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Dynamic response of a linear two d.o.f system
visco-elastically coupled with a rigid block
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Abstract. The present work investigates the use of a rigid rocking block as a tool to reduce vibrations
in a frame structure. The study is based on a simplified model composed by a 2-DOF linear system,
meant to represent a generalM-DOF frame structure, coupled with a rocking rigid block through a linear
visco-elastic device, which connects only the lower part of the 2-DOF system. The possibility to restrain
the block directly to the ground, by means of a second visco-elastic device, is investigated as well. The
dynamic response of the model under an harmonic base excitation is then analysed in order to evaluate the
effectiveness of the coupling in reducing the displacements and the drift of the 2-DOF system. The non-
linear equations ofmotion of the coupled assemblage 2-DOF-block are obtained by a Lagrangian approach
and then numerically integrated considering some reference mechanical and geometrical quantities as
variable parameters. It follows an extensive parametric analysis, whose results are summarized through
behaviour maps, which portray the ratio between the maximum displacements and drifts of the system,
with and without the coupling with the rigid block, for several combinations of system’s parameters.
When the ratio of the displacements is less than unity, the coupling is considered effective. Results show
that the presence of the rocking rigid block improves the dynamics of the system in large ranges of the
characterizing parameters.

Keywords: visco-elastic coupling; rocking rigid block; harmonic excitation; gain coefficients and maps

1. Introduction

Frame structures can be coupled with other mechanical systems (i.e., mechanical devices or other
structures) to improve their behaviour under external loads. Some examples of such mechanical
devices are oscillating masses working as tuned mass dampers, dynamic mass absorbers and elasto-
plastic dampers. Among others possibilities to improve the dynamic behaviour of a frame structure,
the conjunction with a rocking rigid block can be envisaged, on the basis of the intrinsic energy
dissipating characteristics of the rocking motion. To the comprehension of the behaviour of such a
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mechanical system several papers have been dedicated, starting from the pioneering work of Housner
(Housner (1963)). Both the seismic excitation (Yim et al. (1980), Pompei et al. (1998), Taniguchi
(2002), Psycharis et al. (2013) and other kinds of ground excitation, such as harmonic or impulsive
one-sine excitation (Spanos and Koh (1984), Zhang and Makris (2001), Kounadis (2013), Vassiliou
et al. (2014)) and random excitation (Spanos and Koh (1986)) were considered.

In several papers a general formulations for the rocking and slide-rocking motions of free-standing
symmetric rigid blocks (Andreaus (1990), Shenton and Jones (1991), VoyagakiIoannis et al. (2013))
was proposed. In Shenton (1996), Tung (2007) the analysis of the different phases of motions and
the definition of criteria for the transition between them were performed. In some papers either non-
symmetric rigid blocks (Contento and Di Egidio (2009)), or three-dimensional blocks (Zulli et al.
(2012), Di Egidio et al. (2014b, 2015)) were considered. Other papers studied the dynamics of rigid
blocks in a general way (DeJong and Dimitrakopoulos (2014)). In Spanos et al. (2017) an interesting
experimental investigation of a block on a non-linear deformable foundation was performed.

Recently many papers have studied the coupling of the block with different passive or active
devices in order to protect them from the overturning. For example, the effectiveness of base anchor-
ages was studied inMakris and Zhang (2001), Dimitrakopoulos and DeJong (2012) in order to protect
rigid blocks from overturning, whereas Di Egidio and Contento (2009, 2010), Contento and Di Egidio
(2014), Caliò and Marletta (2003), Vassiliou and Makris (2012) highlighted the efficiency of the base
isolated system. Other types of passive control methods for the protection of rigid blocks were con-
sidered, for example, in Corbi (2006) the authors proposed a sloshing water damper. A mass-damper
dynamic absorber in the shape of a pendulum was used by different authors (Collini et al. (2016),
Brzeski et al. (2016), de Leo et al. (2016)), who demonstrated the general effectiveness of this kind
of protection device. Instead, in Simoneschi et al. (2017a, b), Di Egidio et al. (2018) a mass-damper
modelled as a single degree of freedom and running on the top of the block was considered as safety
device.

Also active or semi-active devices were used to improve the dynamic and seismic performances
of blocks. For example Ceravolo et al. (2016) and Ceravolo et al. (2017) studied the use of semi-
active anchorages using feedback-feedforward or a feedback strategies to increase the acceleration
required to topple a reference block. Recently Di Egidio et al. (2014a), Simoneschi et al. (2018) used
an active control technique based on the Pole Placement approach to increase the amplitude of the
base excitation able to topple a rigid block.

An interesting topic that is increasingly present in the Scientific Literature regards the dynamic im-
provement of structures by coupling them with other structures of the same type or of different type.
In this field some papers (Ormeño et al. (2012), Khatiwada et al. (2013), Huang et al. (2013), Mura-
tović and Ademović (2015)) represent an example. Specifically, in Huang et al. (2013), Muratović
andAdemović (2015) particular attention was devoted to the coupling between a frame structure and a
rocking wall. However, the use of rocking rigid block as a protecting device of other kinds of structure
represents a particular issue, not frequently dealt with, to which the present work intends to provide
some contributions. Differently from some recent works Aghagholizadeh and Makris (2018), Makris
and Aghagholizadeh (2017) in which the authors investigated a rigid coupling between a frame and a
rocking wall under seismic excitations, this paper analyses a linear visco-elastic coupling of a frame
structure and a rigid block aimed at improving the dynamic behaviour of the frame (i.e. reducing
horizontal displacements and drifts). A two-degree of freedom linear system is used as model for a
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multi-story frame structure. A first visco-elastic device connects the block to the lower part of the
frame structure. A second visco-elastic device connects the block directly to the ground. Such de-
vices are respectively called coupling (CD) and external device (ED) in the following sections. The
non-linear equations of motion of the coupled-system are obtained by a Lagrangian approach and
successively numerically integrated to analyze the behaviour of the coupled system. Simulations are
performed using an harmonic base excitation. An extensive parametric analysis, based on the varia-
tion of some mechanical and geometrical parameters, is performed, and the results are summarized
by means of gain maps. The maps show the ratio between the maximum displacements or drifts of
the coupled and uncoupled frame in different planes of the system’s parameters.

