   
   

     

B G
 

 
) (

 ) (

1 2

1 2

, 0, ,1 1
, , , ; ;

,

0, 0, ,

,

e

e e

x

e

x

G x x x LdN dN dM
B B G

dx dx dxL L G x x

x x x L

x x

       = = − = =    
   +  =

    = 
 =

 

(15) 

where ε is the axial strain, γy, γz are the shear strains, and κx, κy, κz are the curvatures.  

The pore pressure field and temperature fields are approximated with tetrahedral finite elements 

with four nodes (Fig. 5). The finite element approximations for the pore pressure field and 

temperature field can be written as 

;s s

p Tp T= =N p N T  (16) 

   T T

1 2 3 4 1 2 3 4, , , ; , , ,p p p p T T T T= =p T  

(17) 

 

 

1 2 3 4

1 2 3 4

, , ,
; ; 1,4;

6, , ,

s p p p p

p p T i i i i

i is T T T T

T

N N N N a b x c y d z
N N i

VN N N N

= + + +
= = =

=

N

N

 

1 1 1

2 2 2 2 2

2 2 2

1 3 3 3 1 3 3

3 3 3

4 4 4 4 4
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2 2 2 2

1 3 3 1 3 3
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1
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1
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1
1
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1 1
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V a x y z b y z
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Fig. 5 Pore pressure and temperature fields finite element approximations 

 

 

where V is the volume of the tetrahedral element, x, y, z are global coordinates, xi, yi, zi are nodal 

coordinates of tetrahedral element, and constants a2-4, b2-4, c2-4, d2-4 are defined by the cyclic 

interchange of the subscripts in the order 1,2,3,4. 

The time derivative of displacement, pore pressure and temperature fields are written as 

; ;s s s

u p Tp T= = =u N u N p N T  (18) 

 

3.1.2 Weak form of governing equations 
Continuity equation: The coupling of the mechanics and the pore fluid flow occurs through the 

axial direction of the Timoshenko beam finite element. The continuity equation is written as 

1
0sf

f

k
p b T p

M

 
+  −  −   = 

  

 (19) 

By introducing the finite element discrete approximations into the weak form of continuity 

equation, we obtain  

( ) ( )

( )

4

T
,T ,T

,T ,

0

1

e
Tet

e

s s s s s s

p p p sf p p p

f

L

s s ext e

up up

k
d

M

b dx



   
−  +            

+ =





N N p N N T N N p

N B u q

 
(20) 

where 

   1 2 1 2, ; 0 0 0 0 0 0 0 0 0 0s s

up upN N B B= =N B  (21) 

Energy equation: The energy equation is written as 

( ) 0T TC T k T s +  − =  (22) 

By performing the standard finite element discretization procedure, we obtain  

( ) ( )( )
4

T
,T ,

e
Tet

s s s s ext e

T T T T T TC k d



     =
   N N T + N N T s  

(23) 

Equilibrium equation: The weak form of equilibrium equations for the Timoshenko beam finite 

element is derived from the principle of virtual works. By exploiting the principle of virtual works 

and performing standard finite element discretization procedure, we obtain the corresponding 

equations where the first equation relates to the equilibrium in the bulk part of the element, and the 
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second equation relates to the equilibrium at the discontinuity, written as 

int,e ext,e

e

− =

=

f f 0

h 0

 (24) 

where 

( ) ( ),T

0

eL

int,e s int,e int,e

u uT pdx= = −f B f f    

(25) 
 

T T

0 0

T

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
;

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

, , , 0, 0, 0

e eL L

e

uT uT
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G

G

G
dx dx

t t t

 
 
 
 

= = + =  
 
 
 
  

=
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t

 
 

 T , , , , , ;y z x y zN V V M M M=  

T ;uT p= −    

   

 
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e
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  ( ) 
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Here, ' ` eN N bp A= − is the total axial force, whereas 
'

y yV V=  and '

z zV V= are the shear forces, 

and finally '

x xM M= is the torsion moment, while 
'

y yM M=   and '

z zM M= are the bending 

moments (Fig. 6). The superscript ' denotes effective force. Here, we assume that the coupling of the 

mechanics and the internal fluid flow occurs through the axial direction of the Timoshenko beam 

finite element. Next, t  is the internal force vector acting at the discontinuity and uT

T is the thermal 

stress for thermo-mechanical coupling in the axial direction. 

