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Abstract.  This investigation is focused on the variations in transversely isotropic thick circular plate due to 

time harmonic thermomechanical sources. The homogeneous thick circular plate in presence and absence of 

energy dissipation and two temperatures has been considered. Hankel transform is used for solving field 

equations. The analytical expressions of conductive temperature, displacement components, and stress 

components are computed in the transformed domain. The effects of frequency at different values are 

represented graphically. Some specific cases are also figured out from the current research. 
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1. Introduction 
 

Classical theory (CT) of elasticity is concerned with the systematic study of the stress and 

strain distribution that develops in an elastic body due to the application of forces or change in 

temperature. Thermoelasticity in presence of two temperatures represents an overview of both 

theories i.e., theory of heat conduction and theory of elasticity in solids. Temperature changes 

cause thermal effects on materials like thermal stress, strain, and deformation. Thermal 

dependency is the primary contrast of thermoelasticity concerning to the classical theory of 

thermomechanics. It may also be mentioned that modern laminated media which are being used 

more and more in engineering and other applications, behave anisotropically locally (thermally 

and elastically). Thus, there is imperative need to consider the anisotropic media particularly 

transversely isotropic. However, due to a greater number of elastic and thermal coefficients 

involved, there are not so many solutions available as there are for isotropic media. 

Chen et al. (1968a, 1968b, 1969) formulated a two-temperature thermoelasticity of deformable 

bodies for the conduction of heat depending on two types of temperatures. Green and Naghdi 

(1991, 1992, 1993) dealt with the linear and the nonlinear theories of thermoelastic body in 

presence and absence of energy dissipation. Three novel thermoelastic theories were proposed by 

them, based on entropy equality. Their theories are known as thermoelasticity type I theory, the 

thermoelasticity type II theory (i.e., thermoelasticity without energy dissipation) and the 
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thermoelasticity type III theory (i.e., thermoelasticity with energy dissipation). On linearization, 

type I becomes the classical heat equation whereas on linearization type-II as well as type-III 

theories gives finite speed of thermal wave propagation. 

Keivani et al. (2014) discussed the forced vibration problem of an Euler-Bernoulli beam with a 

semi-infinite field by considering it a BVP in the frequency domain. Tripathi et al. (2015) 

presented the effect of axisymmetric heat supply for diffusion in an infinite as well as finitely thick 

thermoelastic copper plate with relaxation time. Delfim et al. (2015) presented a coupled FEM-

BEM strategy for elastodynamic problems having infinite-domain models and complex 

heterogeneous media by using frequency domain analyses and an iterative FEM-BEM coupling 

technique. In addition, Kumar et al. (2016) had explored of variations due to thermomechanical 

sources (concentrated and distributed) using Laplace and Fourier transform technique in a 

transversely isotropic thermoelastic homogeneous medium in presence of rotation and two 

temperatures. Alzahrani (2016) investigated 2D generalized magneto-thermoelastic of a fiber-

reinforced anisotropic material problem under GN theory- III type. Tripathi et al. (2016) presented 

the thermoelastic diffusion interactions in a thick circular copper material plate. Kumar and 

Sharma (2017) investigated transmission and reflection of plane waves at an elastic and piezo 

thermoelastic solid half space with fractional order derivative. Vinyas et al. (2017) discovered a 

multiphysics behaviour of magneto-electro-elastic (MEE) cantilever beam using thermo-

mechanical loading. Moreover, Kumar et al. (2017) investigated the homogeneous isotropic 

thermoelastic thick circular plate with dual phase lags and two temperatures. Akbaş (2017) study 

the nonlinear static deflections of functionally graded (FG) porous under thermal effect using total 

lagrangian FEM within 2D continuum model in the Newton-Raphson iteration method. 

Kumar et al. (2017) investigated the Rayleigh waves in a homogeneous transversely isotropic 

magneto-thermoelastic in the presence of two temperature, Hall current and rotation. Kant and 

Mukhopadhyay (2017) studied the thermoelastic effect of axisymmetric temperature distribution 

applied on infinitely extended thick plate using GN-I, GN-II, dual phase-lag and GL models and 

under memory-dependent generalized thermoelasticity. Kumar et al. (2017) presented the effect of 

plane harmonic waves in a thermoelastic medium in presence of two-temperature thermoelasticity 

and two relaxation parameters. Navarro et al. (2018) proposed a fully coupled thermodynamic 

oriented transient finite element formulation for magnetic, electric, mechanic and thermal field’s 

interactions. Despite of this several researchers worked on different theory of thermoelasticity as 

Marin (1997), Marin (2008), Marin (2016), Marin and Baleanu (2016), Ezzat et al. (2016), Ezzat 

et al. (2015), Ezzat and El-Bary (2016, 2017), Ezzat et al. (2017). 