2. Reference mechanical assemblage

The analyses hereby presented are based on the reference mechanical system portrayed in Fig-
ure 1, in which a rocking rigid block is connected, through a non rigid link, to the lower level of a
frame structure with the aim the reduce its side displacements and drifts deriving from a base hori-
zontal motion. Such an assemblage presents some consistent differences with respect to recent papers
(Aghagholizadeh and Makris (2018) and Makris and Aghagholizadeh (2017)) which considered in-
stead a full height rigid connection between a frame and a rocking wall (i.e., rigid connection at each
level).

The specific proposed configuration, with the block shorter than the frame and located underneath
the frame’s foundation level, derives frome some considerations that follows. On the one hand a
shorter block may result in a more feasible solution, as its functional and aesthetic impact can be
limited together with the concern for the outside safety in case of overturn. Moreover a shorter block
avoids any possible interaction with the upper levels of the frame. On the other hand, in order to have
enough mass for the block and sufficient stroke length for its head (where the connection is foreseen)
the block should be lowered within a trench or a pit.

3. Analytical model of the coupled system

With reference to Fig. 2(a), the analytical model of the coupled system is composed by an homo-
geneous parallelepiped rigid block, with a massM = ρ× 2b× 2hb × s, where ρ = 2500 kg/m3 and
s is the dimension orthogonal to the plane of the figure.

The block is connected with a reduced order 2-DOF model, considered representative of the frame
structure. The two 2 degrees of freedom associated to the frame allow, on the one hand, the repre-
sentation of the partial conjunction, on the other hand, the detection of the drifts. The mechanical
characteristics of the 2-DOF model (stiffness kj , damping constant cj and mass mj , j = 1, 2), in
such a way it is dynamically equivalent to the multi-degree of freedom frame, are evaluated follow-
ing the equivalence procedure exposed in Fabrizio et al. (2017b, 2019, 2017a). In principle, since
the recalled procedure associates the massesm1 andm2 to the physical masses of the two portion of
the frame (connected lower sub-structure and unconnected upper sub-structure) the dimensions h1,
h2 (Fig. 2a) can be measured directly from the mechanical assemblage of Fig. 1.

Two linear visco-elastic devices, represented by a couple of spring and dash-pot (stiffness ki,
damping constant ci, i = C,E) are considered within the model. The first one (CD Coupling device)
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Fig. 1 Coupling between a frame structure and the rockingwall (CD:ConnectingDevice - ED: External Device)

connects the lower part of the system and the top of the block; the second one (ED External device),
that might be absent, links the block to the ground (Fig. 2a).

3.1 Equations of motion for rocking of the block around the left corner

It is assumed that the block cannot slide, therefore only rocking motions can occur. Consequently,
three Lagrangian parameters fully describe the motion. Such parameters are the displacements (rel-
ative to the ground) of the two d.o.f. system u1 and u2, and the rotation of the block ϑ. Figure 2b
shows the positive directions of the three Lagrangian parameters. Two sets of three equations of mo-
tion, which describe the motion of the system when the block rocks around either the left corner A or
the right corner B, have to be obtained. For the sake of brevity, in this section, only the relationships
needed to describe the motion of the system when the block is rocking around the left corner A are
reported. The equations describing the rocking of the block around the right corner are reported in
Appendix A.

In order to write the equations of motion of the mechanical system via a Lagrangian approach, the
positions of the mass centres of the bodies are evaluated. For this purpose, an inertial reference frame
with origin in O, initially coincident with the left base corner A of the block, is considered (Fig. 2a).
The positions of the mass centres G1 and G2 of the two d.o.f. structure are:

xG1(t) =


xg(t)− d− dG + u1(t)

dh + h1
0

 ; xG2(t) =


xg(t)− d− dG + u2(t)

dh + h2
0

 (1)

The position of the mass centre C of the block during a rocking around the left corner A reads:
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xC(t) =


xg(t)
0
0

+

 Cosϑ(t) −Sinϑ(t) 0
Sinϑ(t) Cosϑ(t) 0

0 0 1


b
hb
0

 (2)

where the matrix in Eq. (2) is the rotation tensor of the block. The kinetic energy of the mechanical
system during a rocking motion of the block around the left corner A reads:

T =
1

2

[
2∑

i=1

mi

( .xGi(t) ·
.xGi(t)

)
+ JC

( .
θ(t) ·

.
θ(t)

)
+M

( .xC(t) ·
.xC(t)

)]
(3)

where θ̇(t) =
{
0, 0, ϑ̇(t)

}T
and JC is the polar inertia of the block with respect to its centre of mass.

