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Abstract.  An efficient and general numerical strategy for fluid-structure interaction problems is presented where 

either the fluid or the structure part are represented by nonlinear models. This partitioned strategy is implemented 

under the form of code coupling that allows to (re)-use previous made developments in a more general multi-physics 

context. This strategy and its numerical implementation is verified on classical fluid-structure interaction 

benchmarks, and then applied to the impact of tsunamis waves on submerged structures. 
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1. Introduction 
 

Interaction of fluid and structures is a key part for a variety of physical systems. The range of 

examples that come easily to mind in the engineering domain is vast and cover all the scales: from 

bio- and medical- (where the scale of problems is often less than the millimeter) to civil 

engineering (where it can be the hundreds of meters). 

However, the development of numerical strategy to solve the already by themselves complex 

problems of solid and fluid was mostly carried by different research communities. This lead to 

efficient but often incompatible solvers. 

It is interesting to note that the fluid-structure interaction problem is often tackled with the will 

to extend one of the methods traditionally applied to one of the sub-problems to the whole 

coupled. For example, one can cite fluid Eulerian description applied to solid or complex finite 

elements methods applied to fluid. If those strategies often lead to interesting results and new point 

of view, they often necessitate tremendous software implementation and basic testing. 

Furthermore, as one start from more or less “nothing” in a domain, the time scale before reaching 

high-level model coupling is often too long. Finally, as engineers habits are often hard to change, 

and their previous work as imperfect as it is, has to be conserved, those methods are restricted to 
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the research area. 

In this paper, we propose a totally different approach that rely on partitioned strategy (which is 

often used in for multi-physics problems) and its software armed hand: code coupling. The work 

herein propose to couple in a generic way a Finite Element Method Code for the solid part and to 

use Computational Fluid Dynamic solver with Finite Volume Method. This allows us at the first 

step to solve the complete Navier-Stokes equation within Arbitrary Lagrangian Eulerian (ALE) 

framework, and geometrically non-linear description of the structure motion. As the software 

coupled provide different models this is also possible to model more complex flows (with 

turbulence for instance) and solid materials (non-linear plasticity or damaging for instance). 

Moreover, the ability to couple solving strategies and their associated codes will be emphasized 

by the coupling of three codes relying on different discretization schemes: the Finite Volume 

Method (FVM), Boundary Element Method (BEM) and Finite Element Method (FEM) are 

employed together in the presented work. 

The outline of this paper is as follows. We begin by describing the solution strategies for the 

fluid problem in Sec. 2, the long-running wave propagation approach typical of tsunami 

propagation in Sec. 3 and the solid mechanics model in Sec. 4. As follow up, in Sec. 5 we describe 

the coupling strategy and its software implementation. In Sec. 6 we present the results of illustrate 

simulations; the first one is the classical benchmark fluid-structure interaction problem, and the 

second on introducing our modelling of waves’ impact on structures. 

 

 

2. Problem of the fluid flow 
 

2.1 Fluid model  
 

We consider a fluid domain    where an incompressible, viscous, isothermal and isotropic 

Newtonian flow takes place. The Eulerian description of this flow in term of continuity and 

momentum equilibrium equation gives 

       in          

                      
 

 
    in          

(1) 

where p denotes the kinematic pressure field, v the velocity. The law of behavior of the flow links 

stress and velocity gradient D(v) through the kinematic viscosity νf  which is the dynamic viscosity 

μf  divided by the fluid density ρf . 

Added to this equations, one has also to consider boundary equations at Гf =    . They can be 

of the Dirichlet or Neumann kind. One as also to set the initial conditions for the velocity field in 

the whole domain   . 

 

2.2 Finite volume method for the Navier-Stockes equations 

 
Two techniques are mainly used to solve this kind of problem: Finite Element Methods (FEM), 

in which predetermined shape functions are used to enforce this equation in a weak sense and 

Finite Volume Methods as used here in which the fields are averaged over a particular volume. For 

this method, the whole volume    is divided into a set of discrete volumes (   ,i)i=1,N such that 

146



 

 

 

 

 

 

Fluid-structure interaction problems solution by operator split methods... 

the whole domain is covered (   =     
      ) without any overlapping (     ∩      = ∅; i≠j). 

The fluid flow equations are then integrated over each finite volume: The particular       is the 

so-called control volume.  

The Navier-Stokes equations (1) are integrated in each control volume. The use of Gauss’s 

theorem transform each integration of a divergence term into surface integrated flux 

           
 

   

 

   

                  
 

 
 

 

   

 

   

   (2) 

The time integration of the spatially discretized equations rely on explicit methods to 

approximate time-derivatives. On the other hand, as the continuity equation as strictly to be 

enforced, an iterative split strategy named PISO is used (Jasak 1996). 