The stress resultants 
' ' ' ' ' ', , , , ,y z x y zN V V M M M  are computed from the selected constitutive 

model for the Timoshenko beam finite element. For axial and both transverse directions, the pre- 

 

 

 

Fig. 6 Stress resultants 
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peak response of the element is described with the elasto-viscoplastic constitutive model with both 

linear isotropic hardening (Ibrahimbegovic 2009), and Fredrick-Armstrong nonlinear kinematic 

hardening law (Armstrong and Frederick 1966). The post-peak response of the element is described 

with exponential softening. More details on the selected constitutive model can be found in (Nikolic 

et al. 2015, Nikolic and Ibrahimbegovic 2015, Nikolic et al. 2016, Hadzalic et al. 2018 a, b, c, Ismar 

et al. 2015, Hadzalic et al. 2019). The behavior of the element in bending and torsion remains purely 

linear elastic.  

For linear elasticity, the thermal stress uT

T is a function of lattice Young’s modulus E and 

thermal expansion coefficient of the solid phase
s , which can be written as 

uT
T

uT

T sEk


 =   (26) 

The coefficient uT
T

k


takes into account the difference between 1D thermo-mechanical coupling 

and the 3D thermo-mechanical coupling. Namely, in 3D thermo-mechanical coupling for isotropic 

case the thermal stress 
T can be expressed in terms of thermal expansion coefficient 

s   and 

Lame’s parameters for the continuum model L  and L , written as 

( )3 2T L L s =  +    (27) 

The last expression can be rewritten in terms of oedometer modulus Eoed and Poisson’s ratio  
for the continuum model, as 

1

1
T oed sE

+  
 =  

−  
 (28) 

Hence, the coefficient uT
T

k


can then be computed as 

1
/

1
uT
T

oedk E E


+  
=  

−  
 (29) 

 
3.1.4 Computational procedure 
The system of equations governing the thermo-hydro-mechanical coupled problem for single 

Timoshenko beam finite element is written as 

( ), ` ,

,T ` ` ` ,

` ` ,

int e e ext e

uT up

e e e e ext e

up pT pp pp

e e ext e

TT TT

− =

− + + =

+ =

f K p f

K u K T D p K p q

D T K T s



 (30) 

where ( ),int e

uTf  is the internal load vector resulting from displacements and temperature changes, 

e

upK and 
e

pTK   are the coupling matrices, 
e

ppD is the compressibility matrix, 
e

ppK   is the 

permeability matrix, e

TTD  is the heat capacity matrix, e

TTK  is the conductivity matrix, and ,ext e
f , 

,ext e
q  , ,ext e

s  , are the load vectors. The matrices 
e

upK , 
e

pTK , 
e

ppD , 
e

ppK  , e

TTD and e

TTK   are 

computed as 
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( )
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C d k d



 
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=   =   

 

 

 
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D N N K N N
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(31) 

Here we note that in the global system of equations (Eq. (30)) we take the parts of the 
e

ppD , 

e

ppK , 
e

pTK , e

TTD  and e

TTK  matrices (Eq. (31)) that correspond to the nodes of Timoshenko beam 

finite element. 

The solution in terms of unknown nodal displacements, pore pressures and temperatures is 

computed at discrete pseudo-time steps t1,t2,...,tn using backward Euler time-integration scheme. For 

a time step tn+1 and iteration i, the global system of equations to be solved is written as 

( )

( ) ( )

T1 1 1

1
0 0

elem

e, i

e , i e , iuu up uT
un

`

up pp pp pT p
e=1

`

Tn+1 n+1

TT TT

n+1

t t t

t

  
  − −
     
     +  =     
              
 +    

K K K
u r

K D K K p r

T r

D K

A  
(32) 

where e

uuK  is the tangent stiffness matrix, e

uTK  is the tangent coupling matrix , and 
e e e

u p T, ,r r r   

are residuals pertaining to the solid, the pore fluid and the temperature part. 

After solving the global system of equations, the new iterative values of unknown fields are 

updated as 

( 1) ( ) ( )

1 1 1

( 1) ( ) ( )

1 1 1

( 1) ( ) ( )

1 1 1

i i i

n n n

i i i

n n n

i i i

n n n

+

+ + +

+

+ + +

+

+ + +

= + 

= + 

= + 

u u u

p p p

T T T

 (33) 

The correct tangent stiffness matrix e

uuK and tangent coupling matrix e

uTK is chosen depending 

if the element is in elasto-viscoplastic or softening part of the response.  

