
 
 
 
 
 
 
 

Coupled Systems Mechanics, Vol.2, No. 2 (2013) 147-157 

DOI: http://dx.doi.org/10.12989/csm.2013.2.2.147                                                147 

Copyright ©  2013 Techno-Press, Ltd. 

http://www.techno-press.org/ ?journal=csm&subpage=7        ISSN: 2234-2184 (Print), 2234-2192 (Online) 
 
 

 

 
 
 
 

Radial deformation and band-gap modulation of pressurized 
carbon nanotubes 

 

Hisao Taira
1, Hiroyuki Shima2, Yoshitaka Umeno3 and Motohiro Sato1 

 
 

1
Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University, 

Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan 
2
Department of Environmental Sciences & Interdisciplinary Graduate School of Medicine and Engineering, 

University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi 400-8510, Japan 
3
Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan 

 
(Received May 1, 2013, Revised June 26, 2013, Accepted July 17, 2013) 

 
Abstract.  We numerically investigate the electronic band structure of carbon nanotubes (CNTs) under 
radial corrugation. Hydrostatic pressure application to CNTs leads to a circumferential wave-like 
deformation of their initially circular cross-sections, called radial corrugations. Tight-binding calculation was 
performed to determine the band gap energy as a function of the amplitude of the radial corrugation. We 
found that the band gap increased with increasing radial corrugation amplitude; then, the gap started to 
decline at a critical amplitude and finally vanished. This non-monotonic gap variation indicated the 
metal-semiconductor-metal transition of CNTs with increasing corrugation amplitude. Our results provide a 
better insight into the structure-property relation of CNTs, thus advancing the CNT-based device 
development. 
 

Keywords:  carbon nanotube; radial corrugation; electronic structure; band gap energy; numerical 
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1. Introduction 

 
Numerical band calculations based on the tight-binding method have accelerated our 

understandings of the relation between mechanical and electronic properties (Umeno et al. 

2004a,b, Ren et al. 2009, Umeno 2011, Lu et al. 2011, Choudhary and Qureshi 2012, Wong et al. 

2012, Azevedo et al. 2013). Semiconducting zigzag single-walled CNTs (SWCNTs) show a 

semiconductor-metal transition (SMT) under increasing radial compression (Nishidate and 

Hasegawa 2008). Experimental observation supports this behavior where compression is induced 

by the tip of an atomic force microscope (AFM) (Barboza et al. 2008). Axial tension in the 

metallic CNTs results in a metal-semiconductor-metal transition (MSMT). These transitions are 

based on the concept of the one-electron approximation. Effects of many-body interaction in CNTs 

under uniaxial deformation result in Peierls distortions (Chen et al. 2008, Poklonski et al. 2012) 
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whereas the electrons in undeformed CNTs behave as a Tomonaga-Luttinger liquid (Ishii et al. 

2003, Kanbara et al. 2004). These findings indicate that the mechanical deformation of CNTs is a 

key factor in their applications in nanoelectronic and nanoelectromechanical devices (Ke et al. 

2006, Farshidianfar and Soltani 2012, Pantano et al. 2013). 

There have been numerous investigations of the mechanical properties of both single- and 

multi-walled CNTs (SWCNTs and MWCNTs) (Shima and Sato 2008, Shima et al. 2010, Huang et 

al. 2011, Shima et al. 2012, Silvestre 2012, Silvestre et al. 2012, Faria et al. 2012, 2013). 

Hydrostatic pressure causes cross-sectional deformation, called radial corrugation, within the 

continuum mechanics. The radius of the cross section shrinks under pressure and varies its shape 

into the radially corrugated mode when the pressure exceeds a critical value. These behaviors also 

remind us that this change of cross-sectional geometry may provide a wide variety of electronic 

properties. However, no attention has been paid to the relation between electronic properties and 

radial corrugation.  

In the present paper, we perform numerical band calculations of a zigzag SWCNT subjected to 

radial corrugation. Radially corrugated configurations of atoms are assumed by the application of 

an envelope function to the ideal CNT structure and the electron structure to be obtained by the 

tight-binding approximation. The band structure and the band gap energy are expressed as a 

function of the magnitude of radial corrugation. 