A lot of research had been carried out by the various researches in different fields of 

thermoelasticity to remove the limitations of the classical coupled theory (CCT) of 

thermoelasticity i.e., poor description of thermoelastic behaviour at low temperature and infinite 

speed of propagation of thermoelasticity deformation. Inspite of these, not much work has been 

carried out in study of the deformation due to time harmonic thermomechanical sources. The 

deformation at some point of the medium is beneficial to dissect the deformed field near mining 

shocks, seismic and volcanic sources; thermal power plants, high-energy particle accelerators, and 

many emerging technologies. In this paper, we have attempted to study the deformation in 

transversely isotropic thick circular plate due to mechanical and thermal sources by considering 

the disturbances harmonically time-dependent. The expressions of displacement components, 

conductive temperature and stresses components due to time harmonic thermomechanical sources 

over the circular region are calculated in transformed domain by using the Hankel transform. 

Numerical inversion technique is used to find the resulting quantities in the physical domain and 
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effects of frequency at different values have been represented graphically. 

 

 

2. Basic equations 
 

The field equations and basic relations for an anisotropic thermoelastic medium in Green-

Naghdi type-III theory in absence of heat source and body forces following Chandrasekharaiah 

(1998), Youssef (2011) and Green and Naghdi (1992) are 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇, (1) 

𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙,𝑗 − 𝛽𝑖𝑗𝑇,𝑗 = 𝜌 �̈�𝑖, (2) 

𝐾𝑖𝑗𝜑,𝑖𝑗 + 𝐾𝑖𝑗
∗ �̇�,𝑖𝑗 = 𝛽𝑖𝑗𝑇0ё𝑖𝑗 + 𝜌𝐶𝐸�̈�, (3) 

Where 

𝑇 =  𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗, (4) 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗, (5) 

𝑒𝑖𝑗 = 
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),     𝑖, 𝑗 = 1,2,3. (6) 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 , 𝐾𝑖𝑗
∗ = 𝐾𝑖

∗𝛿𝑖𝑗 , i is not summed, 

 

 

3. Formulation of the problem 
 

We take a transversely isotropic thick circular plate with thickness 2b covering the area D 

given by 0 ≤ 𝑟 ≤ ∞ ,−𝑏 ≤ 𝑧 ≤ 𝑏 and an axisymmetric heat source is used on its axial and radial 

direction. We take a cylindrical polar co-ordinate system (𝑟, 𝜃, 𝑧) with symmetry about Z-axis. 

The initial temperature in the transversely isotropic thick circular plate is assumed by a constant 

temperature  𝑇0  and heat flux 𝑔0𝐹(𝑟, 𝑧) prescribed on the lower and upper surfaces. For the 

axisymmetric plane, the field component(𝑣 = 0), and (𝑢, 𝑤, 𝑎𝑛𝑑 𝜑) are independent of 𝜃 and our 

research become 2D problem with �⃗� = (𝑢, 0, 𝑤). In addition, the equations for transversely 

isotropic thermoelastic solid without energy dissipation and with two temperature, using the proper 

transformation on Eqs. (1)-(3) following Slaughter (2002) are as under 

𝐶11 (
𝜕2𝑢

𝜕𝑟2 + 
1

𝑟

𝜕𝑢

𝜕𝑟
− 

1

𝑟
𝑢) + 𝐶13 (

𝜕2𝑤

𝜕𝑟𝜕𝑧
) + 𝐶44

𝜕2𝑢

𝜕𝑧2 + 𝐶44 (
𝜕2𝑤

𝜕𝑟𝜕𝑧
) − 𝛽1

𝜕

𝜕𝑟
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 +

 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2 } =  𝜌
𝜕2𝑢

𝜕𝑡2 , 
(7) 