In order to evaluate the potential energy for a rocking motion around the corner A, the distance vectors
between the couples of pointsW, K and Z, Y have to be evaluated. They are required to compute the
potential energy associate to the elastic devices that have stiffness kC and kE . The positions of these
points read:

xW (t) =


−d+ xg(t) + u1(t)

dh + h1
0

 ; xY (t) =


xg(t) + 2b+ a

de
0

 ;

xK(t) =


xg(t)
0
0

+

 Cosϑ(t) −Sinϑ(t) 0
Sinϑ(t) Cosϑ(t) 0

0 0 1


0

dh + h1
0

 ;

xZ(t) =


xg(t)
0
0

+

 Cosϑ(t) −Sinϑ(t) 0
Sinϑ(t) Cosϑ(t) 0

0 0 1


2b
de
0


(4)

Then, the distance vectors between the previous couples of points, read:

xWK(t) = xK(t)− xW (t) =


d− Sinϑ(t)(dh + h1)− u1(t)
−dh − h1 + Cosϑ(t)(dh + h1)

0


xZY (t) = xY (t)− xZ(t) =


a+ 2b− 2bCosϑ(t) + deSinϑ(t)
de − deCosϑ(t) − 2bSinϑ(t)

0


(5)

The potential energy of the system then reads;

V = [Mg (xC(t)−�xC) · j] + 1
2

[
k1u1(t)

2 + k2(u2(t)− u1(t))
2
]
+

1
2

[
kC

(√
xWK(t) · xWK(t)− d

)2
+ kE

(√
xZY (t) · xZY (t)− a

)2
] (6)

where g is the gravity acceleration, j = {0, 1, 0}T is the unity vector of the y-axis, x̄C = {b, hb, 0}T
is the positions of themass centre corresponding to theminimumpotential energy of the system. Since
it is constant, it consequently plays no role in the derivation of the equations of motion.



356 A. Di Egidio, S. Pagliaro, C. Fabrizio and A.M. de Leo

Due to the presence of dash-pots with damping coefficients c1, c2, cC and cE (Fig. 2(a)), the
virtual work δW of the non-conservative viscous forces has to be considered to obtain the Lagrangian
equations of motion; it reads:

δW = − [c1u̇1(t)δu1(t) + c2 (u̇2(t)− u̇1(t))(δu2(t)− δu1(t))]−
[cC (_xWK(t) · δxWK(t)) + cE (_xZY (t) · δxZY (t))]

(7)

Finally, the equation of motion can be obtained by:[
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
δqi = δW (δqi), ∀δqi ̸= 0; (i = 1, 2, 3) (8)

where L = T − V is the Lagrangian function, (q1, q2, q3) = (u1, u2, ϑ) and (δq1, δq2, δq3) =
(δu1, δu2, δϑ). The equations of motion then read:

−kC (d− (dh + h1) sin θ − u1)×Q1+
cC ((dh + h1) θ

′ cos θ + u̇1) + (c1 + c2) u̇1−
c2u̇2 + (k1 + k2)u1 − k2u2 +m1 (ẍg + ü1) = 0

−−−−−−−−
c2 (u̇2 − u̇1) + k2 (u2 − u1) +m2 (ẍg + ü2) = 0

−−−−−−−−
kE

(
sin θ

(
2b(a+ 2b) + de

2
)
+ ade cos)

)
×Q2+

4b2cE θ̇ + cos θ (bgM + cC (dh + h1) u̇1 − hbM ẍg)−M sin θ(bẍg + ghb)+
kC (dh + h1) ((u1 − d) cos θ + (dh + h1) sin θ)×Q1+

cEde
2θ̇ + cCdh

2θ̇ + 2cCdhh1θ̇ + cCh
2
1θ̇ + JAθ̈ = 0

(9)

where:

Q1 =

(√
d2−2(d−u1)(dh+h1) sin θ−2du1+2dh

2−2(dh+h1)
2 cos θ+4dhh1+2h2

1+u2
1−d

)
√

d2−2(d−u1)(dh+h1) sin θ−2du1+2dh
2−2(dh+h1)

2 cos θ+4dhh1+2h2
1+u2

1

−−−−−−−−

Q2 =

(√
a2−2 cos θ(2b(a+2b)+de

2)+4ab+2ade sin θ+8b2+2de
2−a

)
√

a2−2 cos θ(2b(a+2b)+de
2)+4ab+2ade sin θ+8b2+2de

2

(10)
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Fig. 2 Mechanical system: (a) Geometrical characterization of the system and (b) Lagrangian parameters (pos-
itive directions)

3.2 Uplift and impact conditions

The uplift of the block around point A takes place when the resisting moment MR = Mgb,
due to the weight of the block gets smaller than the overturning moment MO = −Mẍg(t)hb +
[kCu1(t) + cC u̇1(t)] (dh + h1) due to the inertial forces and to the visco-elastic ones of the inter-
nal coupling device. It should be noted that as long as the block doesn’t tilt, there’s no stroke for
the external device, thus its contribution to MO is null (Fig. 2(b)). All these moments are evaluated
with respect to the base point A (Fig. 2(a)). By vanishing the sum of the two previous moments, it is
possible to obtain the external acceleration ẍg able to uplift the block. Such an acceleration reads:

ẍg = g
λ + [kCu1(t)+cC u̇1(t)](dh+h1)

Mhb
(11)

where λ = hb/b is the slenderness of the block. In absence of the coupling with the device, the uplift
condition is the same of a stand-alone block.