If the element is elasto-viscoplastic, the tangent stiffness matrix and tangent coupling matrix are 

defined as 

( )

( )

 

,( )

,( ) ,( ) ,T ,( )

, 1 , 1 1

01

,( )

,( ) ,( ) ,T , ,( )

, 1 , 1 1
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1 20 0 0 0 0 0 0 0 0 0
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e i
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e i
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uTe i e i s ep u i e s

uT n uT n uT n s uT

n

s

uT

dx

C k A dx

B B

+ + +

+

+ + + 

+

 
= = =   

 
= = =    

=





f
K K B C B

u

f
K K B N

T

B



  (34) 

where elasto-plastic tangent matrix is written as 
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,

1

,

1

,
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where , , ,

1 1 1, ,ep u ep v ep w

n n n+ + +C C C  are elasto-plastic tangent moduli for axial and transverse directions, G is 

the shear modulus, and ,e e

polI I are the second moment of inertia and polar moment of inertia for a 

circular cross section, respectively.  

If the element is in the softening regime, the tangent stiffness matrix and tangent coupling matrix 

are obtained by performing a static condensation procedure in which the unknown values of 

displacement jumps are eliminated from the condition that the residual at the discontinuity is equal 

to zero. The statically condensed tangent stiffness matrix is written as 

( ) ( )
1

,( ) ,( ) ,( ) ,( ) ,( ) ,( ),T
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(37) 

The matrices Kd and Kα depend on the current step in softening being elastic or plastic. If the 

current step in the softening is elastic, then 

* *

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
; ;

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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(38) 

where kc is the shear correction factor.  

Else, if the current step in the softening is plastic, then we get 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
;

0 0 0 0 0 0

0 0 0 0 0 0
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u e

v e

w e

d
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K 0 K
 

(39) 
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where , ,u v wK K K  
for exponential softening take the following form 

( )
2

exp ; , ,

j j
f fj j

j j

f f

K j u v w
G G



   
 = − − = 

  
  

 (40) 

Here, σf is the fracture limit, Gf is the fracture energy and 𝜉̿ is the strain-like softening variable. 

By taking into account that the coupling of solid phase with fluid flow occurs through the axial 

direction of the Timoshenko beam finite element, the statically condensed tangent coupling matrix 

is written as 

( ) ( )
1

,( ) ,( ) ,( ) ,( ) ,( ) ,( ),T
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(42) 

The matrices KT and KαT depend on the current step in softening being elastic or plastic. If the 

current step in the softening is elastic, then 

, ,( )

1 ; 0ep u i e s

T n uT TC A+ = =K N K  (43) 

Else, if the current step in the softening is plastic, then 

0; u e

T T K A = =K K  (44) 

 

 
4. Numerical results 

 
In this section, we present the results of several numerical simulations, which serve to illustrate 

the proposed approach ability to deal with nonisothermal problems. All numerical implementations 

and computations are performed with the research version of the computer code FEAP, developed 

by Taylor (Zienkiewicz and Taylor 2005). In all numerical simulations, the finite element mesh is 

generated by using Delaunay tetrahedralization and GMSH software (Geuzaine and Remacle 2009). 

The cross-sectional properties of the Timoshenko beam finite elements are computed from Voronoi 

diagram by using MATLAB software, which uses Qhull code (Barber et al. 1996). 

 

4.1 Nonisothermal saturated poro-elastic column 
 
In this section, we perform a thermo-elastic one-dimensional consolidation analysis of saturated  
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(a) 2D case, reference solution (b) 3D case, numerical model 

Fig. 7 Thermo-elastic consolidation of saturated column, problem statement 

 

 

column, with the aim to validate the coupled discrete beam lattice model of structure built of the 

saturated nonisothermal porous medium. The problem of one-dimensional thermo-elastic 

consolidation was first solved by Aboustit et al. (Aboustit 1983, Aboustit et al. 1985), and is later 

used as a benchmark by Lewis et al. (Lewis et al. 1986), Noorishad and Tsang (Noorishad and Tsang 

1996), Cui et al. (Cui et al. 2018) to test their finite element formulations in 2D framework. To test 

our model, we extend the problem analyzed in the literature for 2D case (Fig. 7(a)) to the 3D case 

(Fig. 7(b)) and we compare our results against reference solutions provided by Lewis et al. (Lewis 

et al. 1986) and Cui et al. (Cui et al. 2018). Since the consolidation analyzed here is the problem of 

one-dimensional consolidation, the results computed for the 3D case should match those obtained 

for the 2D case. The problem analyzed here is unit-less. 