 

 

2. Radial elastic deformation of CNTs 
 

2.1 Radial stiffness estimation 
 

Radial deformation of CNTs has been intensively studied in the last decade from both 

theoretical and experimental viewpoints (See references in Shima et al. 2012). In the seminal work 

by Lordi and Yao (1998), for instance, the mechanical force-structure relationship of CNTs under 

asymmetric radial compression was revealed by using molecular dynamics simulations. They 

concluded that the mechanical stiffness of the concentric walls is enhanced by increasing the tube 

diameter and the number of layers. Reich et al. (2002) conducted an ab initio calculation on the 

effective radial modulus of nanotubes with diameter of 0.8 nm under hydrostatic pressure, which 

gave a value of 650 GPa. Li and Chou (2003) studied the elastic deformation of single-walled 

nanotubes under hydrostatic pressure by using the molecular structural mechanics method, which 

was developed by linking the molecular mechanics constants of force fields and frame sectional 

stiffness parameters. The study showed that the effective radial Young’s modulus (by viewing the 

tube as solid cylinder) is highly dependent on the tube diameter. It decreases rather rapidly with 

increasing tube diameter. 

 

2.2 Existing experiments 
 

Experimental attempts have been made to measure the radial deformation of CNTs using 

different testing techniques. Chesnokov et al. (1999) experimentally found that the radial 

deformation of SWNTs with a 1.36 nm- diameter is reversible up to 2.9 GPa. Later, it was 

observed that the radial deformation of a bundle of SWNTs with a diameter of 1.4 nm is reversible 

up to 4 GPa (Tang et al. 2000, 2002). However, in the case of MWCNTs, only one experimental 

result is available thus far (Tang et al. 2000). In that experiment, the electrical resistance and 
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capacitance of MWCNTs with 20 layers and an innermost diameter of 3 nm were measured under 

pressure. Only a slight change in the electrical structure of the nanotubes was observed that was 

induced by a high pressure of up to 1.4 GPa.  

Shen et al. (2000) used a microscope method to investigate the radial compression of 

multi-walled nanotubes under an asymmetric stress. They observed that the radial compressive 

modulus increased from 9.7 to 80 GPa when a tube with a 10-nm diameter was compressed by an 

amount between 26% and 46% in diameter. Yu et al. (2000) studied the radial deformability of a 

MWCNT to observe that by treating the tube as a uniform and isotropic solid cylinder with a 

Poisson’s ratio of 0.5, a tube with an outermost diameter of 8 nm had effective radial modulus 

values of 0.3 to 4 GPa at different measured sections, which are comparable to the Young’s 

modulus values of semi-crystalline polymers.  

 

2.3 Radial corrugation of MWCNTs 
 

Unlike “asymmetric” compression, spatially “isotropic” compression by hydrostatic pressure 

provides an ideal condition to study the radial deformation of CNTs. Tang et al. (2000) 

investigated the compressibility and polygonization of SWCNT-bundles under hydrostatic pressure 

using a diamond anvil cell and in situ x-ray diffraction. The volume compressibility of a bundle 

with a lattice constant of 17.2 Å  and a tube diameter of 14.1 Å  was found to be 0.024 GPa−
1
.  

In contrast to the intensive studies on SWCNTs (and their bundles), radial deformation of 

MWCNTs remains relatively unexplored. The multilayered structure of MWNTs is intuitively 

expected to enhance radial stiffness compared to SWCNTs. However, when the number of 

concentric walls is much greater than unity, the outside walls have large diameters, so external 

pressure may lead to a mechanical instability in the outer walls. This local instability triggers a 

novel cross-sectional deformation, called radial corrugation, of MWCNTs under hydrostatic 

pressure. Such a radial corrugation phenomenon is peculiar to MWCNTs in which the number of 

constituent walls is much greater than unity. In a corrugation mode, only a few outermost walls 

show significant radial corrugation along the circumference, while the innermost tube maintains its 

cylindrical symmetry.  