During the rocking motion, when the rotation ϑ(t) approaches zero, an impact between the block
and the ground occurs. Post-impact conditions of the rocking motion can be found assuming that
the impact happens instantly, the body position remains unchanged, and the angular momentum is
maintained. This condition can be expressed as (JO − 2bSy)ϑ̇

− = JOϑ̇
+, where JO is the polar

inertia of the block with respect to one of the two base corners A or B; Sy = Mb is the static moment
of the block with respect to a vertical axis passing through one of the two base corners (after some
algebra the conservation of the angular momentum becomes as in Housner (1963)). Since the block
is symmetric, it follows JO = JA = JB , then the impact conditions referring to a block that after an
impact re-uplifts around the corner A or B are equal. Superscript (·)− and superscript (·)+ denote
pre- and post-impact quantities, respectively. From the conservation of the angular momentum, the
maximumvalue of the post-impact angular velocity ϑ̇+ can be obtained as a function of the pre-impact
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angular velocity ϑ̇−. The post-impact angular velocity that is considered in the numerical simulations
is equal to ϑ̇+ = η [(JO−2b Sy)/JO]ϑ̇

− where η is a coefficient less than unity, introduced to include
a further loss of mechanical energy. In the analyses, the value of η is fixed (η = 0.9) (Aghagholizadeh
and Makris (2018), Makris and Aghagholizadeh (2017)).

3.3 Linearized equations of motion

As a support for the interpretation of the results, a comparison will be be performed with the
outcomes of a linearized formulation, based on the hypotheses of small rotations ϑ and small damping
for all the dash-pots. The linearised equations of motion of the coupled, undamped, homogeneous
system are obtained by expanding in McLaurin series up to the first order the non-linear equations of
motion Eq. (8), with respect to the Lagrangian parameters u1, u2 and ϑ . The equations below refers
to the rocking of the block around the left corner A and read:

M�X+KX = 0 (12)

where

M =

 m1 0 0
0 m2 0
0 0 JA

 ; X =


u1
u2
ϑ


K =

 k1 + k2 + kC −k2 (dh + h1)kC
−k2 k2 0

(dh + h1)kC 0 −hbMg + d2ekE + (dh + h1)
2kC

 (13)

The frequencies and the modes of the coupled system are obtained by solving the following eigen-
problem:

(K− ω2M)U = 0 (14)

where ω is the eigenvalue (linearised circular frequency) of the system and U is the eigenvector
(vibration mode). It can be demonstrated that for dimensions of the block of practical interest, the
positive definiteness of the stiffness matrix K is always guaranteed. The linearised system admits
then three frequencies (real and positive) and three modes.

The linearised equations of motion referring to the block that rocks around the right corner B are
exactly equal to Eq. (12) and Eq. (13). Formally, only the term JA in the mass matrix M (Eq. (13))
change in JB . However, due to the assumed symmetry of the block, it follows that JA = JB (i.e. the
polar inertia of the block around the two base corners are equal).

4. Parametric analysis

An extensive parametric analysis is performed to investigate the behaviour of the coupled system
by numerically integrating the equations of motion. Special care is devoted to the detection of the
impacts of the block. In the performed analyses, the block never exceeds the critical angle αC =
arctan(b/hb) (i.e. the centre C of the block is inside the vertical projection of the base, thus no
overturning occurs).

In the parametric analyses, the 2-DOF model refers to two building frames with different charac-
teristics. The first one is small building of three equal stories, each one of surface of 100,00m2. The
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Table 1 Characteristics of the two buildings

Stories Connection Level Story surface Story massms Story height
3 1 100 m2 120.6x10^3 kg 3 m
5 2 250 m2 301.5x10^3 kg 3 m

Table 2 Characteristics of the 2 d.o.f. representing the buildings ( ωunc is the circular frequency of the first
mode of the uncoupled system.)

Stories k1 (N/m) k2 (N/m) m1 (kg) m2 (kg) ωunc (rad/s-1) ξ

3 2.194415x108 9.404636x107 120.6x103 241.2x103 16.02 0.05
5 7.641287x108 1.819354x108 241.2x103 361.8x103 10.65 0.05

second building has five equal stories of surface of 250,00m2. Both the buildings have the inter-story
height of 3.0m. The displacement u1 refers to the story where there is the connection with the block
(sub-structure). The displacement u2 represents the displacement of the highest story of the struc-
ture (super-structure). The values of the stiffness, k1 and k2, are evaluated by using the procedure
in Fabrizio et al. (2017b, 2019, 2017a). In Table 1 are shown the main characteristics of the two
considered buildings, whereas in Table 2 are reported the main characteristics of the 2-DOF systems,
representing the two buildings.

The harmonic excitation used in the analyses is ẍg(t) = As sin (Ωt) , 0 ≤ t ≤ tmax, where
Ω = 2π/Ts is the circular frequency Ts is the period of the harmonic cycle, As is its amplitude and
tmax is the maximum time used in the numerical integrations (tmax = 25Ts). Since the mechanical
system is non-linear, its behaviour depends on the amplitude As of the excitation. However, some
preliminary tests showed that, for values of the block rotation sufficiently smaller than the critical
angle αC , the dependence of the motion on the amplitude itself is minimal. Hence, in the numerical
simulations, the amplitude is fixed at As = 5.0m/s2.

The following parametrization is used to improve the understanding of the results:

kC = β k1, kE = γ k1 (15)

4.1 Numerical integration

The numerical integration of the equations of rocking motion Eq. (9) and Eq. (A.1), taking into
account the uplift conditions Eq. (11) and Eq. (A.3) and the impact conditions, is performed by an
original code developed by the same Authors of this paper.