 

2.3 Arbitrary Lagrangian-Eulerian description 
 

Fluid-Structure interaction problems usually lead to unsteady moving domain for the fluid part. 

Traditional Computational Fluid Dynamic programs solve the fluid equations on a fixed-in-space 

Eulerian grid. A classical approach to overcome this difficulty is to consider the so-called 

Arbitrary Lagrangian Eulerian (ALE) method where the grid is moved arbitrary inside the fluid 

domain, following the movement of the solid boundary. 

However, this leads to new difficulties: knowing the new shape of the solid boundary, how can 

one conserve the quality and the validity of the fluid mesh? One traditional and widely used 

method is to consider the mesh as a pseudo-structural system. The mesh points are linked with a 

kind of spring analogy, and one can describe the fluid mesh motion by analogy with a solid loaded 

at its boundary. 

This pseudo-structural system is known not to succeed for too large motion cases. This is why 

one has often to consider non-linear pseudo structural systems and sometimes need to couple them 

with re-meshing tools. Even using additional concept to reduce the computational cost, this 

procedure remain expensive and does not solve all the problems. Some recent methods relying on 

the use of a linear Laplace equations, which is unconditionally bounded, present reliable mesh 

motion at a quit reasonable cost (Jasak and Tukovic 2007). 

The ALE strategy leads in fact to a three-field coupling: the fluid, the structure and the fluid 

mesh motion. However, modern Fluid codes often propose an implementation of ALE, and 

fortunately the coupling between the fluid and the mesh motion need not to much improved 

compared to recent proposals (Jasak and Tukovic 2007). 

 

 

3. Problem of fluid wave propagation 
 

3.1 Potential flow description 
 

To simulate and analyse this phenomenon, we generate solitary waves in a 3D numerical wave 

tank (NWT). The NWT solves fully non-linear potential flow equations with a free surface, using a 

high-order boundary element method and a mixed Eulerian–Lagrangian time updating. The former 

has allowed the accurate simulation of 3D overturning waves and the latter has led to at least a 

one-order of magnitude increase in the NWT computational efficiency. This made it possible to 
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generate finely resolved 3D overturning waves and analyse their geometry and kinematics. For 

more detail about this method, see (Fochesato, Grilli and Dias 2007). 

To be more precise, the surface wave problem consists in solving Laplace’s equation on the 

velocity potential      in the whole domain filled with fluid      , as we assume in this 

domain inviscid and irrotational flow 

                               (3) 

The domain       is bounded above by a moving free surface (interface between air and 

water) and below by a fixed solid boundary. The free surface is represented by F : (x, t) → η(x1, 

x2, t) − x3 = 0 and the bottom is given by G : (x, t) → h(x1, x2) + x3 = 0. This free surface η is the 

new fundamental unknown of the problem. Two boundary conditions are required: 

 The kinematic condition: 

  

  
 

  

  
 

   

  
              

    (4) 

 The dynamic condition: the normal stress at the free surface is given by the difference 

in pressure. Bernoulli’s equation evaluated on the free surface gives 

    
 

 
           (5) 

 The only condition to enforce at the bottom is the kinematic condition 

         
    (6) 

 

3.2 Boundary element method 
 

As one can see, the equation that one need to fulfill in the domain       is simple compare to 

the one at its boundaries. The main idea is to use Green’s second identity transforming this 

equation into a boundary integral equation 

                                                
 

      

 (7) 

As seen in the equations above, the problem can thus be defined only on the boundary. The 

spatial discretization is defined by Boundary Element Method (BEM). The time integration is done 

by an explicit scheme (Fochesato, Grilli and Dias 2007). Some numerical aspects of the NWT are 

improved, such as the accurate computation of higher-order derivatives on the free surface and the 

implementation of the fast multipole algorithm for the spatial solver. 

One can notice that the breaking of the wave is at the moment still an open problem, 

where BEM shows its limits. Some potentially successful strategies are based on weakly 

coupled BEM-VOF, are proposed in (Lachaume et al. 2003), or BEM-SPH. 