From an engineering perspective, the tunability of the cross-sectional geometry may be useful 

for developing nanotube-based nanofluidic or nanoelectrochemical devices because both utilize 

the hollow cavity within the innermost tube. Another interesting implication is a pressure-driven 

change in the quantum transport of π electrons moving along the radially deformed nanotube. 

Mobile electrons whose motion is confined to a two-dimensional curved thin layer are known to 

behave differently from those on a conventional flat plane because of an effective electromagnetic 

field that can affect low-energy excitations of the electrons (Shima et al. 2009). Associated 

variations in electron-phonon coupling (Ono and Shima 2009) and phononic transport through 

deformed nano-carbon materials are also interesting and relevant to the physics of radially 

corrugated MWNTs. This background motivated us to perform electronic energy-band calculation 

of corrugated MWNTs as the first-step toward versatile applications. 

 

 

3. Model and method 
 

3.1 Tight-binding hamiltonian 
 

149



 
 
 
 
 
 

Hisao Taira, Hiroyuki Shima, Yoshitaka Umeno and Motohiro Sato 

 

Herein, we perform a numerical band calculation based on the tight-binding method. We first 

express the on-site parameters by using the surrounding environment of each atom and 

parameterize the hopping and overlap matrix elements by the method of Mehl and 

Papaconstantopoulos (1996) and Papaconstantopoulos et al. (1998).  

The total energy of itinerant electrons using density functional theory based on the Kohn-Sham 

equation is given by 

   )()()( rr nFfnE
i

ii                         (1) 

where n(r) is the electronic density at the position indicated by the position vector r, i  is the 

Kohn-Sham eigenenergy of the ith electronic eigenstate,   is the chemical potential, the sum 

with respect to i is over all electronic eigenstates, and )( if    is the Fermi-Dirac distribution 

function. The functional F[n(r)] is expressed by 

       )()()()( rrrr nEnVnTnF ex                      (2) 

where T[n(r)] is the total kinetic energy of electrons without any interaction, V[n(r)] is the classical 

Coulomb potential energy, and Eex[n(r)] is the exchange-correlation energy.  

On-site terms are dependent on the environment of each atom. We can express this environment 

by defining a pseudo-atomic density for each atom as  

 )(
2

jic

j
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i rrfe
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

                            (3) 

where ri and rj are the position of the ith and jth atoms, respectively.   is a parameter depending 

on the atom types, i  is obtained by summing the contributions from all nearest neighbor sites of 

atom i. )( jic rrf   is a cutoff function (Mehl and Papaconstantopoulos1996) given as follows  
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where r0 and R have been set to r0=14.0a0 and R=0.5a0, respectively. a0 is the Bohr radius, and the 

cut-off distance is assumed to be 6.0 a0. On-site terms for atom i yield 

23/43/2

iilillilh                           (5) 

where l denotes the orbital indexes s and p. This means that the on-site terms are determined by 

nine parameters:  ,,,, llll  

Next, we focus on the hopping terms of the Hamiltonian. We assume that the hopping energy 

decreases exponentially as the atomic distance increases  

)()exp()( 22

jicjijilljilllljill rrfrrdrrcrrbarrH
ll






 

        (6) 

It is natural that the overlap parameters also exponentially decrease as the same functional form 

of the hopping terms 
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Table 1 Slater-Koster tight-binding parameters for carbon. Ry is the Rydberg unit (after Papaconstantopoulos 

et al. 1998) 

On-site parameters given in Eqs. (1) and (2) 

λ 1.59901905594 

Orbital α (Ry) β (Ry) γ (Ry) χ (Ry) 

s -0.102789972814 -0.162604640052 -178.884826119 4516.11342028 

p 0.542619178314 2.73454062799 -67.139709883 438.52883145 

Hopping Parameters given in Eq. (6) 

Orbital a (Ry) b (Ry/a0) c (Ry/ a0
2
) d (a0

-2
) 

ssH  74.0837449667 -18.3225697598 -12.5253007169 1.41100521808 

spH  -7.9172955767 3.6163510241 1.0416715714 1.16878908431 

ppH  -5.7016933899 1.0450894823 1.5062731505 1.13627440135 

ssH  24.9104111573 -5.0603652530 -3.6844386855 1.36548919302 

Overlap Parameters given in Eq. (7) 

