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Abstract.  Despite a widely-held belief that the finite element method is the method for the solution of solid 
mechanics problems, which has for 30 years dissuaded solid mechanics scientists from paying any attention to the 
finite volume method, it is argued that finite volume methods can be a viable alternative. It is shown that it is simple to 
understand and implement, strongly conservative, memory efficient, and directly applicable to nonlinear problems. A 
number of examples are presented and, when available, comparison with finite element methods is made, showing that 
finite volume methods can be not only equal to, but outperform finite element methods for many applications. 
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1. Introduction 
 

Turner et al. (1956) published the paper that is considered as the start of the Finite Element Method 

(FEM), although the name was first used by Clough (1960). Since then, backed by the financial might 

of Boeing and NASA in the US and Rolls Royce in the UK and a rapid development and availability 

of electronic computers, FEM have undergone a phenomenal growth1. Following a distinctive path, 

the Finite Volume Method (FVM) established itself as the leader in the field of fluid mechanics. While 

the FEM has been applied to fluid mechanics problems from early days of its development, e.g., 

Zienkiewicz et al. (1967), this ‘finite-element tsunami’ (Spalding 2006) has created ‘demonstrably 

false but widely-held belief that the FEM must be used for solid-stress problems and has wrongly 

dissuaded the majority of stress analysis researchers from paying any attention at all to FVM’ 

(Spalding 2008). 
This might be a reason why there has been virtually no effort at developing FVMs for solid me- 

chanics for 30 years. The first publication appeared in 1988 (Demirdžić et al. 1988), followed few 

years later by Beale and Elias (1991), Spalding (1993), Demirdžić  and Martinović (1993), Demirdžić 

and Muzaferija (1994). All those methods, later named cell-centred FVMs, stem from the FVM for 

fluids and are developed without any reference to the FEM. 

 

 

Corresponding author, Professor, E-mail: i.demirdzic@yahoo.com 

 
1In 1965, NASA funded a project lead by Dick MacNeal to develop a more capable FEA software program and 

this became the program NASTRAN. This program cost $3,000,000 to develop which is close to $30,000,000 

in today’s dollars (Tipton 2017). 
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Unaware of this original development, in the conference paper “Finite Volumes vs Finite Ele- 

ments. Is there really a Choice?” (Zienkiewicz and Oñate 1991) and in its later journal version (Oñate 

et al. 1994) Zienkiewicz et al. stated that ‘the FVM can be considered to be a particular case of fi- 

nite elements with a non-Galerkin weighting’ and that ‘the finite volumes are well known to be less 

accurate than Galerkin-based finite elements for self-adjoint (elliptic) problems’ because ‘Galerkin 

weighting provides an optimal approximation and must be more accurate than any alternative’. While 

these statements are by themselves true, they give impression that the FVM is a ‘poor relative’ of the 

FEM and by no means reflect the actual differences between the two methods. Namely, the FVM 

considered in those publications differs from the Bubnov-Galerkin FEMs only in setting the weighting 

function to unity instead of being equal to the element shape functions. It is called e.g., control-volume 

based FEM (Baliga and Patankar 1979, Voler 2009) or vertex-based FVM (Taylor et al. 2003). This 

uncertainty about the name reflects the method’s ‘hybrid’ nature and its applications demonstrate 

researchers’ reluctance to completely break the ties with FEMs, e.g., Fryer et al. (1991), Bailey and 

Cross (1995), Taylor et al. (2003). 

However, although underfunded and underestimated, the cell-centred FVM of Demirdžić et al. 

(1988) have been extended to deal with: (i) more complex geometries (Demirdžić and Muzaferija 

1994, 1995, Tuković et al. 2013), (ii) fluid-solid (Demirdžić and Muzaferija 1995, Kanyanta et al. 

2009, Tuković et al. 2018) and structure-electrostatic (Das et al. 2011) interaction, (iii) various non-

elastic (Demirdžić and Martinović 1993, Bijelonja et al. 2005, Tang et al. 2015) and anisotropic 

(Fainberg and Leister 1996, Demirdžić et al. 2000, Cardiff et al. 2014) materials, (iv) finite strains 

(Bijelonja et al. 2005, Tuković and Jasak 2007, Cardiff et al. 2014), (v) stresses and deformations 

during metal forming (Bašić et al. 2005, Lou et al. 2008, Cardiff et al. 2016b), wood drying (Marti- 

nović et al. 2001), phase-change (Teskeredžić et al. 2002) and casting (Teskeredžić et al. 2015a, b) 

processes, (vi) fracture mechanics (Ivanković et al. 1994, Stylianou and Ivanković 2002a, b, Carolan 

et al. 2013) and contact mechanics (Jasak and Weller 2000, Cardiff et al. 2012), (vii) modelling of 

beams (Fallah and Hatami 2006, Isić et al. 2007), plates (Demirdžić and Ivanković 1997, Das et al. 

2012, Fallah and Parayandeh-Shahrestany 2014), and shells (Hatami et al. 2006). 

Impressive reductions in CPU times were obtained when (i) multigrid methods (Fainberg and 

Leister 1996, Demirdžić et al. 1997, Ivanković et al. 1997), (ii) fully coupled solution algorithms 

(Das et al. 2011, Cardiff et al. 2016a) or (iii) massively parallel processing (Demirdžić 2008, Cardiff 

et al. 2018) were employed. 

It has been established that up to date more than 500 journal and conference papers, 40 PhD 

theses, and four books dealing with various flavours of the finite volume methods for solid mechanics, 

including ‘cell-centred’, ‘vertex-centred’, ‘staggered’, ‘Godunov-type’, ‘meshless’, as well as others 

have been published (Cardiff and Demirdžić 2018). 

Within this article, the FVM stands for the cell-centred approach originally proposed by Demirdžić 

et al. (1988) and later extended by a number of authors, while the FEM refers to the continuous 

Bubnov-Galerkin method as described, for example, in Bathe (1996). 

In what follows the mathematical models employed by FVM and FEM are briefly presented. 