 

 
4. Problem of structural vibrations 
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4.1 Structural model 
 

The structural model is set in the Lagrangian framework. The governing equation for a 

structure describes the momentum conservation, which is also known as the Cauchy equations of 

motion 

    
            in          (8) 

where ρs denotes the solid density, u the displacement field, ∂t
2
u the acceleration, b the body force 

and S the second Piola-Kirchhoff stress tensor (that can be linked to the true or Cauchy stress 

tensor, denoted as σ in direct tensor  

The Cauchy equation is solved with initial condition imposed to the displacement and velocity 

field on the whole domain Ώs and boundary conditions of kind Dirichlet (or displacement): 

notation). 

      on          (9) 

and Neumann (or traction) 

        on          (10) 

To complete this set of partial differential equations one needs to link the displacements (or its 

derivatives field) and the stresses through the law for constitutive behavior. We will assume in the 

following the linear-elastic material model based on St.Venant-Kirchhoff constitutive equation, 

which are linking the second Piola-Kirchhoff tensor S and the Green-Lagrange strain tensor E: 

      (11) 

where C denoting the (linear) constitutive tensor. The non-linearity of the problem come from the 

large displacement described by the following relation between Green- Lagrange tensor E and the 

material deformation gradient     : 

  
 

 
        (12) 

 

4.2 Finite element method 
 

It is not the goal of the paper to give complete presentation for the Finite Element Method 

(FEM) implementation. For more details, we refer readers to (Ibrahimbegovic 2006, 2009). We 

will only say that in the problem considered in Sec. 6, the solid are discretized on 9-Nodes plane 

stress elements for flexion dominated problems where the 4-node finite elements are known to 

have poor behavior. The time integration is carried out by a generalized-α Method and the Newton 

iterative scheme. 

 
 
5. Partitioned strategy and its software implementation 
 

5.1 Coupling algorithm 
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Fig. 1 Block Gauβ-Siedel coupling algorithm for fluid (Pf) – structure (Ps) interaction problem; this 

iterative scheme is applied (kN) times until the convergence in reached in a time window [TN, TN+1] 

 

 

For fluid-structure interaction problems, and especially for aero-elastic problems, coupling 

algorithm often relies on weak coupling strategies (Kowalsky, Bente and Dinkler 2014). As said in 

Section 3, weakly coupling strategies are sometimes proposed to solve wave propagation near the 

coasts as BEM code becomes unavailable. Such strategies, where the results from one computation 

are given to the next one without any “come-back”, present the advantages of simplicity and little 

cost, but even if the error propagation at each exchange of data can be estimate, it can lead to over- 

or under-estimate physical instabilities’ phenomenon (Arnold and Gunther 2001, Matthies, 

Niekamp, and Steindorf 2006). 

In our presentation we will compare both weak-coupling and the so-called block-Gauß-Seidel 

strong coupling algorithm. For each coupling, there remain the following questions: 

• which data (physical quantities) exchange, and in which order? In Fig. 1 we present for the 

sake of simplicity the block-Gauß-Seidel algorithm for a two field (fluid and structure) problem. 

• is the coupling algorithm stable. In fact, even if each sub-problem is computed by a stable and 

converging algorithm, some coupling algorithm can diverge; for a more detailed discussion, we 

refer to (Arnold and Gunther 2001, Matthies, Niekamp and Steindorf 2006). 

As one can see in Fig. 1 we consider independent time integration solvers in a window (i.e. t   

[Tn, Tn+1]). For this reason not only the value at synchronization points Tn or Tn+1, but the 

interpolated evolution of considered variables on the whole window as to be exchanged. 

We emphasize that one of the big advantages of the proposed algorithm is the possibility to use 

different time steps for the sub-problems considered. For instance, the integration scheme for the 

VFM based code is explicit, and in order to respect the Courant condition, small time steps are 

required. On the other hand, the structure is integrated with implicit schemes that allows bigger 

time step. We are able to couple simulations taking advantage of the natural time stepping arising 

from each particular problems and its discretization (see Sec. 6 for examples). 

 

5.2 Component template library framework 
 

The different parts of our problem as been solved by different research teams, and one of the  
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Fig. 2 Coupled three components for the BEM/VOF/FEM problem 

1
http://www.opencfd.co.uk/openfoam 

2
http://www.ce.berkeley.edu/˜rlt/feap 

3
http://www.wire.tu-bs.de/forschung/projekte/ctl/e_ctl.html 

 

 

goal of our work is to show the possibility to re-use existing codes in a multi-physics context. 

 

• The NWT problem is solved by a Fortran code using C subroutines to solve the fast multipole 

algorithm [3]. The component based on this code is named conuwata. 

• The VFM code used is OpenFoam
1
, a very general C++ library to solve fluid problems (Weller, 

Tabora, Jasak, and Fureby 1998). From this code, a component named ofoam was developed. 

• The mechanical part is solved by FEAP
2
, a FEM code programmed in Fortran (Zienkiewicz and 

Taylor 2005). The mechanical component based on FEAP is coFeap. 