(𝐶11 + 𝐶44) (
𝜕2𝑢

𝜕𝑟𝜕𝑧
+

1

𝑟

𝜕𝑢

𝜕𝑧
) + 𝐶44 (

𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
) + 𝐶33

𝜕2𝑤

𝜕𝑧2 − 𝛽3
𝜕

𝜕𝑧
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) −

𝑎3
𝜕2𝜑

𝜕𝑧2 } = 𝜌
𝜕2𝑤

𝜕𝑡2 , 
(8) 
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(𝐾1 + 𝐾1
∗ 𝜕

𝜕𝑡
) (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) + (𝐾3 + 𝐾3

∗ 𝜕

𝜕𝑡
)

𝜕2𝜑

𝜕𝑧2 = 𝑇0
𝜕2

𝜕𝑡2 (𝛽1
𝜕𝑢

𝜕𝑟
+ 𝛽3

𝜕𝑤

𝜕𝑧
) + 𝜌𝐶𝐸

𝜕2

𝜕𝑡2 {𝜑 −

𝑎1 (
𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2}. 
(9) 

Essential equations for transversely isotropic medium are 

𝑡𝑟𝑟 = 𝑐11𝑒𝑟𝑟 + 𝑐12𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇, (10) 

𝑡𝑧𝑟 = 2𝑐44𝑒𝑟𝑧, (11) 

𝑡𝑧𝑧 = 𝑐13𝑒𝑟𝑟 + 𝑐13𝑒𝜃𝜃 + 𝑐33𝑒𝑧𝑧 − 𝛽3𝑇, (12) 

𝑡𝜃𝜃 = 𝑐12𝑒𝑟𝑟 + 𝑐11𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽3𝑇, (13) 

where 

𝑒𝑟𝑧 = 
1

2
(
𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑟
) , 𝑒𝑟𝑟 =

𝜕𝑢

𝜕𝑟
, 𝑒𝜃𝜃 = 

𝑢

𝑟
, 𝑒𝑧𝑧 =

𝜕𝑤

𝜕𝑧
, 

𝑇 =  𝜑 − 𝑎1 (
𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2 , 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 , 𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗   , 

𝛽1 = (𝑐11 + 𝑐12)𝛼1 + 𝑐13𝛼3, 

𝛽3 =  2𝑐13𝛼1 + 𝑐33𝛼3. 

To simplify the solution, mention below dimensionless quantities are used 

𝑟′ = 
𝑟

𝐿
,    𝑧′ = 

𝑧

𝐿
,   𝑡′ = 

𝑐1
𝐿

𝑡,    𝑢′ = 
𝜌𝑐1

2

𝐿𝛽1𝑇0
𝑢, 𝑤′ =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑤,  𝑇′ = 

𝑇

𝑇0
,

  𝑡𝑧𝑟
′ = 

𝑡𝑧𝑟
𝛽1𝑇0

,    𝑡𝑧𝑧
′ = 

𝑡𝑧𝑧
𝛽1𝑇0

,   𝑡𝑟𝑟
′ = 

𝑡𝑟𝑟
𝛽1𝑇0

,     𝜑′ = 
𝜑

𝑇0
,   𝑎1

′ = 
𝑎1

𝐿2
,

𝑎3
′ = 

𝑎3

𝐿2
   . 

(14) 

Assume the time harmonic behaviour as 

(𝑢, 𝑤, 𝜑)(𝑟, 𝑧, 𝑡) = (𝑢,𝑤, 𝜑)(𝑟, 𝑧)𝑒𝑖𝜔𝑡. (15) 

and Hankel transforms defined by 

𝑓(𝜉, 𝑧, 𝑠) =  ∫ 𝑓(𝑟, 𝑧, 𝑠)𝑟𝐽𝑛(𝑟𝜉)𝑑𝑟

∞

0

 (16) 

Using dimensionless quantities defined by (14) in Eqs. (7)-(13) and then stifling the primes and 

utilizing (15) and (16) on the resulting quantities, we obtain 
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(−𝜉2 + 𝜔2 + 𝛿2𝐷
2)�̃� + (1 − 𝜉)𝛿1𝐷�̃� + (−(1 − 𝜉)(1 − 𝑎3𝐷

2) + 𝑎1𝜉
3))�̃� = 0 (17) 

(1 − 𝜉)𝛿1𝐷�̃� + (𝛿3𝐷
2 − 𝜉2𝛿2 + 𝜔2)�̃� −

𝛽3

𝛽1
𝐷(1 + 𝜉2𝑎1−𝑎3𝐷

2)�̃� = 0, (18) 