This is followed by highlighting the similarities and differences between these two methods and their 

relative advantages and disadvantages. After that, the ways of improving the efficiency, the main 

disadvantage of the FVM, are discussed. Finally, a number of examples of application of FVM and 

comparison with FEM are given. 
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2. Mathematical model 
 
2.1 Governing equations 
 

The FVM is based on the conservation of momentum principle, i.e., on the balance of (surface 

and body) forces applied to the finite control volume V bounded by the surface S with the outward 

pointing vector s, resulting in the so-called ‘strong conservation form’ 

 ∫ 𝜌
𝜕2𝒖

𝜕𝑡2

 

𝑉 

𝑑𝑉 =  ∫ 𝝈 · 𝐰 d𝑉 + ∫ 𝜌𝒇𝑏

 

𝑉

 

𝑆

𝑑𝑉 (1) 

where t is the time, ρ is the density, u is the displacement, σ is the Cauchy stress tensor, and fb is the 

body force. The FEM applies the Gauss theorem to the surface integral in (1) and then uses the 

principle of virtual work or the method of weighting residuals to obtain the so-called ‘week 

conservation form’ 

 ∫ 𝜌
𝜕2𝒖

𝜕𝑡2

 

𝑉 

· 𝐰 𝑑𝑉 =  ∫ div 𝝈 · 𝐰 d𝑉 + ∫ 𝜌𝒇𝑏 · 𝐰
 

𝑉

 

𝑆

𝑑𝑉 (2) 

or in a more familiar form, obtained after some rearrangement of the first term on the right end side 

 ∫ 𝜌
𝜕2𝒖

𝜕𝑡2

 

𝑉 

· 𝐰 𝑑𝑉 =  − ∫ 𝝈 ∶ grad 𝒘 d𝑉 + ∫ 𝜌𝒇𝑏 · 𝐰
 

𝑉

 

𝑉

𝑑𝑉 +  ∫ 𝒘 ∙ 𝝈 ∙ 𝑑𝒔
 

𝑆

 (3) 

where w is the virtual displacement or the weighting function. It is obvious that (2) can be viewed as 

a generalisation of (1) or (1) as a special case of (2), obtained by setting w=1. 

 
2.2 Constitutive relations 
 

After 60 years of countless man-hours and generous financial support it is not surprising that the 

present day FEMs include a wide range of constitutive relations for metallic and non-metallic, linear 

and materially and geometrically non-linear materials, see e.g., Abaqus Theory Manual (2012). Apart 

from the constitutive relation for the standard linear (Hookean) elastic body, a number of other 

constitutive relations have been used in FVMs. For example, the OpenFOAM offers the following 

constitutive laws for linear geometry: thermo-linear elastic, orthotropic linear elastic, linear visco-

elastic, poro-linear elastic, Mises/J2 plastic, Mohr-Coulomb plastic, as well as for non-linear 

geometry: Neo- Hookean elastic, St. Venant Kirchhoff elastic, orthotropic St. Venant Kirchhoff 

elastic, Neo-Hookean elastic, Mises/J2 plastic (Cardiff et al. 2018). 

 

 
3. Finite volumes vs finite elements 

 

To explain similarities and differences between FVM and FEM, let us recall that all numerical 

methods consist of the following main components: 

(a) discretisation of time and space, 

(b) discretisation of the equations of the mathematical model, and  

(c) solution algorithm 
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Fig. 1 Arbitrary polyhedral control volume (left) and standard finite elements (right) 

 

 

Fig. 2 2D element (left) and control volume (right). • – nodes, x – integration points 

 

 

(a) Both FEMs and FVMs subdivide the time into a number of time steps and the spatial solution 

domain into finite nonoverlapping subdomains called elements in the FEM terminology and control 

volumes or cells in the FVM terminology. Elements are typically tetrahedra, wedges or hexahedra. 

Control volumes (CVs) are of arbitrary polyhedral shape (Fig. 1) and all polyhedra (e.g., tetrahedra, 

hexahedra, triangular prism, dodecahedra, etc.) are discretised in the same manner. This is in contrast 

to the FEM, where the number of shapes of the elements is limited, the shape functions are specific 

to the shape of the element, and mesh conformity is necessary, i.e., hanging nodes need to be handled 

to avoid non-conforming discretisations. 

(b) In the FEM the displacements are evaluated at the nodes-points situated at the corners (and 

along the edges) of the elements, while the stresses are evaluated at the Gauss points using only one 

element and the shape functions of that element to calculate the displacement gradients. In the FVM 

the displacements are known at the cell centers and the neighbour cell displacements and the Gauss 

theorem or the least square method are used to obtain gradients at the cell centers which are then 

interpolated to the cell-face centers and used to calculate the cell-face stresses (Fig. 2). It is important 

to note that the FVM discretisation leads to the conservation of momentum on the local, CV level and 

consequently on the whole solution domain, while the FEM is only globally conservative. 

(c) The major discriminating factor between the FEM and the FVM is how the discrete equations 

are actually solved. FVMs use segregated solution algorithm, like the ones found in Computational 

Fluid Dynamics, which linearises and (temporarily) decouples equations for individual displacement  
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Table 1 Solution strategies of FEM and FVM. 

Method Solution algorithm Lin. equ. solver Main features 

FEM Fully coupled Direct Fast, stable; memory ’hungry’ 

FVM Segregated Iterative Very low memory, conservative; slow convergence 

 

 

component in such a way that the stiffness/coefficient matrix contains only the contribution from the 

nearest neighbours of each cell even though the actual ‘stencil’ of cells can be much larger, resulting 

in a very sparse diagonally dominant coefficient matrix. This enables the resulting set of linear 

algebraic equations to be easily solved by a number of iterative (typically conjugate gradient or 

algebraic multigrid) solvers which retain the sparsity of the matrix (no fill-in!). Since the coefficients 

and sources are only approximate (based on the values of displacements and physical parameters 

from the previous iteration) the linear solver does not need to converge to a tight tolerance, but only 

sufficiently to provide a reasonably ‘smooth’ solution and a reduction in the residuals of one or two 

orders of magnitude is typically sufficient. Outer Picard/Fixed-Point iterations are employed to 

account for the inter-equation coupling and the linearised nonlinear terms. They are performed until 

a predefined tolerance, typically 1×10−6, is achieved. 