With the aim of inspecting the possible mesh dependency of the results, we perform a 

computation with a discrete model for two different mesh densities: coarse with 1437 Timoshenko 

beam finite elements, and fine with 2875 Timoshenko beam finite elements.  

The linear elastic parameters of the continuum model are: Young’s modulus E=6000, and 

Poisson’s ratio v=0.4, which results with a value of oedometer modulus Eoed=12857. The identified 

linear elastic parameters of the Timoshenko beam finite element are: Young’s modulus E=16463 and 

Poisson’s ratio v=0. The coefficient of permeability is k/γf=4·10-6, Biot’s constant is b=1 and Biot’s 

modulus is 1/M→0. The coefficient of thermal conductivity is kT=0.2, the effective heat capacity is 

ρCT=40, the thermal expansion coefficient of the solid phase is 𝛽̅𝑠 =0.3·10-6 and the reference 

temperature is T0=0, for both continuum and discrete model. The temperature term in the continuity 

equation is omitted, i.e., 𝛽̅𝑠𝑓 is set to 0. The coefficient uT
T

k


 is identified as 1.82. 

The saturated poro-elastic column (Fig. 7(b)) is subjected to unit vertical surface pressure and 

constant surface temperature T=50. The time step values used in the numerical simulations are 

indicated in Table 1 (Lewis et al. 1986, Cui et al. 2018). 
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Table 1 Time stepping scheme 

Time interval Number of time steps 

0.01 10 

0.1 10 

10 10 

100 10 

1000 20 

 

  
(a) Isothermal case (b) Thermal case: surface temperature 

 
(c) Thermal case: surface temperature and pressure 

Fig. 8 Saturated poro-elastic column: vertical displacement of column top 

 

 

We perform three types of computations. The first is the isothermal consolidation with the applied 

surface pressure only, the second is the thermal consolidation with the applied surface temperature 

only, and the third is the thermal consolidation with applied both the surface temperature and the 

surface pressure. 

The computed results in terms of vertical displacements of the column top for all three cases are 

shown in Figs. 8(a)-(c). We can conclude that there exists a good match between the computed 

results and reference values. The computed results are practically mesh independent. We note that 

the results for the thermal consolidation with the applied surface temperature only are not given for 

comparison in (Cui et al. 2018) 

The computed excess pore pressure and temperature at the z=6.0 m measured from the bottom 

of the column for the third - thermal consolidation case are shown in Figs. 9(a)-(b). We observe a 

good match between the computed results and reference solutions, with results being practically 

mesh independent. 
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(a) Excess pore pressure at z = 6.0 m (b) Temperature at z = 6.0 m 

Fig. 9 Thermal case, applied surface temperature and pressure: computed results 

 

  
(a) Vertical displacements of column top (b) Temperature at column bottom 

Fig. 10 Thermo-mechanical computation, applied surface temperature: comparison with 3D numerical model 

in FEAP 

 

 

Next, we perform a thermo-mechanical computation (the pore pressure field is excluded from 

the computation) for the case of applied surface temperature only, and we compare the computed 

results with those obtained with the 3D numerical model of a column constructed by using FEAP 

built-in solid elements (Zienkiewicz and Taylor 2005). We can conclude that a very good match 

between computed results is obtained (Figs. 10(a)-(b)). The temperature evolution computed with 

the discrete model is shown in Figs. 11(a)-(c). 

The results presented in this section, suggest that the coefficient of thermal conductivity, the 

effective heat capacity and thermal expansion coefficient of the coupled discrete beam lattice model 

closely match those of an equivalent continuum model. Hence, they can be easily identified from 

standard experimental tests. 

 

4.2 Combined thermal and mechanical compression test 
 
In this section, we perform a combined thermal and mechanical compression test. We first subject 

the specimen to high temperatures, after which we impose vertical displacements on the top base of 

the specimen. The geometry of the specimen and the boundary conditions are shown in Fig. 12(a). 