𝛿6𝜔
2(1 − 𝜉)�̃� +

𝛽3

𝛽1
𝛿6𝜔

2𝐷�̃�

+ (𝛿7𝜔
2(1 + 𝜉2𝑎1−𝑎3𝐷

2)+𝜉2(𝐾1 + 𝛿4𝜔) − 𝐷2(𝐾3 + 𝛿5𝜔))�̃� = 0, 
(19) 

where 

𝛿1 = 
𝑐13 + 𝑐44

𝑐11
, 𝛿2 = 

𝑐44

𝑐11
, 𝛿3 = 

𝑐33

𝑐11
, 𝛿4 = 

𝐾1
∗𝐶1𝑖

𝐿
, 

𝛿5 = 
𝐾3

∗𝐶1𝑖

𝐿
, 𝛿6 = − 

𝑇0𝛽1
2

𝜌
, 

𝛿7 = −𝜌𝐶𝐸𝐶1
2, 𝑖 = √−1  . 

𝑡𝑧�̃� = ∑𝐴𝑖(𝜉, 𝜔)𝜂𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝜇𝑖 𝐴𝑖(𝜉, 𝜔) sinh(𝑞𝑖𝑧) (20) 

𝑡𝑟�̃� = ∑𝐴𝑖(𝜉, 𝜔)𝑑𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + 𝜉 ∑𝐴𝑖(𝜉, 𝜔)𝑞𝑖𝑠𝑖𝑛ℎ(𝑞𝑖𝑧), (21) 

𝑡𝑟�̃� = ∑𝐴𝑖(𝜉, 𝜔)𝑅𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝑆𝑖 𝐴𝑖(𝜉, 𝜔) sinh(𝑞𝑖𝑧), (22) 

  𝑡𝜃�̃� = ∑𝐴𝑖(𝜉, 𝜔)𝑀𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝑁𝑖 𝐴𝑖(𝜉, 𝜔) sinh(𝑞𝑖𝑧), (23) 

where 

𝜂𝑖 = 𝛿9ξ −
β3

β1
(1 + 𝑎1𝜉

2)li −
β3

β1
a3liqi

2, 

𝜇𝑖 = (𝛿9 + 𝛿3𝑑𝑖)𝑞𝑖, 

𝑀𝑖 = (1 +
𝜉

2
) −

β3

β1
(1 + 𝑎1𝜉

2)li +
β3

β1
a3liqi

2, 

𝑁𝑖 = (𝛿8 + 𝛿9𝑑𝑖)𝑞𝑖, 

𝑅𝑖 = 𝛿8 (1 +
𝜉

2
) − 𝑙𝑖(1 + 𝑎1𝜉

2) + a3𝑙𝑖qi
2, 

𝑆𝑖 = 𝑞𝑖(1 + 𝛿3𝑑𝑖),        𝑖 = 1, 2, 3. 

The non-trivial solution of (17)-(19) yields 

(𝐴𝐷6 + 𝐵𝐷4 + 𝐶𝐷2 + 𝐸)(�̃�, �̃�, �̃�) = 0. (24) 
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where 

A = δ2δ3ζ8 − ζ11δ2ζ7, 

B = δ2ζ5ζ8 + δ3ζ1ζ8 + δ2δ3ζ9 − δ2ζ7ζ10 − ζ7ζ1ζ11 − 𝜁2
2ζ8 + ζ2ζ6ζ11 + ζ4ζ7ζ2 − δ3ζ6ζ4, 

𝐶 = ζ1ζ5ζ8 + δ2ζ9ζ5 + δ3ζ1ζ9 − ζ7ζ1ζ10 − ζ2
2ζ9 + ζ2ζ6ζ10 + ζ3ζ2ζ7 − ζ3ζ6δ3 − ζ4ζ6ζ5, 

𝐸 = ζ5ζ1ζ9 − ζ6ζ5ζ3. 