The FEM discretisation results in a relatively densely populated coefficient matrix2 requiring a 

direct linear algebraic equation solver which additionally fills-up the coefficient matrix. The direct 

solvers are robust and are less sensitive to the quality of the grid. But nonetheless, typically the CPU 

and memory costs are almost quadratic functions of the number of nodes. This means that much of 

the memory needed for problems with large degrees of freedom (DOF) must be stored on the disk 

rather than RAM. While the FVM solution procedure for non-linear problems remains essentially 

the same as for linear ones, FEMs typically use a full or modified Newton-Raphson loop to resolve 

nonlinearities which, in contrast to Picard iterations, necessitates the need for a consistent tangent 

matrix for optimal convergence (Bathe 1996). The Newton method can achieve quadratic 

convergence compared with the linear convergence rate of the Picard iterations. However, each 

Newton iteration is much more expensive; it practically repeats all calculations at each iteration, 

while the FVM resolves (material) nonlinearities ‘on the fly’ at each iteration, with no or little 

additional cost compared to linear problems. 

The most common FEM and FVM solution strategies are summarised in Table 1. As can be seen, 

the relative weakness of the FEMs is large memory requirement, while the main deficiency of the 

FVMs can be a slow convergence, most notably in case of strong inter-component coupling, resulting 

in prohibitive CPU times, both weaknesses steaming from the adopted solution strategies. 

A number of ways have been developed to reduce the FEM memory requirements, e.g., banded 

stiffness matrices or iterative solvers which require considerably less storage than direct solvers, but 

are not guaranteed to converge. These issues will not be further discussed here. Instead, the ways to 

alleviate the FVMs deficiency will be presented in the next Section. 

 

 

4. Enhancing FVM efficiency 
 

The FVM is extremely memory efficient (the memory is essentially linear with the number of  

 
2For a numerical mesh made of N hexahedral CVs/bricks the FVM requires 7N and the FEM 243Nnode 

≈243N coefficient matrix entries. 
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(a) Geometry, loading, and boundary conditions                   (b) Hexahedral mesh 3 

Fig. 3 Out-of-plane bending of an elliptic plate (Cardiff et al. 2016a) 

 

 

DOF). It requires up to 1000 times less memory than the typical FEM direct solvers and about 10 

times less memory than iterative FEM solvers with the same number of DOF, but can suffer from a 

poor convergence when the inter-displacement-component coupling is strong. To overcome this 

inadequacy, several procedures are proposed. The major reductions of the CPU time are obtained 

by applying the geometric multigrid or block-coupled solution methods. A modest improvement, but 

with much less programming effort, is achieved by employing the convergence acceleration (Aitken’s 

and based on estimation of iteration errors). Finally, a massively parallel processing usually achieves 

a linear speedup and enables an efficient solution of very large problems. 

Where available, comparisons with FEM results are made. 

 
4.1 Multigrid method 
 

An early attempt to tackle the slow convergence problem is made by Demirdžić et al. (1997). They 

applied a full multigrid method to a thick elliptic plate with a centred elliptic hole, fully clamped at 

the outside edges and loaded by a constant pressure of 1 MPa at the upper surface (the NAFEMS 

Standard Benchmark Test LE10 (NAFEMS 1990)), Fig. 3. Due to a double symmetry, only a quarter 

of the plate is taken for the solution domain. Calculations were performed in double-precision on a 

IBM RISC System 6000/530 workstation, with PowerPC processors running at 25 MHz using five 

systematically refined grids ranging between 72 and 294,912 CVs. 

Fig. 4 shows the asymptotic convergence rate and respectable computing times of the full multigrid 

solution method. The number of fine grid iterations is almost constant and the CPU time is 

proportional to the number of computational points. The times shown correspond to the convergence 

tolerance of 10−5, which corresponds to the accuracy to within four to five significant digits. 

However, for most practical applications discretisation errors of the order of 1% are acceptable and 

the convergence tolerance of 10−3 would suffice; the number of required iterations and computing 

time are much lower in this case, as shown in Table 2. 

 

4.2 Block-coupled FVM 
 

In order to improve efficiency of the FVM the block-coupled solution methods are developed,  
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 (a) Convergence rate (b) Iter. number and CPU time on all grids  

Fig. 4 Convergence properties for the elliptic plate problem (Demirdžić et al. 1997) 

 
Table 2 Memory and CPU times necessary to obtain converged solution on all grid levels using double 

precision arithmetic on an IBM RISC System 6000/530 workstation (Demirdžić et al. 1997) 

    Sol.tol. 10−5 Sol.tol. 10−3 

No. 

CVs 

No. deg. 

freedom 

No. grid 

levels 

Memory 

(MB) 

Fine grid 

iter. 

CPU 

(min) 

Fine grid 

iter. 

CPU 

(min) 

294 912 884 736 5 148.19 27 38.1 16 22.6 

 

 

where inter-component coupling is implicitly included as coefficients in a block matrix (Das et al. 

2011, Cardiff et al. 2016a). It has been found that the coupled method is faster than the segregated 

FVM with approximate speed-ups ranging from 5 times for problems with week inter-component 

coupling to three orders of magnitude for problems with very strong inter-component coupling (e.g., 

the bending of a 2-D slender cantilever). As expected, the coupled method required approximately 4 

times more memory than the segregated methods. When compared with FEMs, the coupled method 

has been found to be more efficient in terms of both CPU time and memory than low order FEMs. 