The finite element mesh is shown in Fig. 12(b). 
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(a) Time step: 20 (b) Time step: 30 (c) Time step: 40 

Fig. 11 Temperature evolution, applied surface temperature 

 

 

 

 

 

(a) Problem statement (b) Finite element mesh 

Fig. 12 Thermal mechanical compression test 

 
Table 2 Mechanical properties of the Timoshenko beam finite element 

Young’s modulus 

[kPa] 

Poisson’s ratio 

[/] 

Yield limit 

[kPa] 

Fracture limit 

[kPa] 

Fracture energy 

[kN/m] 

E=20000 ν=0.2 

σy,t =10 σf,t =12 Gf,t =20 

σy,c =100 σf,c =100 Gf,c =100 

σy,s =12 σf,s =15 Gf,s =100 
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Fig. 13 Thermal mechanical compression test: computed results 

 

 

The material parameters of the Timoshenko beam finite element are shown in Table 2. The linear 

hardening modulus is Hih=2·103 kPa, the linear kinematic hardening modulus is Hik=2·103 kPa, 

nonlinear hardening parameter is Hnlk=2·102, and the viscosity parameter is η=20 kPa s. The 

coefficient of permeability is k=10-8 m/s, the specific weight of the water is γw=10 kN/m3, Biot’s 

constant is b=1 and Biot’s modulus is 1/M→0. The coefficient of thermal conductivity is kT=2 

W/mK, the effective heat capacity is ρCT=1850 kJ/Km3, the thermal expansion coefficient of the 

solid phase is 𝛽̅𝑠=0.0001 (C)-1 and the reference temperature is T0=0. The temperature term in the 

continuity equation is omitted, i.e., 𝛽̅𝑠𝑓 is set to 0. The coefficient 𝑘𝛽𝑇
𝑢𝑇  is selected as 1.0. 

To investigate the temperature effects on the stiffness and load carrying capacity of the specimen, 

we assume that the material parameters: Young’s modulus, yield limits, fracture limits and fracture 

energies of the Timoshenko beam finite element are temperature dependent. We assume linear 

temperature dependence, written as 

( )0 01 ;Tm m T T T T= − −     (45) 

where m is the material parameter, T and T0 are the temperature and the reference temperature in the 

element and ωT is the parameter controlling the temperature dependence. 

Next, we perform several numerical simulations of thermal compression test on dry (Biot’s 

constant b =0→matrix Kup is a null matrix) and saturated specimen (Biot’s constant b =1) for three 

values of parameter ωT = −0.001; 0; 0.0001. We select the same value of ωT  for all material 

parameters, for which we assumed are temperature dependent. First, we subject the specimen to a 

temperature of 600C. After the temperature has reached a steady state throughout the specimen, we 

impose vertical displacements on the top base of the specimen with a constant rate of v=110-5 m/s.  

The computed results are shown in Fig. 13. We can conclude that, depending on the value of ωT , 

the stiffness and ultimate load level have decreased or increased when compared to the case of the 

temperature independent material parameters (ωT = 0 ). The broken cohesive links in increasing 

softening at the end of the loading program for saturated specimen and ωT = −0.001 are shown in 

Figs. 14(a)-(c). 

The value of ωT depends on the type of material and has to be identified through more elaborate 

parameter identification procedures. For example, the exposure of the rock or concrete specimen to 

the elevated temperatures results in a decrease in the compressive strength, whereas for clay 

specimen the compressive strength increases. 
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(a) Mode I (b) Mode II (c) Mode III 

Fig. 14 Failure mode for thermal mechanical compression test, broken cohesive links 

 

 
5. Conclusions 

 

In this paper, we presented a thermo-hydro-mechanical coupled discrete beam lattice model of 

structure built of the nonisothermal saturated poro-plastic medium. The mechanical part of the 

structure response is obtained with a discrete lattice model, which is constructed by exploiting 

duality property between Voronoi cell representation and Delaunay tetrahedralization of the domain. 

The behavior of cohesive links is modeled with enhanced Timoshenko beam finite elements. The 

pore fluid flow and heat flow are introduced in the model through Darcy’s law and Fourier’s law for 

heat conduction, respectively. The pore pressure field and the temperature field are approximated 

with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical 

integration on tetrahedral finite elements and duality property between Voronoi diagram and 

Delaunay tetrahedralization, the numerical implementation of the coupling results with additional 

pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite 

element. 

We have confirmed through the results of validation computations in the linear elastic regime of 

structure response that the coefficient of thermal conductivity, the effective heat capacity and the 

thermal expansion coefficient of coupled discrete beam lattice model closely match those of an 

equivalent continuum model. Hence, they can be easily identified from standard experimental tests. 

Finally, we have illustrated the temperature effects on the stiffness and load carrying capacity of 

the structure by implementing the linear temperature dependence of the material parameters. The 

parameter controlling the temperature dependence has to be identified through more elaborate 

parameter identification procedures.    
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