ζ1 = −𝜉2 + 𝜔2, 

ζ2 = 𝛿1(1 − ξ), 

ζ3 = 𝑎1ξ
2 − (1 − ξ), 

ζ4 = a3(1 − ξ), 

ζ5 = 𝜔2−𝜉2𝛿2, 

ζ6 = 𝛿6ω
2(1 − ξ), 

ζ7 = 𝛿6ω
2 β3

β1
, 

ζ8 = −(K3 + 𝛿5ω) − 𝛿7ω
2a3, 

ζ9 = 𝛿7ω
2(1 + 𝑎1𝜉

2 + ξ2(K1 + 𝛿4ω), 

ζ10 = −(1 + 𝑎1𝜉
2)

β3

β1
, 

ζ11 = a3

β3

β1
 

The results of the Eq. (24) can be written in the form 

�̃� =  ∑𝐴𝑖(𝜉, 𝜔)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (25) 

�̃� = ∑𝑑𝑖𝐴𝑖(𝜉, 𝜔)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (26) 

�̃� = ∑ 𝑙𝑖𝐴𝑖(𝜉, 𝜔)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (27) 

where 𝐴𝑖, 𝑖 = 1, 2, 3 being undetermined constants. 

and ±𝑞𝑖(𝑖 = 1,2,3) are the roots of the Eq. (24) and  𝑑𝑖 and 𝑙𝑖 are given by 
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𝑑𝑖 =
𝛿2𝜁8𝑞𝑖

4 + (𝜁8𝜁1 − 𝜁4𝜁6 + 𝛿2𝜁9)𝑞𝑖
2 + 𝜁1𝜁9 − 𝜁6𝜁3

(𝛿3ζ8 − 𝜁7𝜁11)𝑞𝑖
4 + (𝛿3𝜁9 + 𝜁5𝜁8 − 𝜁7𝜁10)𝑞𝑖

2+𝜁5𝜁9
, 

𝑙𝑖 =
𝛿2𝛿3𝑞𝑖

4 + (𝛿2𝜁5 + 𝜁1𝛿3 − 𝜁2
2)𝑞𝑖

2 + 𝜁1𝜁5
(𝛿3ζ8 − 𝜁7𝜁11)𝑞𝑖

4 + (𝛿3𝜁9 + 𝜁5𝜁8 − 𝜁7𝜁10)𝑞𝑖
2+𝜁5𝜁9

. 

 

 

4. Boundary conditions 
 

We contemplate a cubiform thermal source and normal force of unit magnitude with dispersing 

of tangential stress at the stress free surface at z = ±b. scientifically, these can be written as 

𝜕𝜑

𝜕𝑧
=  ±𝑔𝑜𝐹(𝑟, 𝑧), (28) 

𝑡𝑧𝑧(𝑟, 𝑧, 𝑡) = 𝑓(𝑟, 𝑡), (29) 

𝑡𝑟𝑧(𝑟, 𝑧, 𝑡) = 0. (30) 

By putting the values �̃� , 𝑡𝑧�̃� , 𝑡𝑟𝑧̃  from (20)-(20) and (27) in boundary conditions (28)-(30) and 

applying Hankel transform on the resulting equations yields 

∑𝐴𝑖 (𝜉, 𝜔)𝑙𝑖𝑞𝑖𝜗𝑖 = ±𝑔𝑜�̃�(𝜉, 𝑧), (31) 

∑𝐴𝑖(𝜉, 𝜔)𝜂𝑖𝜃𝑖 + ∑𝜇𝑖 𝐴𝑖(𝜉, 𝜔)𝜗𝑖 = 𝑓(𝜉, 𝜔), (32) 

∑𝐴𝑖(𝜉, 𝜔)(𝛿2𝑞𝑖𝜗𝑖 + (1 − 𝜉)𝑙𝑖𝜃𝑖) = 0. (33) 

solving (31)-(33) for 𝐴𝑖, and putting in (25)-(27) and (20)-(23) we get the different components of 

displacement, conductive temperature and stress components as 

�̃� =  
�̃�(𝜉,𝜔)

Δ
{−𝜒1𝜃1 + 𝜒2𝜃2 − 𝜒3𝜃3} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4𝜃1 − 𝜒5 𝜃2 +𝜒6𝜃3}, (34) 

�̃� =      
�̃�(𝜉,𝜔)

Δ
{−𝜒1𝑑1𝜃1 + 𝜒2𝑑2𝜃2 − 𝜒3𝑑3𝜃3} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4 𝑑1 𝜃1 − 𝜒5 𝑑2𝜃2 +𝜒6𝑑3𝜃3}, (35) 

�̃� =
�̃�(𝜉,𝜔)