 
4.2.1 Out-of-plane bending of elliptic plate 
Cardiff et al. (2016a) used the NAFEMS Benchmark LE10 case (NAFEMS 1990) (Fig. 3) to 

compare performances of segregated and coupled FVM and commercial FE software Abaqus (version 

6.11-1 - reduced integration, bi-linear quadrilaterals) (Abaqus Theory Manual 2012). They performed 

calculations on the same set of five hexahedral meshes as Demirdžić et al. (1997). The segregated 

FVM employs a CG method with incomplete Cholesky preconditioning and the coupled FVM uses 

BiCGStab linear solver with ILU(0) preconditioner, both with the tolerance of 1×10−6, while Abaqus 

employs a direct solver. 

The stress contours in the z=0.3 m x-y plane are shown in Fig. 5, comparing the FVM solutions 

obtained on the finest hexahedral mesh and on the polyhedral 275,533 CV mesh with the Abaqus 

solution and with the Demirdžić et al. (1997) benchmark. All results are seen to agree closely. 

The execution times and memory for segregated FVM are compared with the coupled FVM and 

with Abaqus in Table 3. It can be seen that the coupled FVM is 2.5 to 6 times faster than the segre- 

gated FVM method and, as expected, the memory requirements of the coupled FVM are greater, by 

approximately 4.5 times in the largest mesh case. Interestingly, when compared to the FE solution, 

the coupled method is faster and considerably more memory efficient in all cases. The larger memory 

requirements of the FE solution may be attributed to the employed direct solver. 
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(a) FVM (Hexahedral Mesh) (b) FVM (Polyhedral Mesh) 

  
(c) Abaqus FEM (Hexahedral Mesh) (d) FVM (Reference Solution (Demirdžić et al. 1997) 

Fig. 5 Elliptic plate: stress component distributions on the plane z = 0.3 m for FVM hexahedral and polyhedral 

mesh and the Abaqus FE hexahedral mesh solution (Cardiff et al. 2016a) 

 
Table 3 Elliptic plate: wall-clock time (in s) and maximum memory usage (in MB) (Cardiff et al. 2016a) 

 Segregated FVM Coupled FVM Abaqus FEM 

Mesh Time Memory Time Memory Time Memory 

72 0.5 6 0.03 7 4 24 

576 1 8 0.15 13 5 31 

4 608 6.5 20 1.6 51 6 107 

36 864 102 80 11 300 34 1 197 

294 912 1 474 500 242 2 200 1 375 17 900 

 

 

4.2.2 Slender cantilever in bending 
A rectangular elastic beam with the Young’s modulus 200 GPa and the Poisson’s ratio 0.3, with 

length to height ratio of 20:1 is fixed at one end and loaded by uniformly distributed traction of 0.1 

MPa at the other end. It should be noted that this test case is a worst case scenario for a segregated 

approach, due to the dominant inter-component coupling. 

Five uniform quadrilateral meshes are employed. The models are solved in double precision 

using 1 CPU core (2.4 GHz Intel Ivy Bridge cores). The segregated FVM employs a CG method  

12



 

 

 

 

 

 

Finite volumes vs finite elements. There is a choice 

Table 4 Slender cantilever: wall-clock time (in s) and maximum memory usage (in MB) (Cardiff et al. 2016a) 

 Segregated FVM Coupled FVM Abaqus FEM 

Mesh Time Memory Time Memory Time Memory 

500 58 20 0.08 11 3 40 

4 500 384 27 0.5 50 4 113 

12 500 1 387 43 1.4 140 5 197 

50 000 4 737 112 6 570 16 881 

200 000 -- -- 36 2 500 73 1 800 

 
Table 5 Wheel model: CPU and memory comparisons to FEM for elastic wheel (Demirdžić 2008) 

Grid 
CPU (min) Memory (Mb) 

FVM Abaqus FEM FVM Abaqus FEM 

Coarse (30 000 cells) 2.1 1.0 41 615 

Fine (245 000 cells) 19 49 307 6 500 (out of core!) 

 

  

 
(a) Rim, disk, weldments, 

bolts and numerical mesh 

(b) Effective stress (c) Convergence rate with and without acceleration 

for coarese and fine grid 

Fig. 6 Wheel model (Demirdžić 2008) 

 

 

with incomplete Cholesky preconditioning and a relatively tight solution tolerance of 10−8, while 

coupled FVM and FEM use direct solvers. 

Table 4 shows the wall-clock times and memory requirements for each of the runs. It can be 

seen that the segregated FVM is very memory efficient, but is hopelessly slow. When comparing the 

coupled FVM and FEM, the coupled FVM is at least twice as fast and requires slightly less memory. 
 

4.3 Convergence acceleration 
 

Several other ways of tackling slow convergence of the FVM fixed point iterations were 

employed; among them González et al. (2018) employed Aitken acceleration and Perić (2004) used 

acceleration based on iteration error estimate. They both applied them to NAFEMS LE10 case 

(NAFEMS 1990) (Fig. 3) and obtained speed-ups of 4.3 and 3.5, respectively, and to a slender 

cantilever with speed-ups of 5.5 and 10, respectively. 

In addition to the above academic cases, Demirdžić (2008) applied acceleration based on iteration  
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Fig. 7 Wheel model: effective stress on plane between disk and shaft for elastic (top left) and elastoplastic 

(bottom left) material and convergence rate (right) (Demirdžić 2008) 

 

 

error estimate to analyse a wheel model with rim, disk, weldments, bolts, and shaft made of a linear 

elastic material shown in Fig. 6(a). Two mostly hexahedra-cell grids are employed: coarse with 

30,000 cells and fine with 245,000 cells. Fig. 6(c) shows that the problem converges in about the 

same number of iterations for both the coarse and the fine grid. It can also be seen that the acceleration 

besed on the iteration error estimate significantly reduces the number of iterations for both grids. 

Comparisons are made to the FE commercial code Abaqus (Abaqus Theory Manual 2012). Both 

the FVM and the FEM code were run on Linux/x86-32 on x86-64 single processor Intel Xeon with 

2 Gb RAM, 3.2 GHZ computer and both codes predict almost identical results on identical mesh. 

Table 5 shows comparison of FVM and FEM regarding CPU time and memory for coarse and fine 

mesh. Typically, in case of the coarse mesh FEM is faster (two times), but requires more memory (15 

times), while in the case of fine mesh the direct FEM solver requires more memory than available on 

the RAM and it is outperformed by the FVM both in terms of CPU time and memory. 