Each program is embedded in a component. The communication between the component above 

is insured by the Component Template Library (CTL)
3
 developed at the Institute for scientific 

computing (Matthies, Niekamp, and Steindorf 2006, Srisupattarawanit, Niekamp, and Matthies. 

2006, Niekamp, Ibrahimbegovic and Matthies 2014), and each component can be executed on a 

single-processor personal computer, or on different processors on a cluster, or yet on different 

machines connected with the network communication. As illustrated in Fig. 2, a translator is in 

charge to make the data from one component matching their target component. This is required in 

particular when one needs to change their nature (from pressures to forces for instance) or the 

space interpolation (for non-matching meshes). 

 
 

 
Fig. 3 The benchmark used for FSI problems 
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6. Numerical examples 
 
6.1 Oscillating flexible structure in a flow  
 

6.1.1 Problem’s description 
 In the first example, we will consider a benchmark fluid-structure interaction problem 

involving two components for a fluid solved by FVM, and a structure solved by FEM in order to 

validate our coupling strategy. This benchmark was first introduced by (Wall and Ramm 1998). 

The main goal (see illustration in Fig. 3) is to solve the motion of a thin appendage behind a bluff 

body in a fluid flow at a Reynold number around 100. 

For the fluid, the incompressible Navier-Stokes equations are solved. The discrete model used 

for this computation uses around 6000 finite volume cells (Q1). For the constitutive behavior of 

solid, we consider the Saint-Venant-Kirchoff type material, based upon the finite deformation 

measure and the plane stress description. The discrete model for solid part is constructed with  40 

9-node finite elements (Q9). 

The material properties are the following: 

• for the fluid: dynamic viscosity vf = 1.51 · 10−14 as ρf = 1.18 · 10−3 (like air) and μf = 1.82 · 

10−4 (10× more than air). 

• for the solid: Two structure are considered. The first one, with Young’s modulus Es,1 = 2.5 · 

106, Poisson’s ratio vs,1 = 0.35 and density  ρs,1 = 0.1. The second one, with Young’s modulus Es,2 

= 2.0 · 106, Poisson’s ratio vs,2 = 0.35 and density ρs,2 = 2.0. 

The boundary conditions are imposed as follow 

• for the fluid: imposed velocity vf = [51.3, 0, 0]
T
 in input, slip condition for the upper and lower 

part of the mesh, “do-nothing” output condition. 

•  for the solid: imposed null displacement at the origin of the appendage. 

•  for the interface: kinematic continuity (vs = vf ) and dynamic equilibrium (pf = ρσsn) are 

imposed 

The initial condition are computed from a stationary flow regime with fixed structure for the 

fluid and are null for the solid. The fluid-structure interaction partitioned strategy allows to use 

different time step for the fluid and the structure. We consider here Δtf = 0.0002 and Δts = 0.005 

for the computation time interval [0, 5]. 

 

 

  
(a) Structure 1 (b) Structure 2 

Fig. 4 Displacement following the y axe for the tip and center of the thin appendage. The scales are not 

the same on the two graphics 
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In Fig. 4, we present the displacement of the thing appendage at two points pick at the center 

and the tip. As one can see the first structure is excited in the first eigenmode (first mode’s 

oscillation period computed for a linear structure is 0.33) whereas the second one is excited in the 

second eigenmode (first mode’s oscillation period computed for a linear structure is 1.65) when 

the system take pseudo-periodic oscillations. 

 

 

  
(a) Structure 1 (b) Structure 2 

Fig. 5 Pressure and velocity fields in the fluid around the two structures considered 
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Fig. 6 Coupled problem considered: only in the left part (Wave propagation, fluid with viscosity and 

structure) 
 

 
Fig. 7 (a) Wave, fluid at a fine scale and structure coupled. (b) Velocity field of the fluid at fine scale 

around the structure 
 

 

4
like in (Wall and Ramm 1998, 1999) the value are given without units. A careful reading can see 

that the unit for dimensions is 10-1m, the other units are the international system one (kg, s. . . ) 

To further illustrate the results obtained in this example, we propose flow snapshots for the first 

and second fluid-structure coupling problem in Fig. 5. 

For the example considered, all computations are run with a Gauß-Seidel implicit coupling 

algorithm. This iterative schema necessitates around 4 or 5 iterations to converge at each time step. 

However, the computation coast is increased by a factor 4 to 5 compared to an explicit coupling 

scheme. 

 

6.2 Submerged structure impacted by a Tsunami 
 

As the second example, we focus on the modeling of the impact of tsunami waves on coastal 

protection (see Fig. 6); such problem is intrinsically a multi-physics one, and need the use of 

complex numerical tools to solve: 

• The propagation of tsunami wave, which is a fully non-linear problem is the domain 
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considered (Section 3). 