Δ
{−𝜒1𝑙1𝜃1 + 𝜒2𝑙2𝜃2 − 𝜒3𝑙3𝜃3} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4𝑙1𝜃1 − 𝜒5 𝑙2𝜃2 +𝜒6𝑙3𝜃3}, (36) 

𝑡𝑧�̃� =
𝑓(𝜉, 𝜔)

Δ
{−𝜒1(𝜂1𝜃1 + 𝜇1𝜗1) + 𝜒2(𝜂2𝜃2 + 𝜇2𝜗2) − 𝜒3(𝜂3𝜃3 + 𝜇3𝜗3)}

+
𝑔𝑜�̃�(𝜉, 𝑧)

Δ
{𝜒4(𝜂1𝜃1 + 𝜇1𝜗1) − 𝜒5 (𝜂2𝜃2 + 𝜇2𝜗2)+𝜒6(𝜂3𝜃3 + 𝜇3𝜗3)}, 

(37) 
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𝑡𝑧�̃� =
𝑓(̃𝜉, 𝜔)

Δ
{−𝜒1(𝑙1(1 − ξ)𝜃1 + 𝛿2𝑞1𝜗1) + 𝜒2(𝑙2(1 − ξ)𝜃2 + 𝛿2𝑞2𝜗2)−𝜒3(𝑙3 (1 − ξ) 𝜃3

+ 𝛿2𝑞3𝜗3)}

+
𝑔𝑜�̃�(𝜉, 𝑧)

Δ
{𝜒4(𝑙1(1 − ξ)𝜃1 + 𝛿2𝑞1𝜗1)

− 𝜒5 (𝑙2(1 − ξ)𝜃2 + 𝛿2𝑞2𝜗2)+𝜒6𝑙3 (1 − ξ) 𝜃3 + 𝛿2𝑞3𝜗3)}, 

(38) 

𝑡𝑟�̃� =
𝑓(𝜉, 𝜔)

Δ
{−𝜒1(𝑅1𝜃1 + 𝑆1𝜗1) + 𝜒2(𝑅2𝜃2 + 𝑆2𝜗2) − 𝜒3(𝑅3𝜃3 + 𝑆3𝜗3)}

+
𝑔𝑜�̃�(𝜉, 𝑧)

Δ
{𝜒4(𝑅1𝜃1 + 𝑆1𝜗1) − 𝜒5 (𝑅2𝜃2 + 𝑆2𝜗2)+𝜒6((𝑅3𝜃3 + 𝑆3𝜗3)}, 

(39) 

where 

Δ = G1𝜒4 − G2𝜒5 + G3𝜒6, 

Δ1 = −𝑓(𝜉, 𝑠)𝜒1 + 𝑔𝑜�̃�(𝜉, 𝑧)𝜒4, 

Δ2 = 𝑓(𝜉, 𝑠)𝜒2 − 𝑔𝑜�̃�(𝜉, 𝑧)𝜒5, 

Δ3 = −𝑓(𝜉, 𝑠)𝜒3 + 𝑔𝑜�̃�(𝜉, 𝑧)𝜒6, 

𝜒1 = [G2G9 − G8G3], 

𝜒2 = [G1G9 − G7G3], 

𝜒3 = [G1G8 − G2G7], 

𝜒4 = [G5G9 − G8G6], 

𝜒5 = [G4G9 − G6G7], 

   𝜒6 = [G4G8 − G5G7], 

Gi = 𝑙𝑖𝑞𝑖𝜗𝑖, 

Gi+3 = 𝜂𝑖𝜃𝑖 + 𝜇𝑖𝜗𝑖, 

Gi+6 = 𝛿2𝑞𝑖𝜗𝑖 + (1 − 𝜉) 𝑙𝑖 𝜃𝑖, 

cosh(𝑞𝑖𝑧) = 𝜃𝑖,    sinh(𝑞𝑖𝑧) = 𝜗𝑖,𝑖 = 1,2,3. 

 

 

5. Applications 
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As an application of the problem, we take the source function F(r, z) which decays 

exponentially as moving away from the centre of the thick circular plate in the radial direction and 

symmetrically increases along the axial directions is specified by 

𝐹(r, z) = z2e−δr,  𝛿 > 0, (40) 

𝑓(𝑟, 𝑡) = 𝐻(𝛼 − 𝑟)𝑒𝑖𝜔𝑡 (41) 

Where 𝐻(𝛼 − 𝑟) is the Heaviside function. 