Finally, the results for the wheel made of an elastoplastic material are shown in Fig. 7 and 

compared with those for the elastic wheel. Since the FVM updates nonlinearity continuously after 

each iteration, the CPU time required to arrive at the solution for elastoplastic case is almost the 

same as for linear elastic one. 

 

4.4 Parallel performance 
 

While comparison of serial execution times and memory usage is beneficial, of increasing 

importance is the parallel performance of the methods, where the multiple CPU cores of a computer 

or a cluster are exploited. For standard finite volume and finite element procedures, the most time 

consuming component is the solution of the linear system of equations; as iterative linear solvers are 

better-suited to parallelisation than direct solvers, standard finite volume methods have been shown 

to provide better parallel scaling, ultimately allowing analysis of larger problems. 

 

4.4.1 Heated spherical pressure vessel 
An internally heated and pressurised hollow spherical vessel, Fig. 8, is assessed for parallel 

efficiency by Cardiff et al. (2018). The outer surface is specified as traction free, with a surface 

convective heat coefficient of 90 W/m2K. The reference temperature is assumed to be 300 K. At the 

initial time the zero displacement and velocity and temperature of the 300 K in the whole solution 

domain are specified. The assumed thermo-mechanical material properties are given in Fig. 8 (right). 
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Young’s modulus 190 GPa 

Poisson’s ratio 0.305 

Density 7750 kg/m3 

Coeff. th. exp. 9.7×10−6 1/K 

Specific heat 486 J/K 

Conductivity 20 W/mK 
 

Fig. 8 Heated spherical pressure vessel: geometry and loading (left), mesh and domain decomposition (middle), 

and mechanical properties (right) (Cardiff et al. 2018) 

 

  

(a) FVM: Heated spherical vessel (Cardiff et al. 2018) (b) FEM: Abaqus benchmarks □-S2A, ♢-S4B, -

S4D, ∆-S6 (ICHEC 2013) 

Fig. 9 Parallel performance of FVM and FEM 

 

 

The spatial solution domain, a quarter of the sphere, is discretised by a 4.8 million CV hexahedral 

mesh and a constant time-step of 1 s that was found to produce time-step independent results is 

employed. 

The problem is solved using increasing numbers of CPU cores varying from 6 to 768 CPU cores; 

the METIS decomposition method has been used to decompose the domain. The Fionn 

supercomputer from the Irish Centre for High-End Computing has been used for all calculations, 

where each computer node contains two Intel Xeon (E5-2660 v2 @ 2.20GHz, 25.6 MB of cache) 

CPUs and 64 GB of RAM. The solution for the finest mesh was achieved in under half an hour using 

384 CPU cores, in comparison to over 150 hours when using 1 CPU core. The parallel speedup 

is shown in Fig. 9(a). It can be seen that the method scales in an approximately linear fashion up 

until 384 CPU cores. This corresponds to approximately 12 500 cells per CPU core. As the number 

of CPU cores are increased further to 768, the parallel efficiency drops. In contrast, the direct linear 

equation solvers, as used by FEMs, show a mediocre parallel scaling, as illustrated in Fig. 9(b) where 

the parallel performance of a number of Abaqus 6.13 benchmark cases (Abaqus Documentationl 

2013) is presented. Although this is not a direct comparison, all runs were made on the same hardware 

and do show typical behaviour of iterative and direct linear solvers. Iterative solvers hold the upper 

hand for parallelisation and consequently typical FVMs benefit from this. However, the use of 

iterative linear solvers with FEMs will no-doubt improve their parallel performance. 
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No of 

proc. 

Cells per 

processor 

CPU time 

(min) 

Speed 

up 

1 4.2 million 324 1 

4 1.05 million 81.18 3.99 

8 525 000 45.00 7.20 

16 262 500 20.15 16.08 

32 131 250 14.08 23.01 
 

Fig. 10 Engine block and head: effective stress (left) and parallel scalability (right) (Demirdžić 2008) 

 

  
Fig. 11 Rapid crack propagation: duplex SENT geometry (D1=19.8 mm, D2=9.3 mm, H=100 mm, a0=2 mm) 

(left) and crack driving force vs. crack length (right) (Ivanković et al. 1994) 
 
 

4.4.2 Engine block and head 
Another example of parallel performance is an industrially relevant case, calculation of thermal 

stresses in an engine block and head made of a thermoelastic material. The solution domain is 

discretised with 4.2 million cells (12.6 million DOFs) requiring 9.8 Gb RAM and run on a Cray node 

AMD opetron 250, 2.4 GHz, 4 Gb RAM per node, Rapid Array MPI computer. Calculated effective 

stress is shown in Fig. 10 (left) and the parallel performance is illustrated in Fig. 10 (right). A very 

good scalability is obtained to about 200,000 cells per processor and then departs from linear. 

However, less than 15 min to get an answer for a 4.2 million cell real-life model is an impressive 

result. 

 

 
5. Examples of FVM applications 

 

In what follows a number of applications of FVM to academic and industrially relevant cases 

will be presented and, when available, comparison with FEM will be made. 

 
5.1 Small deformations of isotropic and orthotropic elastic bodies 

 
5.1.1 Rapid crack propagation 
One of the first FVM applications to solids was predictions of the rapid crack propagation in a 

duplex SENT sample, Fig. 11 (left) (Ivanković et al. 1994). The calculation began by a release of the 

crack tip cell face. The crack propagated at a constant speed ȧ1=344.3 m/s in material 1 (E1=6 GPa, 

ν1=0.33, ρ1=1180 kg/m3), arrested at the interface for a short period (tarrest=1.2 µs), and continued  
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Fig. 12 Pipe elbow: computational mesh (left) and displacement magnitude calculated by FVM (middle) and 

ADINA FEM (right) (Bijelonja et al. 2017). 

