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Abstract.  This study is dedicated to the dynamic elasticity problem for a semi-strip. The semi-strip is loaded by 
the dynamic load at the center of its short edge. The conditions of fixing are given on the lateral sides of the semi-
strip. The initial problem is reduced to one-dimensional problem with the help of Laplace’s and Fourier’s integral 
transforms. The one-dimensional boundary problem is formulated as the vector boundary problem in the transform’s 
domain. Its solution is constructed as the superposition of the general solution for the homogeneous vector equation 
and the partial solution for the inhomogeneous vector equation. The matrix differential calculation is used for the 
deriving of the general solution. The partial solution is constructed with the help of Green’s matrix-function, which is 
searched as the bilinear expansion. The case of steady-state oscillations is considered. The problem is reduced to the 
solving of the singular integral equation. The orthogonalization method is applied for the calculations. The stress state 
of the semi-strip is investigated for the different values of the frequency. 
 

Keywords:  semi-strip; dynamic problem; steady-state oscillation; singular integral equation; Green 

matrix-function 

 
 
1. Introduction 

 
The plane problems of elasticity for a semi-strip in a static statement were investigated by 

many authors. However many unresolved issues remain especially for a dynamic statement of the 

problem. As for the static statements, for example, the problem for a symmetrically loaded semi-

strip fixed by its short edge was reduced to the Fredholm integral equation of the first kind in 

Vorovich and Kopasenko (1966). The static problem for an elastic semi-strip loaded by its short 

edge in three configurations was solved in Menshykov et al. (2018). The first basic odd-symmetric 

boundary value problem in the theory of elasticity in a half-strip with free longitudinal sides was 

solved in Kovalenko et al. (2018) by the use of Papkovich-Fadle eigenfunctions. 

The solving of the dynamic problems is usually done with the help of Laplace’s transformation. 

However, the inversion of this transformation is enough complicated, so some authors use a 

numerical inversion or an asymptotic analysis of the derived solution in the transformation’s 

domain. The Laplace’s transform was used for the stress state evaluation of an elastic half-strip 

under a nonstationary load applied to its boundary and the solution is expanded into a Fourier 
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series in Kubenko and Yanchevskii (2015). Dynamic stress in an infinite elastic strip, containing 

two circular cylindrical cavities, of equal radii, were explored under the assumption of plane strain 

in Itou (1994). In the Laplace’s transform domain, boundary conditions at the plane surfaces and 

those at the circular cavity were satisfied with the Fourier transformation and the Schmidt method 

respectively. Edge-vibration, and associated resonance phenomena, was investigated in respect of 

a semi-infinite strip composed of pre-stressed incompressible elastic material in Kaplunov et al. 

(2004). 
The motion equations for gain control systems were deduced in Tartakovsky (1957). The 

solutions for these problems are constructed by the method of generalized power series. The 

investigation of cracks and rigid inclusions in the dynamic statement was conducted in Mykhaskiv 

and Khay (2009). The convergence of series was analyzed and the method of separation of 

singularities for the method of homogeneous solutions was proved on the example of the mixed 

problem for a semi-strip in Gomilko et al. (1990). The problems for a functionally graded 

piezoelectric materials were investigated in Wünsche et al. (2017).  

Two cases, where boundary conditions and solutions of the well-known integrable equations on 

a semi-strip are uniquely determined by the initial conditions, are studied in Sakhnovich 

(2016). The elasticity operator in a semi-strip subject to free boundary conditions was studied in 

Roitberg et al. (1997). Using the method of complex analysis and through constructing appropriate 

conformal mapping, the plane elasticity problem of dynamic cracks in finite-width single-edged 

cracked strips was analyzed in Guan (2015). The efficient method of approximate factorization of 

matrix functions was proposed in Babeshko (1979). The inverse problem for a quadratic pencil of 

Sturm-Liouville operators with periodic potential was solved in Babajanov et al. (2005). 

The dynamics of the oscillating moving ring load acting in the interior of the hollow circular 

cylinder surrounded by an elastic medium was studied in Akbarov and Mehdiyev (2018). A two-

dimensional thermoelastic problem of thick circular plate of finite thickness under fractional order 

theory of thermoelastic diffusion has been considered in frequency domain in Lata (2019). The 

effect of frequency in the axisymmetric thick circular plate has been depicted there. The thermo-

mechanical vibration characteristics of functionally graded nanobeams subjected to three types of 

thermal loading including uniform, linear and non-linear temperature change are investigated in 

the framework of third-order shear deformation beam theory which captures both the 

microstructural and shear deformation effects in Ebrahimi and Barati (2017). 