Applying Hankel Transform, on Eqs. (28) and (29), gives 

�̃�(𝜉, 𝑧) =
𝑧2𝛿

(𝜉2 + 𝛿2)
3   

2

 (42) 

𝑓(𝜉, 𝜔) =  
𝛼𝐽1 (𝜉𝛼)

𝜉
𝑒𝑖𝜔𝑡 (43) 

The expressions of components of displacement, stress components, can be obtained from Eqs. 

(34)-(39), by substituting the value of �̃� (𝜉,z) and  𝑓 (𝜉,𝜔) from (42) and (43). 

 

 

6. Inversion of the transforms 
 

For obtaining the solution in physical domain, invert the Hankel transforms in Eqs. (34)-(39) 

using 

𝑓(𝑟, 𝑧, 𝜔) =  ∫ 𝜉𝑓(𝜉, 𝑧, 𝜔)𝐽𝑛(𝜉𝑟)𝑑𝜉

∞

0

. (44) 

and integrate the Eq. (44) as described in Press et al. (1986). 

 

 

7. Numerical results and discussion 
 

To demonstrate our theoretical results and effect of frequency and two temperature, the 

physical data for cobalt material, which is transversely isotropic, is taken from Dhaliwal and Singh 

(1980) is given as 

𝑐11 = 3.07 × 1011𝑁𝑚−2, 

𝑐12 = 1.650 × 1011𝑁𝑚−2, 

𝑐13 = 1.027 × 1010𝑁𝑚−2, 

𝑐33 = 3.581 × 1011𝑁𝑚−2 

𝑐44 = 1.510 × 1011𝑁𝑚−2, 
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𝐶𝐸 = 4.27 × 102𝑗𝐾𝑔−1𝑑𝑒𝑔−1, 

𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 𝜌 = 8.836 × 103𝐾𝑔𝑚−3 

 𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 

  𝐾1 = 0.690 × 102𝑊𝑚−1𝐾𝑑𝑒𝑔−1, 𝐾3 = 0.690 × 102𝑊𝑚−1𝐾−1, 

𝐾1
∗ = 0.02 × 102𝑁𝑆𝑒𝑐−2𝑑𝑒𝑔−1, 

𝐾3
∗ = 0.04 × 102𝑁𝑆𝑒𝑐−2𝑑𝑒𝑔−1. 

A comparison of the dimensionless form of the field variables normal force stress  𝑡𝑧𝑧 , 

tangential stress 𝑡𝑧𝑟 , radial stress 𝑡𝑟𝑟 , and conductive temperature 𝜑for a transversely isotropic 

plate with two temperature and frequency is demonstrated graphically as: 

i. The black line with square symbol relates to frequency i.e., 𝜔 = 0.25 for 𝑎1 =0.02, 𝑎3 =
0.04, 

ii. The blue line with circle symbol relates to frequency i.e., 𝜔 = 0.50 for 𝑎1 =0.02, 𝑎3 =
0.04,  

iii. The red line with triangle symbol relates to frequency i.e., 𝜔 = 0.75 for 𝑎1 =0.02, 𝑎3 =
0.04, 

iv. The green line with star symbol relates frequency i.e., 𝜔 = 1.00  for 𝑎1 =0.02, 𝑎3 = 0.04, 

 

 

 
Fig. 1 Variations of displacement component u with distance r 

 

 

Fig. 1 demonstrates the deviations of the displacement component u. The displacement 

component u, with two temperature 𝑎1 =0.02, 𝑎3 = 0.04 follow oscillatory pattern for ω=1.00, 
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although for ω=.25, deviations are very small. In the starting range of distance r, there is a sharp 

increase in the value of displacement component for the curves when the ω=0.75, whereas there is 

a sharp decrease in the value of displacement component for ω=0.5. It is clear that two 

temperature with ω have major effect on the displacement component in all the cases. Behaviour 

of displacement component u, is oscillatory with variance in the magnitude corresponding to the 

four different frequencies. 

 

 

 
Fig. 2 Variations of displacement component w with distance r 

 

 
Fig. 3 Depicts the behaviour of conductive temperature 𝜑 

 
 

Fig. 2 depicts the displacement component 𝑤 with distance r. In the initial range 0 ≤ 𝑟 ≤ 4of 

distance r, there is an increase in the value of displacement component when ω=0.50 and ω=1.00 
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and there is a sharp decrease in the value of displacement component for ω=0.25 and ω=0.75 but 

again away from the loading surface, it follows opposite oscillatory patterns near the zero value. 