 

   

Fig. 13 Drying of a wood beam: solution domain and reference points (left) and displacement (middle) and 

normal stress (right) fields at t=166 h (Martinović et al. 2001) 

 

 

with a lower constant speed ȧ2=265 m/s through the material 2 (E2=3 GPa, ν2=0.39, ρ2=1190 kg/m3). 

During the computation the specimen is regarded as being under fixed grip conditions. 

Fig. 11 (right) shows the comparison between the FVM and FEM dynamic energy release rate 

Gdyn results and very good agreement is demonstrated. The FVM results are obtained on a 2640 CV 

Cartesian mesh, while in the FEM solution a mesh consisting of constant strain triangular elements 

with 14,952 nodes were used, whereby the FEM required 11 times more computer memory than the 

FVM. 

 
5.1.2 Pipe elbow under internal pressure 
The stress and deformation analysis of a pipe elbow flanged at both ends is performed by Bijelonja 

et al. (2017) and the results are compared with those obtained using the commercial FE software 

ADINA (ADINA 2012). 

The material of the elbow is assumed to be linear elastic with Young’s modulus 2.1×105 MPa and 

Poisson’s ratio 0.3. At the outer surfaces of both flanges zero displacements are assumed. The inner 

elbow surface is loaded by the pressure of 1 MPa. All other boundaries are considered stress free. 

The solution domain is discretised by a polyhedral mesh consisting of 20,744 CVs as shown in Fig. 

12(left). 

Fig. 12 (middle and right) shows the displacement magnitude field. A very good agreement 

between FVM and FEM solutions can be seen. The almost identical maximum displacement values 

located at the inner surface of the elbow at the middle of the flange span of 3.898×10−6 m for the 

finite-volume and 3.900× 10−6 m for the finite-element solution are obtained. 
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Fig. 14 Drying of a wood beam: moisture content at points C and D (left) and u displacement at point E and v 

displacement at point F (right) (Martinović et al. 2001) 

 

 

5.1.3 Drying of a wood beam 
Martinović et al. (2001) used the FVM to analyse a wood drying process, which is governed by 

the energy, mass and momentum balance equations. Beech-wood beams (600× 50× 50 mm) are 

exposed to the uniform, unsteady flow of hot air in a laboratory dryer. The beam material is 

considered to be elastic orthotropic and its temperature and/or moisture dependent physical 

properties are given in Martinović et al. (2001). The problem is considered to be a 2D plane strain. 

Due to the double symmetry only one quarter of the cross section is taken as the solution domain, 

as shown in Fig. 13(left). 

During the initial phase (first two hours) of drying the moisture content is above the fiber 

saturation point and the deformation is a consequence of the thermal stresses only. During the period 

of intensive drying (between 60 and 190 hours) the deformation and stresses due to hygral loads 

dominate. At t=166 h the moisture content has fallen below the fiber saturation point, and that this 

causes the shrinking of the wood sample, Fig. 13(center), and extensive stresses in the outer region 

and compressive stresses in the interior of the sample, Fig. 13(right). 

Fig. 14 shows moisture content and displacements histories at two reference points shown in Fig. 

13(left). One can see very little deformation during the initial phase (t≤1000 minutes) and a 

considerable shrinking of the sample afterwards, and that predictions closely follow experimental 

data. 

 

5.2 Deformation and stresses in casting 
 

Teskeredžić et al. (2002) analysed a casting problem using two material models, the Duhamel- 

Neumann form of the Hooke’s law (TE solid) and the Perzyna model (TEVP solid). The problem 

geometry and the physical properties of the solidified cast and the mold are given in Fig. 15. It is 

assumed that the mold is completely filled with the solidified metal at the uniform temperature of 

120°C which corresponds to the stress free condition and is higher than the initial temperature of the 

mold of 100°C. All solution domain boundaries are set to the constant temperature of 100°C. The 

friction between the cast and the mold is neglected and the influence on the heat transfer of the air 

gaps at places where no contact exists are accounted for. 

A grid and time-step independent solution is obtained by employing the uniform 180× 180 CV 

mesh and the time step of 1 s. The process is led in such a way that after 100 s of the real time in which 

the temperature within the calculation domain is uniform (tolerance ±1 K) the mold is ‘crashed’ and  

18



 

 

 

 

 

 

Finite volumes vs finite elements. There is a choice 

 

 

 

 
Young mod. Yeald st. Pois. Th.exp.c. 

(Pa) (Pa) coef. (1/K) 

Cast 

Mold 

2.1 ×  1011 
− 

2.1 ×  108 
− 

0.33 
− 

3.05 ×  10−5 
− 

 
Conduct. 

(W/mK) 

Density 

(kg/m3) 

Sp.heat 

(J/kgK) 
 

Cast 160 7800 460  

Mold 60 7800 460  
 

Fig. 15 Geometry of the cast-mold assembly (dimensions in m) (left) and physical properties for solidified cast 

and mold (right) (Teskeredžić et al. 2002) 

 

  

Fig. 16 Effective stress σeff (left) and normal stress σxx (right) for TEVP and TE models at point A in the corner 

of the cast; at t=100 s mold is ‘crashed’ (Teskeredžić et al. 2002) 

 

  
(a) Before ‘crashing’: TE - lleft, TEVP - right (b) After ‘crashing’: TE - lleft, TEVP - right 

Fig. 17 Shape of the cast and effective (residual) stresses (Teskeredžić et al. 2002) 

 

 

the whole force coming from the mold is applied to the cast within the next time increment and the 

solid is then let free to reach a new steady state. In Fig. 16 the effective and normal stresses are given 

for the point A in the corner of the cast where the stresses reach the maximum value. As can be seen, 

the stresses for the TE solid decrease to zero as soon as the contact force is removed, while in the 

TEVP solid the non-zero residual stresses remain. 
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(a) t=1.08 s (δx=34 mm) (b) t=2.41 s (δx=76 mm) 

Fig. 18 Forward extrusion through axisymmetric die: temperature distribution (Bašić et al. 2005) 

 

 

 

Fig. 19 Deformation of a rubber cylinder: initial and deformed (displacement of 0.2 m) mesh (left) and com- 

parison of FVM and Ansys FEM (Ansys Verification Manual 2004) results (right) (Bijelonja et al. 2005) 

 

 

Fig. 17 shows the cast shape and the effective stresses after the cast is cooled before and after the 

‘crashing’ the mold, respectively. The black contour at the corner of the cast where the concentration 

of stresses is the highest, Fig. 17(a) (right), marks the position where the effective stress is equal to 

the yield stress and the residual stresses and deformations in that region are visible for TEVP solid, 

Fig. 17(b) (right), while in the TE solid they do not exist, Fig. 17(b) (left). 