In the proposed work the new approach for the solving of the dynamic problem for an elastic 

semi-strip is proposed. It is based on the apparatuses of matrix differential calculation and matrix 

Green function. The analytical solution is derived in Laplace’s transform domain. The case of 

steady-state oscillations is investigated. 

 

 

2. The statement of the problem 
 

The plane elastic semi-strip (Fig. 1) (G is a share module, μ is a Poisson ratio) occupying an 

area 0<x<a, 0<y<∞ is loaded by its short edge by a non-stationary load 
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, , 0, 0 , 0,

0, 0, 0 , , 0.

y xyy y

xyy y

p x t a x a a t

v x a a x a t

 



= =

= =

= =     

= =     
    (1) 

78



 

 

 

 

 

 

Non-stationary mixed problem of elasticity for a semi-strip 

 

Fig. 1 The geometry and coordinate system of the semi-strip 

 

 

The lateral sides of the semi-strip are fixed 

(0, , ) 0, (0, , ) 0, 0 , 0u y t v y t y t= =     ,        (2) 

( , , ) 0, ( , , ) 0, 0 , 0u a y t v a y t y t= =     .    (3) 

Here displacement’s functions are denoted as 

( ) ( ) ( ) ( ), , , , , , , , ,x yu x y t u x y t u x y t v x y t= = . 

The motion equations have the following form 

2 2 2 2

2 2 2
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1 2
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 +   
+ + − = − −    

    (4) 

where ρ is semi-strip’s density, 3 4 = −  is Muskhelishvili’s constant. It is supposed that 

initial conditions of this problem are null.  

It is necessary to evaluate the wave field of the semi-strip, to derive the analytical formulas for 

the displacements and stresses, and investigate them depending on the strip’s geometrical 

parameters, size of segment where the load is applied and load’s behavior.  

 

 

3. Application of integral transforms 
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To reduce the stated boundary initial problem to one dimensional boundary value problem the 

Laplace’s transform is applied to the correspondences (1)-(4) 
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here 
2 2/q G s=  , s is the parameter of Laplace’s transform. 

The semi-infinite sin-, cos- integral Fourier transformation is applied to the boundary problem 

(5) with respect to variable y by the scheme 
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The one-dimensional boundary problem in transformations’ domain is formulated as the vector 

boundary problem Vaysfeld and Zhuravlova (2015) 
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The solution of inhomogeneous equation in the vector boundary problem (6) is constructed as 

the superposition Vaisfel’d and Zhuravlova (2018) 

( ) ( ) ( )0 1

s s sy x y x y x  = +          (7) 
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here ( )0

sy x
 is the general solution of the vector homogeneous Eq. (6) and ( )1

sy x
 is the 

partial solution of the vector inhomogeneous equation. 

 

 

4. The general solution of the homogeneous vector equation 
 

The general solution is constructed with the help of matrix differential calculation. Accordingly 

to it the corresponding matrix equation is considered ( )2 0sL Y x = . The matrix ( )sY x  is 

chosen in the form ( ) x

sY x e I

 =  and substituted into the matrix equation. As the result, the 

equality ( )2

x xL e I M e =  is derived, where 
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The solution of the matrix homogeneous equation is constructed as the following  
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The determinant of the matrix ( )M   has four different roots 
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, and the system of fundamental matrix solutions has 

the following form 
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In the case of steady-state oscillations q2<0, so two cases of the expressions under the root sign 

should be considered. 

When 
2 2 0q +   matrices ( )1,2Y x+

 are real. 
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To avoid the complex values the property of differential equation’s solutions is used, and the 

matrices are chosen in the form ( ) ( ) ( )1,2 1 1 1 1 1 1Y x c s A c s B− =   +  . 
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Analogically to ( )1,2Y x−
 the matrices ( )3,4Y x−

 are chosen in the following form 
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So, the matrices for the general solution are chosen with regard to the value of β by the 

following scheme: 
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The general solution of the vector equation in (6) has the following form 
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= + + +   

   
        (8) 

here constants , 1,4ic i =  are found from the boundary conditions on the semi-infinite sides. 