The procedure is programmed to detect, from the first step of integration, the achievement of
the uplift condition expressed by Eqs. (11) or (A.3). As long as these conditions are not verified,
only the equations of motion for the sole 2-DOF are integrated. Then, once the block starts to uplift
according to Eqs. (11) or (A.3), the algorithm starts with the integration of equation Eq. (9) for the
rocking around the left corner A or Eq. (A.3) for the rocking around the right corner B, assuming as
initial conditions for the 2-DOF, the values of u1, u2 and u̇1, u̇2 obtained at the end of the previous
integration step.

After each integration step i, a check is made on the rocking angle ϑ. If ϑti−1 ∗ ϑti < 0, it means
that an impact has occurred and the algorithm switches from a set of rocking equations to the other one
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by reducing the post-impact angular velocity ϑ̇+ = η [(JO − 2b Sy)/JO]ϑ̇
−, as already explained in

Section 3.2 - Uplift and impact conditions. During the integration two checks are performed to stop
the integration procedure. One of these, stops the numerical integration if the final time tmax is
reached; the other checks if an overturning of the the block occurred.

The code is developed in Mathematica® environment and makes use of the built-in integration
function NDSolve (http://www.wolfram.com/mathematica/ ) to integrate numerically the equations of
motion. The function NDSolve automatically transforms the equations Eq. (9) and Eq. (A.1) in a nor-
mal form system of first-order ordinary differential equations. The classical four-order Runge-Kutta
method is selected as internal integration method. The time step used in the numerical integration is
∆t = 0.001s, that assures a good accuracy in the evaluation of the times at which an impact occurs.

4.2 Gain coefficients

The displacement u1 and the overall drift u2 − u1 are used as indicators to evaluate the dynamic
performance of the system. The smaller u1 and u2 − u1 are, the greater is the effectiveness of the
coupling with the block. As done in Fabrizio et al. (2017b), two gain parameters are then introduced:

α1 =
max |u1(t)|
max |ũ1(t)|

, α2 =
max |u2(t)− u1(t)|
max |ũ2(t)− ũ1(t)|

(16)

where the displacements ũ1 and ũ2 refer to the uncoupled bare frame structure. If the parameters
of Eq. (16) are less than unity, the coupling between the frame structure and the rocking block is
beneficial for the frame structure. An extensive parametric analysis is performed with the aim to
build gain maps that represent the values of α1 and α2 in specific parameters planes.

4.3 The role of the coupling visco-elastic device

The first parametric analysis investigates the influence of the coupling visco-elastic device (i.e., the
internal deviceCD) on the motion of the structure. In this analysis, the external device ED connecting
the block with the ground is neglected (kE = cE = 0, see Fig.2). The parameters that are varied in
the analysis are the base of the block, 2b, and the stiffness ratio β of the coupling device (Eq. (15)).
The range of variation of the block base 2b goes from 2b = 0.2m to 2b = 2.0m. These values
correspond to blocks with massM that ranges from about 4% to 40% of the total mass of the 2-DOF
system. The stiffness of the coupling device varies from 0.1% to 9% of the stiffness k1 of the first
story of the system. The viscous damping is initially neglected (cC = 0).

4.3.1 Coupling device with no damping
The first case here discussed regards the coupling between the 2-DOF representing a three stories

frame structure and the block (first row of Table 1 and Table 2). The following geometrical parameters
are taken fixed: d = 1m,h1 = 3m (see Fig. 2(a)). It can be demonstrated that the presented results
are generally independent from the specific value of d, provided that the rotations of the block are
small and that the stiffness kC is itself independent from the length of the elastic device. Such an
aspect, that equally applies for the external device, can be grasped from Eq.(6), were the potential
energy is affected by the variation of length of the device rather than by its initial length.

Fig. 3(a) shows the main characteristics of the coupled system, whereas in Fig. 3(b), the gain
maps of the parameters α1 and α2 are organized in such a way that each row refers to a different
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circular frequency of the harmonic excitation. Inside the light grey regions, the gain parameters are
less than unity. Hence, these regions, which are named gain regions, represent combinations of the
parameters for which the coupling with the rigid block is beneficial for the structure. As it is possible
to observe, the extent of such regions depends on the frequency of the excitation. Inside this regions,
the efficiency of the coupling with the block, measured by the gain parameters, strongly depends on
the frequency as well. In particular, the lowest values (i.e. the best performance of the protection
device) occurs for Ω = 15 rad/s, where the gain can reach 25% (α2 = 0.75). In other words, the
coupled system exhibits a maximum drift smaller than the maximum drift of the uncoupled system
of 25%. The comparison with the linearised formulation will help to enlighten these results.

Fig. 4 shows the time-histories of u1, u2 − u1 (drift) and ϑ, referring to point A labelled in the
gain maps of Ω = 15rad/s of Fig. 3. Specifically, Fig. 4(a) shows the comparison between the drift
u2 − u1 of the coupled (thick line) and uncoupled (thin line) systems. Since the point A is inside the
gain region, the coupled system outperforms the uncoupled one (i.e. it has smaller displacements).
Instead, Fig. 4(b) shows the displacement u1 (thin line) and the rotation ϑ (thick line). After the first
oscillations, the motions of the mass m1 and the block synchronize. Given the positive directions
of the displacement u1 and the rotation ϑ, which are shown in Fig. 2(a), the mass m1 and the block
synchronize in counter phase. In this case, the block works as a tuned mass damper for the frame
structure.