 

5.3 Large deformations of non-elastic bodies 
 

Examples employing governing equations in arbitrary Lagrangian-Eulerian, total Lagarngian, and 

updated Lagarngian form and rigid-plastic, incompressible hyperelastic, and hyperelastoplastic J2 

constitutive laws are presented. 

 
5.3.1 Lead extrusion 
Bašić et al. (2005) calculated the heat generated during axisymmetric forward extrusion of lead 

using the rigid-plastic without hardening material. The Coulomb’s friction model with maximum 

coefficient 0.5 is used. The extrusion velocity was 31.5 mm/s and the degree of deformation was 

50%. The prescribed initial workpiece temperature was 20°C. The die walls and the free surface are 

assumed to be adiabatic while on the punch-workpiece contact surface the temperature of 20°C is 

prescribed. The time step employed was 0.01 s. 
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Young’s modulus 200 GPa 

Poisson’s ratio 0.3 

Initial yield stress 700 MPa 

Hardening param. 300 MPa 
 

 
   

Fig. 20 Upsetting a billet: geometry and loading (left), mechanical properties (middle), and mesh (right) 

(Cardiff et al. 2016b) 

 

 

The calculated distribution of temperature at t=1.08 s (δx=34 mm) and t=2.41 s (δx=76 mm) are 

shown in Fig. 18(b) and compared with FEM results of Lippmann (1981) who stated (without a proof) 

that the experimentally obtained results are generally in agreement with calculations. 

 

5.3.2 Deformation of a rubber cylinder 
In this section the FVM is applied to modelling of a large strain problem involving incompressible 

hyperelastic material. The method is based on the solution of the integral momentum balance equation 

in total Lagrangian description (Bijelonja et al. 2005). An infinitely long homogeneous cylinder 

with the diameter of 0.4 m made from rubber with Mooney-Rivlin constants C1=0.293 MPa and 

C2=0.177 MPa is pressed between two frictionless rigid plates. The problem is considered as the 

plane strain. 

The numerical analysis is performed for two different meshes consisting of 82 and 190 CVs. In 

Fig. 19 (left) the initial and deformed finite volume meshes were shown. The force-displacement 

curves for the two meshes are shown in Fig. 19 (right) alongside the finite element results reported in 

Ansys Verification Manual (2004), where an almost incompressible material is assumed (Poisson’s 

ratio ν=0.49967) and the same Mooney-Rivlin constants as in the FVM calculation are employed. 

The difference between the finite volume and the finite element simulations is not larger than 2.5%. 

 
5.3.3 Upsetting a billet 
The upsetting of a cylindrical billet between parallel rough dies has been analysed by Cardiff et 

al. (2016b). The governing equations are described in updated Lagrangian form and a hyperelasto-

plastic J2 constitutive law is employed. The problem geometry, loading, and material properties are 

given in Fig. 20. The billet is upset by 60%, corresponding to the die displacement of 18 mm. The 

contact between the die and billet is rough and is approximated using a penalty method contact 

procedure with a Coulomb friction coefficient of 0.5. Transient effects are neglected. 

The problem is represented as 2D axisymmetric where only the top half of the geometry is mod- 

elled. Five separate systematically refined meshes are examined, consisting of 36, 144, 576, 2304 

and 9216 quadrilateral cells; the coarsest mesh is shown in Fig. 20 (right). 

The models have been solved in double precision using 8 CPU cores (2.4 GHz Intel Ivy Bridge 

cores) in1000 quasi-static time increments. The required wall-clock time ranged from 15 min for the 

coarsest mesh to 105 min for the finest mesh. 
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(a) FVM (b) Abaqus FEM 

Fig. 21 Upsetting a billet: equivalent plastic strain distribution at 60% upset (Cardiff et al. 2016b) 

 

  
(a) Deformed mesh (b) Pressure field in the fluid and the equivalent stress field 

in the solid 

Fig. 22 Elastic plate behind a rigid cylinder: plate tip point at its highest position (Tuković et al. 2018) 

 

 

The predicted equivalent plastic strain distribution at 60% upset is shown in Fig. 21 and compared 

with the 9 216 cell mesh predictions obtained using commercial FE software Abaqus (version 6.11-1- 

reduced integration bi-linear quadrilaterals) (Abaqus Theory Manual 2012). 

 

5.4 Fluid-solid interaction 
 

The last few years have shown an increase in methods for multiphysics and, in particular, fluid- 

solid interaction problems, e.g., Moreno-Navarro et al. (2018), Ibrahimbegovic and Boujelben (2018), 

Hadzalic et al. (2018a, b). Since FVMs dominate the fluid flow calculations, the FVM for solid 

mechanics enables strongly coupled solution procedures, whereby the same discretisation and 

solution methods are used for both fluid and solid domains. In this section interaction of 

incompressible Newtonian fluids with elastic plate whose behaviour is modelled by hyperelastic 

constitutive laws, as well as by Mindlin plate theory. 