 

 

5. The partial solution of the inhomogeneous vector equation 
 

The partial solution is derived with the help of Green’s matrix function Gs(x, ξ). The Green’s 

matrix function is constructed for the problem of the following structure Vaysfel’d et al. (2016)  
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where 
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The matrix sin-, cos- integral Fourier’s transformation method with the kernel 
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 was applied to the problem (9). 

Green’s matrix function is derived in the bilinear expansion form Popov et al. (1999) 
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The elements of Green’s matrix function are calculated by formulae from Gradshtein, Rizhik 

(1963). The partial solution of the vector equation in (6) can be written as 
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After substitution of the found general (8) and partial (10) solutions into the formula (7), the 

solution of the vector boundary problem (6) has the following form 
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The inverse Fourier transformation is applied to (11) and the solution of the stated problem is 

constructed in Laplace’s transform domain in an analytical form as the following  
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This representation contains unknown function χ(x,t). It can be derived from the first condition 

in (1). The substitution of the expressions for the displacements into the condition ( )
0

,y y
p x t

=
=  

reduces the solving of the problem to the solving of the singular integral equation regarding to the 

unknown function χ(x,t).  

 

 

6. The solving of the singular integral equation 
 

The detalization of the initial problem was done for the subcase of the steady-state load applied 

to a short edge of a semi-strip. In this case q2=ρ/G(iω)2 and the singular integral equation has the 

following structure 
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The unknown function is searched as  
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0

, 1 , 1;1n n

n
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=

= −  − .   (15) 

The expression (15) is substituted into Eq. (14). The solving of (14) is reduced to the solving of 

the infinite system of linear algebraic equations  
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0
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n
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where ( ) ( ) ( ) ( )
1 1
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1 1 , , ,m n n mD dx U U x x f x d     
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( ) ( ) ( )
1

2

1

, 1m mf r x U x x dx 
−

= − . 

The solving of (16) and the following substitution of sn(ω) into (15) and (12) complete the 

construction of the solution.  
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Fig. 2 The stresses σy (a/2, y) when ω=1 

 

 

7. The numerical results and discussion 
 

The calculations were provided for the elastic semi-strip with the parameters G=61.2781955 

GPa, µ=0.33, ρ=8850 kg/m³, p(x,t)=eiωt GPa, a=10 m, a0=a−a1=a/10.  

The normal stresses σy (a/2,y) are presented on Figs. 2-4 when ω=1, ω=0.5 and ω=0.1 

correspondingly. The normal stresses are periodic, and the period is 0.8 when ω=1, 1.1 when 

ω=0.5 and 6.2 when ω=0.1. As it can be seen, the amplitude of normal stresses with frequency 

ω=1 is bigger than the amplitude when ω=0.5 and is much bigger than in the case with frequency 

ω=0.1.  

 

Fig. 3 The stresses σy (a/2, y) when ω=0.5 
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Fig. 4 The stresses σy (a/2, y) when ω=0.1 

 

 

When the frequency ɷ≥3, the asymptotic expansions for the displacement and stress functions 

should be considered instead of the direct formulae. 

The graphics for the displacements have the analogical character. The values of the tangential 

stresses are smaller than the values of the normal stresses. 

The calculations are stable when the distances a0=a−a1≥a/100. If these distances are smaller, 

there are fixed singularities in the kernel of singular integral Eq. (14). These fixed singularities 

should be taken into consideration.  

 

 

8. Conclusions 
 

The proposed approach allows to construct the analytical solution of the problem in the 

Laplace’s transform domain. However, it is necessary to inverse the mutual Fourier-Laplace’s 

transform to derive the final solution, which is enough complicated mathematic problem. The 

derived solution in the Laplace’s transform domain is used to get the solution to the subcase of the 

steady state oscillations: the substitution of iɷ instead of Laplace’s parameter s allows immediately 

to consider the problem for the steady-state oscillations and to investigate the semi-strip’s stress 

state in regard of the oscillation frequency. For the high values of the frequency the asymptotic 

formulae should be used for the calculations. 

The calculations are stable when the load is far enough from the angular points of the semi-

strip. The fixed singularities at the kernel of the singular integral equation should be considered 

when the load is distributed on the whole semi-strip’s short edge.  
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