In order to understand the real work of the coupled system, the linearised frequencies of the me-
chanical system are analysed. They are obtained by solving the eigenproblem of Eq. (14). With
reference to an harmonic excitation with circular frequency Ω = 15rad/s, the eigenvalues and the
eigenvectors of the system are obtained for systems having the characteristics labelled A, B and D
in Fig. 3(b). Fig. 5 shows the results of such an analysis. Specifically, at the top of the figure, the
circular frequency and the first mode shape of the uncoupled system are shown. Below, along the
three columns, each one referring to a different point A, B and D, the circular frequency and the
mode shape of the three modes of the coupled system are shown, as well. As can be observed in
Fig. 3(b), point A refers to a good performance of the system, since it is located close to a relative
minimum of both the gain maps. At this point, the frequency of the excitation Ω = 15rad/s is quite
close to the frequency of the first mode of the uncoupled system and to the frequency of the second
vibration mode of the coupled system as well. It is worth observing that in the second coupled mode
the displacement of the connection point of the frame and the block are in counter phase. Hence, in
this case the harmonic excitation, being in quite resonance with the uncoupled system, maximize its
displacements; at the same time the closeness between the harmonic frequency and the one of the
second mode of the coupled system, encourage the working as tuned mass damper of the block, min-
imizing the displacements of the frame. When a change of the mechanical characteristics of system
is made, moving from point A to B and C, the spectral characteristics of the coupled system change
as well. For example, at pointB, that is out the gain region of the maps, the first mode of the coupled
system acquires a frequency very close to the one of the excitation. In this case, the excitation is in
quite resonance condition with a coupled mode where the frame displacements and the block are in
phase. In such a way, the coupling is not able to minimize the displacement of the frame. It is in-
teresting to observe that in the second coupled mode the frame structure and the block are in counter
phase yet. Moving to the point D the situation further worsen, since both in the first and the second
coupled modes, the frame and the block oscillate in phase.
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As further example, the same parametric analysis performed to obtain the gain maps of Fig. 3 is
conducted for a 2-DOF. representing a five stories frame (second row of of Table 1 and Table 2). The
following geometrical parameters are taken fixed: d = 1m,h1 = 6m (see Fig. 2(a)). In Fig. 6(a)
the main characteristics of the coupled system are shown, whereas in Fig. 6(b) several gain maps,
referring to different frequencies of the harmonic excitation, are reported. As can be observed, gain
regions exist also in this case. The extent of such regions depends on the frequency of the excitation,
as well as the efficiency of the coupling, measured by the smallness of the gain parameters α1 and
α2, strongly depends on the harmonic frequency. The action of the coupling system can be explained
in a similar way, already described in Fig. 5.

4.3.2 Coupling device with damping
Finally the effects of the viscous damping of the coupling device is investigated. With reference

to the system’s characteristics labelled A in Fig. 3(b), whose resulting time-histories are shown in
Fig. 4, the effects of an increasing viscous damping are analysed. The coefficient cC (see Fig. 2(a))
is parametrized with respect to the damping coefficient of the frame c1. In Fig. 7(a) the time evolu-
tion of the displacement u1 and of the angle ϑ are shown in the same graphs, for different damping
coefficients of the coupling device. As it can be observed, to an increase of the damping corresponds
a decrease of the rocking amplitude of the block and, more important, a rephasement of the frame
and the block motions. As a consequence, the operation as tuned mass damper of the block reduces
by increasing the coupling damping. This fact is confirmed by the gain maps shown in Fig. 7(b). By
comparing these maps with the ones in Fig. 3(b) (for Ω = 15rad/s), it is evident how the damping
reduce both the extent of the gain regions and the efficiency of the coupling, since the values of α1

and α2 grow up in whole parameter plane with respect to the case without damping.
In order to better investigate the role of the coupling damping cC , in Fig. 8 the α2 gain maps,

represented in the parameters plane β−cC/c1, are shown for different frequencyΩ. They are obtained
by fixing the base of the block (b = 0.5m) and varying both β and the ratio between cC and c1. As
can be observed, for each frequency of the harmonic excitation, to an increase of the damping cC
(here parametrized with respect to c1) a reduction of the effectiveness of the coupling occurs. In fact,
the best performances of the system, measured by the smallness of the gain coefficient α2, occur very
close to the origin, where cC = 0.
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4.4 The role of both coupling and external visco-elastic devices

This Section investigates the effects on the motion of the frame structure of the external device of
stiffness kE and damping cE , together with the coupling device (Fig. 2(a)).

The block base is always taken 2b = 1.0m, corresponding to a block with mass M equal to
about the 20% of the total mass of the system. The parameters that are varied in the analysis are the
stiffness ratio β of the coupling device and the stiffness ratio γ of the external device (Eq. (15)). Both
the stiffness varies in a range that goes from 0 to 20 times the stiffness of the first story k1.
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Fig. 6 Gain maps: (a) coupling scheme of the system representing a five stories frame and (b) gain maps for
different circular frequencies of the harmonic excitation

It is worth observing that the effects of the external device can be achieved through different other
types of devices. For example, the connection of the rocking block with the ground can be performed
by using pre-stressed tendons as in Makris and Zhang (2001) or visco-elastic devices connecting the
base corners of the block and the ground (Palmeri and Makris (2008)).

Initially, the viscous damping of such device is neglected (cE = 0).
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4.4.1 External device with no damping
As a first instance, the coupling between the 2-DOF representing a three stories frame structure

and the block (first row of Table 1 and Table 2) is evaluated with the following geometrical parameters
being fixed: a = d = 1m, b = 0.5m, dh = de, h1 = 3m (see Fig. 2(a)) and hence no variability of
the dimensions of the block is considered.