Fig. 3 demonstrations the deviations of conductive temperature  𝜑 with r. There is a sharp 

increase in the value of displacement component when ω=0.50 and there is a sharp decrease in the 

value of conductive temperature 𝜑 for ω=0.75 and ω=1.00 in the initial range of distance r, but 

again away from the loading surface, it shows opposite oscillatory behaviour near the zero value. 

The angular frequency major effect in the range 0 ≤ 𝑟 ≤ 4 for all the cases and curves show 

reverse oscillation in the remaining range. 

 

 

 
Fig. 4 Variations of tangential stress 𝑡𝑧𝑟 with r 

 

 
Fig. 5 Variations of normal stress  𝑡𝑧𝑧 with distance r 
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Fig. 4 illustrates the deviations of tangential stress 𝑡𝑧𝑟  with r. In 0 ≤ 𝑟 ≤ 5 range of r, the value 

of  𝑡𝑧𝑟 follow oscillatory pattern for all the curves when the two temperatures are 𝑎1 =0.02, 𝑎3 =
0.04 for ω=1.00, ω=0.75, ω=0.50 and ω=0.25. 

Fig. 5 shows the deviations of normal stress  𝑡𝑧𝑧 with r. There is a sharp increase in the value of 

normal stress  𝑡𝑧𝑧 for 𝑎1 =0.02, 𝑎3 = 0.04 for ω=1.00, ω=0.75, ω=0.50 and ω=0.25.for 0 < r < 2 

in the range of r, and then the variations are very small. 

 

 

 
Fig. 6 Variations of radial stress  𝑡𝑟𝑟 with distance r 

 

 

Fig. 6 displays the deviations of radial stress 𝑡𝑟𝑟 with r. There is a sharp increase in the value of 

radial stress 𝑡𝑟𝑟  with in the initial range of distance r, when the two temperatures are 𝑎1 =0.02, 

𝑎3 = 0.04 for ω=1.00, ω=0.75, ω=0.50 then the variations are very small. For ω=0.25 first it 

shows decrease in the value of radial stress 𝑡𝑟𝑟  with distance r and then it follows an oscillatory 

pattern. 

 

 

8. Conclusions 
 

From the analysis of the graphs, it is clear there is a significant influence of transversely 

isotropy on the deformation of various displacement components, conductive temperature and 

various stress components of thick circular plate while relating the influence of frequency ω with 

two temperatures. The effect of time harmonic sources frequency in transversely isotropic thick 

circular plate with two temperatures plays a significant role in the analysis of the deformed 

medium. As distance r, varied from the point of use of the time harmonic source, variations of 

displacement components, conductive temperature and various stress components undergoes 

sudden changes, causing an inconsistent patterns of curves and shows an oscillatory pattern. The 

shape of curves shows the impact of frequency ω on the body and fulfils the purpose of the study. 
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The outcomes of this research are extremely helpful in the 2-Dproblemwith dynamic response of 

time harmonic sources in transversely isotropic thermoelastic solid with two temperature, which 

beneficial to dissect the deformation field such as geothermal engineering; advanced aircraft 

structure design, thermal power plants, composite engineering, geology, high-energy particle 

accelerators, and many emerging technologies. 
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Nomenclature 
 

𝛿𝑖𝑗 Kronecker delta, 

𝐶𝑖𝑗𝑘𝑙  Elastic parameters, 

𝛽𝑖𝑗 Thermal elastic coupling tensor, 

𝑇 Absolute temperature, 
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𝑇0 Reference temperature, 

𝜑 conductive temperature, 

𝑡𝑖𝑗 Stress tensors, 

𝑒𝑖𝑗 Strain tensors, 

𝑢𝑖 Components of displacement, 

𝜌 Medium density, 

𝐶𝐸 Specific heat, 

𝑎𝑖𝑗  Two temperature parameters, 

𝛼𝑖𝑗 Linear thermal expansion coefficient, 

𝐾𝑖𝑗  Materialistic constant, 

𝐾𝑖𝑗
∗  Thermal conductivity, 

𝜔 Frequency 
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