Tuković et al. (2018) considered an elastic plate, 0.35 m long and 0.02 m thick, mounted on a 

rigid cylinder with a radius of 0.05 m placed in a fluid flow through a horizontal channel of 0.41 m 

in height and 2.5 m in length. Fluid (density 1000 kg/m3, kinematic viscosity 0.001 m2/s) enters the 

channel from the left-hand side with a parabolic velocity profile and average velocity of 1 m/s. A 

constant pressure at the outlet and a no-slip boundary condition on the walls are imposed. The elastic 

plate (density 10000 kg/m3, Young’s modulus 1.4×106 Pa, Poisson’s ratio 0.4) is described by the 

Saint Venant-Kirchhoff hyperelastic constitutive model with the plane strain assumption. 

Fig. 22(a) shows a section of the discretised spatial domain. The fluid part of the mesh consists of 

21,344 and solid part of 328 quadrilateral CVs. The numerical solution is obtained with a time step 

size of 1.5×10−3 s. Fig. 22(b) shows simulation snapshot at the instant of time when the plate tip 

point is at its highest position. A comparison with the benchmark solutions of Turek and Hron (2006) 
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Table 6 Elastic plate behind a rigid cylinder: plate tip displacement and force on the plate. The values are given 

in the same format as in the benchmark paper by Turek and Hron (2006): mean value amplitude [frequency] 

(Tuković et al. 2018) 

 
Displacement Force 

ux×10−3 (m) uy×10−3 (m) Fx (N) Fy (N) 

FVM −14.26 ± 12.34 [3.9] 1.22 ± 80.2 [1.95] 211.34 ± 75.59 [3.9] 1.23 ± 238.35 [1.95] 

Benchmark −14.58 ± 12.44 [3.8] 1.23 ± 80.6 [2.00] 208.83 ± 73.75 [3.8] 0.88 ± 234.20 [2.00] 

 

 

Fig. 23 Elastic plate behind a rigid cylinder: pressure contours around the plate at t=2 s (left) and history of 

the tip deflection (FEM-1 from Wal (1999), FEM-2 from Hübner et al. (2001)) (right) (Torlak et al. 2002) 

 

 

is given in Table 6. The difference between the calculated and the benchmark results is around 3% 

in average for the amplitude and frequency of force and displacement. The relative difference for 

the mean value of the force y-component goes up to 40%, which can be attributed to the difficulty in 

calculating the mean value in the case when it is close to zero. 

Torlak et al. (2002) analysed a thin elastic plate, 4 m long and 0.06 m thick, mounted on a rigid 

square 1×1 m cylinder placed into a laminar fluid flow with the Reynolds number based on the length 

of cylinder of 333. The plate is modelled using the Mindlin plate theory. The vortex shedding from 

the cylinder corners causes plate oscillations which in turn influence the flow significantly, Fig. 

23(left). 

Comparison of the history of the plate tip displacement with FEM calculations shows a good 

agreement, Fig. 23(right). 

 

 

6. Conclusions 
 

It has been established that FV and FE methods start from different governing equations, that they 

differ in the way they discretise the spatial solution domain and, in particular, in the way they solve 

the discretised equations. 

1. The FVM relies on the first principles only and, in fact, it reduces to the balance of forces acting 

on a control volume which makes it easy to understand and implement, while the FEM introduces 

additional concepts, principle of virtual work or the method of weighting residuals, which makes 

it less appealing to engineers who make the main users community. 

2. The FVM discretises space by arbitrary convex polyhedral cells; this enables a discretisation 

independent of the cell shape and facilitates the automatic numerical mesh generation for the 
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most complex shapes of solution domain. In the FEM the choice of discretisation elements is 

limited to a handful of polyhedra, each of which requires different shape functions. 

3. The FVM discretisation is second-order accurate and conservative at the local level and con- 

sequently for the whole solution domain, whereby the forces acting on the internal cell faces 

cancel out, and the overall momentum balance reduces to the balance of forces acting on the 

solution do- main boundaries. This feature is at least desirable (makes it reasonably accurate even 

for very coarse meshes) and in some cases essential. In contrast, the FEM is only globally 

conservative. 

4. Some of the main distinguishing features of the FVM are (a) the unique splitting the stiffness 

matrix into implicit and explicit parts in a way that generates a very sparsely populated, 

diagonally dominant coefficient matrix, resulting in extremely low memory requirements and the 

guarantied convergence of the efficient iterative solvers and (b) an iterative, inherently nonlinear, 

segregated solution algorithm, which enables an easy extension of linear to nonlinear problems, 

with very little additional cost in terms of programming effort, CPU time and memory 

requirements, as well as an easy coupling of momentum and energy equations, important in many 

industrial applications. In contrast, the FEM discretisation results in a relatively densely 

populated stiffness matrix requiring a direct linear algebraic equation solver which additionally 

fills-up the coefficient matrix; this means that much of the memory needed for problems with 

large degrees of freedom has to be stored on the disk rather than RAM. While the FVM solution 

procedure for non-linear problems remains essentially the same as for linear ones, FEMs typically 

use a full or modified Newton-Raphson loop to resolve nonlinearities. 

5. When run in parallel on many processors, the FVM shows practically linear speed-up, enabling 

a very large, industrial size problems with multi-million degrees of freedom to be solved in an 

accept- able time. In contrast, a direct linear algebraic equation solver only allows a very modest 

speed-up of FEMs. 

6. The fact that the FVM for solid mechanics uses the same discretisation, data structure and linear 

algebraic solvers as FVMs for fluid flow calculations enables strongly coupled solution 

procedures for fluid-solid interaction problems. 

However: 

7. The standard segregated FVM is not always efficient, especially in cases with strong inter- 

displacement-component coupling. To remedy this, the geometric multigrid, accelerated 

convergence, and the block-coupled methods have been proposed. 

8. The second-order accuracy of the FVM is not always sufficient (prone to shear-locking). This 

problem has been addressed by Demirdžić (2016) albeit for discretisation by simple quadrilateral 

CVs. 

9. One indisputable disadvantage of the FVM for solid mechanics, relative to the FEM, is that 

the field of FV computational solid mechanics is relatively small. This does not, however, take 

away from the potential of FVM to not only equal but to outperform FE methods for some 

computational solid mechanics applications; in particular, challenging nonlinear multi-physics 

problems are seen to be prime candidates. 
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