Fig. 9(a) shows the main characteristics of the coupled system, whereas in Fig. 9(b), the gain
maps of the parameters α1 and α2 are organized as in Fig. 3. Inside the gain regions the combination
of the coupling parameters is beneficial for the structure. The extent of such regions depends on
the frequency of the excitation. Inside this regions, the efficiency of the coupling with the block,
measured by the gain parameters, strongly depends on the frequency as well. In particular, the lowest
values (i.e. the best performance of the protection device) occurs for Ω = 15 rad/s. As can be
observed, for each values of the excitation frequencyΩ, along the x-axis (i.e., for γ = 0) to very high
values of β (high values of kC) always correspond no advantages for the coupled system. Hence, a
perfectly rigid or a quite rigid connection between the frame and the block never corresponds to a
dynamic improving of system behaviour.

In Fig. 10 the time-histories of u1, u2 − u1 (drift) and ϑ, referring to point labelled E in the
gain maps of Ω = 15rad/s of Fig. 9, are reported. Specifically, Fig. 10(a) shows the comparison
between the drift u2 − u1 of the coupled (thick line) and the uncoupled (thin line) systems. Also in
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this case, the presence of the block improves the dynamics of the frame structure. Fig. 10(b) shows
the corresponding displacement u1 (thin line) and rotation ϑ (thick line). In this case, for the given
positive directions of the displacements, the mass m1 and the block oscillate in phase. Hence, the
main contribution to the improvement of the dynamics of the coupled system is provided by the
external device.

The effectiveness of the coupling system is related mainly to two frequencies. Specifically, one
is the frequency of the uncoupled system ωunc (see Table 2), the other is the frequency of the stand-
alone super-structure of the coupled system ω2 =

√
k2/m2 (ω2 = 19.75 rad/s). It is interesting

to observe that along the diagonal of the gain maps of Fig. 9(b), the main frequency of the coupled
system goes from the value ωunc (for β = γ = 0) to the value ω2 (for β → ∞, γ → ∞).

Three different cases can occur: (i) if Ω < ωunc, the frequency of the external excitation is closer
to the uncoupled system one than to the frequency of the coupled system. In such a case, being the
original system the more excited one, it results an advantage from the coupling with the block (see
gain maps for Ω = 12.5 and Ω = 15.0 of Fig. 9(b)). Other case occurs when (ii) ωunc < Ω < ω2.
In this case, in the region of the parameters plane β − γ corresponding to frequencies of the coupled
system close to the excitation one, no advantages occur since the coupled system is more excited than
the uncoupled one. However, in the same parameter plane can exist gain regions sufficiently far from
the previous one (see gain maps forΩ = 17.5 of Fig. 9(b)). The third case (iii) occurs when Ω > ω2.
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Fig. 9 Gain maps: (a) coupling scheme of the system representing a three stories frame and (b) gain maps for
different circular frequencies of the harmonic excitation (E ≡ (β = 2; γ = 2))

It can be demonstrated that in this last case the coupling is never effective.
As further example, a case regarding the coupling between the 2-DOF representing a five stories

frame structure ad the block (second row of Table 1 and Table 2) is discussed. The following geo-
metrical parameters are taken fixed: a = d = 1m, b = 0.5m, dh = de, h1 = 6m (see Fig. 2(a)).
Fig. 11(a) shows the main characteristics of the coupled system, whereas in Fig. 11(b), the gain maps
of the parameters α1 and α2 are organized in such a way that each row refers to a different circular
frequency of the harmonic excitation. Once again the maps show the direct influence of the frequency
of the excitation upon the extent of the gain zones and on the efficiency of the coupling. The working
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of the coupled system can be interpreted as explained above for the 2-DOF model representing a
three stories frame.
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4.4.2 External device with damping
In this section the effects of the damping of the external device cE is investigated. Since when

both the coupling and the external devices are present, the frame and the block move in phase, it
is expected that the coupling device works less than the external one. Hence, the attention will be
focused only on the damping of the external device and it is taken cC = 0.

In Fig. 12(a) two α2 maps, referring to a 2-DOF that represents a three-stories frame are shown.
They are both obtained for a circular frequency of the external excitation Ω = 17 rad/s, never used
before. The twomaps of Fig. 12(a refer to two different value of damping coefficient cE (parametrized
with respect to the damping coefficient c1). From the two maps, it is possible to observe that the
presence of damping makes the gain region more regular. Moreover, the no advantage region (dark
grey region) becomes smaller than the case without damping. The length of the two segment ∆γ0
and ∆γ1, in correspondence of a fixed β = 10, can be taken as measure of the extension of the dark
grey region. The damping slight reduces this segment. In order to confirm this improving effect of
the damping cE , another parametric analysis is performed, whose results are shown in the maps of
Fig. 12(b). It refers to the α2 gain parameter, plotted in the parameter plane cE/c1 − γ, for fixed β
(β = 10). Along the vertical dashed lines, passing for cE = 0 and cE = 5c1, it is possible to read
the segments ∆γ0 and ∆γ1 of the maps in Fig. 12(a). The decreasing of the vertical extent of the
dark region, that occurs increasing the damping, shows that cE has positive effects on the coupled
system behaviour. The slight slope of the level curves of the map, also shows the small positive
effects that the damping has on the gain parameter α2. In fact, by proceeding along an horizontal line
(γ = const.), a slight decreasing of the α2 values occurs.