• The viscosity effect that cannot be neglected very close to the beach or near the coastal 

engineering protections (Section 2). 

• The mechanical behavior of the structures: very complex non-linear laws that represent at the 

macro-scale the behavior of engineering materials are now be implemented on Finite Element 

Method (FEM) based codes (Section 4). 

The coupling between the sub-problems is described in Section 5. 

In Fig. 7 we present as preliminary results some snapshots from the solved coupled problem. 

One can notice that our first computations are based on explicit coupling in order to save 

computational time. 

 

 

7. Conclusions 
 

We proposed quite general coupling strategies for multi-physics coupling and interaction 

problems, illustrated in detail for fluid-structure interaction. The proposed framework of 

component technology allows to reuse existing codes developed by independent teams for a 

particular specialized application and include them directly in a more general context of coupling 

different application domains. This feature was truly emphasized by the use of three components 

relying on different discretization methods (BEM/FVM/FEM). This lead to the possibility to 

couple non-trivial models for each sub-problem considered herein (e.g. surface waves represented 

with high-order polynomials functions, non-linear finite elasticity structural elements...). 

Furthermore, the coupling algorithm proposed herein allows to preserve the time integration 

scheme independence. Another important feature is the possibility to use the different time steps 

naturally arising from the physical problem and its discretization adapted to each sub-problems in  

order to reduce the computational coast. 

A useful direction for future research is a multi-scale modeling of tiny obstacles that can 

represent, for instance, the see flora that, as shown in recent tsunami impacts in South-Est Asia, 

have proved to be of great importance in slowing down the wave and reducing the resulting 

damage. However, for taking into account this kind of obstacle, a lot of parameters are not 

precisely known, and this uncertainties need to be model through the use of stochastic tools. 

 

 

Acknowledgments 
 

The research described in this paper was financially supported by the France-German 

collaboration programs (UFA, Humboldt Research Award, Mercator Professor).  This support is 

gratefully acknowledged. 

 
 

References 
 
Arnold, M. and Günther, M. (2001), “Preconditioned dynamic iteration for coupled differential-algebraic 

systems”, BIT Numer. Math., 41(1), 1-25. 

Fochesato, C., Grilli, S. and Dias, F. (2007), “Numerical modeling of extreme rogue waves generated by 

directional energy focusing”, Wave Motion, 44(5), 395-416. 

155



 

 

 

 

 

 

Adnan Ibrahimbegovic, Christophe Kassiotis and Rainer Niekamp 

Ibrahimbegovic, A. (2006), Mécanique non linéaire des solides déformables : Formulation théorique et 

résolution numérique par éléments finis, Hermès Sciences-Lavoisier, Paris 

Ibrahimbegovic, A. (2009), Nonlinear solid mechanics: Theoretical formulation and finite element solution 

methods, Springer, Berlin   

Jasak H. (1996), “Error analysis and estimation for the finite volume method with applications to fluid 

flows”, Ph.D. Dissertation, Department of mechanical engineering, Imperial College of Science, 

Technology and Medicine 

Jasak, H. and Tukovic, Z. (2006), “Automatic mesh motion for the unstructured finite volume method”, 

Transactions of FAMENA, 30(2), 1-20. 

Kowalsky, U., Bente, S. and Dinkler, D. (2014), “Modeling of coupled THMC processes in porous media”, 

Coupled Syst. Mech., 3(1), 27-52. 

Lachaume, C., Biausser, B., Fraunié, P., Grilli, S.T. and Guignard, S. (2003), “Modeling of breaking and 

post-breakingwaves on slopes by coupling of BEM and VOF methods”, Proceedings of the 13th 

International Offshore and Polar Engineering Conference, January. 

Matthies, H.G., Niekamp, R. and Steindorf, J. (2006), “Algorithms for strong coupling procedures”, 

Comput. Method. Appl. Mech. Eng., 195(17), 2028-2049. 

Niekamp, R., Ibrahimbegovic, A. and Matthies, H.G. (2014), “Formulation, solution and CTL software for 

coupled thermomechanics systems”, Coupled Syst. Mech., 3(1), 1-25. 

Srisupattarawanit, T., Niekamp, R. and Matthies, H.G. (2006), “Simulation of nonlinear random finite depth 

waves coupled with an elastic structure”, Comput. Method. Appl. Mech. Eng., 195(23), 3072-3086. 

Wall, W.A. (1999), “Fluid-Struktur Interaktion mit stabilisierten Finiten Elementen”, Ph.D. Thesis, Institut 
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