4.5 Final remarks

The summary of the previous results provides clear information about the range of the parameters
and the working conditions for which the coupling with a rocking wall is beneficial for the system.

First, the case where only the coupling device is present, is considered. The followingmain aspects
can be pointed out. Specifically:
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• The efficiency of the coupling proves to be higher for block with a sufficiently high base. For
very small values of the base 2b, the coupling is almost never beneficial for the system (see
Fig. 3 and Fig. 6);

• A higher base 2b requires a higher stiffness of the coupling device; however the stiffness ratio
β that assures a good response of the coupled system is always sufficiently small (β < 0.09);

• From the previous analyses it can be asserted that the coupling works well when the frequency
of the harmonic excitation is close to the one of the vibration mode where the wall and the
first story moves in counter phase, thus assuring the working as tuned mass damper of the
wall; since in general the frequency of such a mode is greater than the first frequency of the
uncoupled system, the presence of the block assures the most beneficial effects for excitation
frequencies higher than the first frequency of the uncoupled system.

Second, the case where both the coupling and the external devices are present, is considered. The
following main aspects can be point out. Specifically:

• For all the considered base lengths 2b, very high values of the stiffness ratios β and γ are
necessary to assures good performances of the coupled system (see Fig. 9 and Fig. 11); in
general both the stiffness kC and kE have to be higher than the stiffness of the first story of the
system k1;

• From the previous analyses it can be asserted that the coupling works well when the frequency
of the harmonic excitation is close or smaller than the first frequency of the uncoupled sys-
tem; contrarily to the previous case, here the coupling assures the most beneficial effects for
excitation frequencies smaller than the first frequency of the uncoupled system.

5. Conclusions

In the paper, a frame structure coupled with a rocking rigid block has been considered with the
aim to improve the dynamics of the frame. The multi-story frame has been modelled as a two degree
of freedom system that is connected to the block through a linear visco-elastic device. The model
also includes a second visco-elastic device that connects the block to the ground. The non-linear
equations of motion have been obtained by a Lagrangian approach and successively numerically
integrated to analyse the behaviour of the coupled system. The coupling with the block has been
considered beneficial for the frame structure when there is a reduction of the displacements of the
structure. Simulations have been performed considering a harmonic excitation. The results of an
extensive parametric analysis have been summarized in gain maps plotted in different planes of the
system’s parameters. The maps provide the ratio between the maximum displacement (or the drift) of
the coupled system and the maximum displacement (or the drift) of the frame structure not coupled
with the block. A ratio less than unity highlights the effectiveness of the block in improving the
dynamics of the frame structure. Results have shown that the presence of the rocking rigid block
improves the dynamics of the structure in two cases. In the first case, when only the internal coupling
device is present, the block works as a tuned mass damper for the structure. This happens for very
low values of the stiffness of the internal coupling device. In the second case, when both the devices
are present, the block oscillates in phase with the bottom part of the structure. The resulting dynamics
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is similar to the one that would be obtained increasing the mass and stiffness of the degree of freedom
related to the bottom part of the frame structure, connected with the block.

In both cases, it is possible to improve the behaviour of the frame structure in wide ranges of the
parameters’ values.
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A. Equations of motion for rocking of the block around the right corner

Equations of motion for rocking of the block around the right corner read:

kC (2b cos θ − 2b− d+ (dh + h1) sin θ + u1)×Q3+

cC

(
θ̇ ((dh + h1) cos θ − 2b sin θ) + u̇1

)
+ (c1 + c2) u̇1−

c2u̇2 + (k1 + k2)u1 − k2u2 +m1 (ẍg + ü1) = 0
−−−−−−−−−−−−

c2 (u̇2 − u̇1) + k2 (u2 − u1) +m2 (ẍg + ü2) = 0
−−−−−−−−

dekE(a cos θ + de sin θ)×Q4+
kC

(
sin θ

(
2b(2b+ d)− 2bu1 + dh

2 + h1 (2dh + h1)
))

×Q3−
kC ((d− u1) (dh + h1) cos θ)×Q3+

4b2cC θ̇ + θ̈JB − 2bcC sin θu̇1 − bgM cos θ + bM sin θẍg + cEde
2θ̇+

cCdh
2θ̇ + 2cCdhh1θ̇ + cCdh cos θu̇1 + cCh

2
1θ̇ + cCh1 cos θ̇u1−

ghbM sin θ − hbM cos θẍg = 0

(A.1)

where:

Q3 =

√√√√ 8b2 − 2 cos θ
(
2b(2b+ d)− 2bu1 + dh

2 + h1 (2dh + h1)
)
+ 4bd− 4bu1+

d2 − 2 (d− u1) (dh + h1) sin θ − 2du1 + 2dh
2 + 4dhh1 + 2h21 + u21

−d


√√√√ 8b2 − 2 cos θ

(
2b(2b+ d)− 2bu1 + dh

2 + 2dhh1 + h21
)
+ 4bd− 4bu1+

d2 − 2 (d− u1) (dh + h1) sin θ − 2du1 + 2dh
2 + 4dhh1 + 2h21 + u21

−−−−−−−−

Q4 =

(√
a2+2ade sin θ−2de

2 cos θ+2de
2−a

)
√

a2+2ade sin θ−2de
2 cos θ+2de

2

(A.2)
Finally, the uplift condition around the right corner B reads:

ẍg = − g

λ
+

[kCu1(t) + cC u̇1(t)] (dh + h1)

Mhb
(A.3)
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