Orbital p (a0
-1

) q (a0
-2

) r (a0
-3

) s (a0
-1/2

) 

ssS  0.18525064246 1.56010486948 -0.308751658739 1.13700564649 

spS  1.85250642463 -2.50183774417 0.178540712033 1.12900344616 

ppS  -1.29666913067 0.28270660019 -0.022234235553 0.76177690688 

ssS  0.74092406925 -0.07310263856 0.016694077196 1.02148246334 

 

 

)()exp()( 22

jicjijilljilllllljill rrfrrsrrrrrqprrS
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



 

       (7) 

where 𝛿𝑙𝑙′  is Kronecker’s delta. We need the four types of the Slater-Koster parameters 

)(),(),(),()(  ppppspssll  , where   and   show the electron’s orbital, since we 

focus on s and p orbitals. Therefore, the hopping and overlap terms are determined by 16 

parameters  llllllll dcba  ,,,  and  llllllll srqp  ,,,  respectively. In summarizing, to solve the 

eigenvalue problem, we need one parameter  , 8 parameters llll  ,,, , 16 parameters 

 llllllll dcba  ,,,  and  llllllll srqp  ,,, .  

To obtain parameters, we shift the eigenvalues by a constant C, which is dependent on the 

lattice structure S and volume V. The resulting total energy is given by  

   
i

i

i

i VSCVSE  ),(),(                          (8) 

where 

 
N

rnF
VSC

)(
),(                                 (9) 

and 
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 
i

ifN )(                               (10) 

with 

),( VSC                                (11) 

Here, the sum in Eq. (10) is performed over all contributions from occupied electron states, and 

thus 𝑁 equals to the number of electrons in the system. The tight-binding parameters are set to 

reproduce both the total energy and shifted energy without any basic proposition or assumption. 

We used the parameters obtained by Papaconstantopoulos et al. (1998) for carbon, which are given 

in Table 1.  

 

3.2 Corrugation mode assumption 
 

We evaluate (1) the electronic band gap energy, and (2) the electronic band structure, as 

changing in the corrugation amplitude under radial corrugation. In this work, we demonstrate the 

cases of metallic and semiconducting zigzag SWCNTs whose chiral vectors are set to (15,0) and 

(14,0), respectively. The radius   of the cross-section is assumed to be 

 )2,1,0(  ,sin0  nnrrr                        (12) 

where r0 is the radius of the undeformed SWCNTs and ar /  is the amplitude of the deformation 

(Fig. 1). We have set n=4 and changed ar / , where a=0.246 nm is the lattice constant of CNTs, 

from 0 to 2.34×10
-2

. Our calculation of the radially corrugated CNTs are conducted by the four 

orbital whose Slater-Koster parameters are given in Table 1 (Papaconstantopoulos et al. 1998). 60 

points of wave numbers are plotted to draw the band structure and one period is necessary and 

sufficient for draw the band structure, the atomic structure of which is given in Fig. 2. The period 

lengths of CNTs L(n,m) is given by (Ando 2005) 

R

mn
d

nmmna
L




22

),(

3
                        (13) 

where the set of n and m is integer and determines the chirality of CNTs. dR is the greatest common 

divisor of 2m+n and 2n+m. Therefore, the length of (15,0) and (14,0) CNT are  

][ 426.0~
15

15246.03
)0,15( nmL


                    (14) 

and 

][ 426.0~
14

14246.03
)0,14( nmL


                    (15) 

respectively. The number of atoms of CNTs N(n,m) is given by (Ando 2005) 

R

mn
d

nmmn
N

)(4 22

),(


                           (16) 
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Fig. 1 Top view of the atomic configuration in the axial direction. The (15,0) zigzag SWCNT is 

radially corrugated with -210×2.34/ ar and n = 4 

 

 
Fig. 2 One period of the radially corrugated atomic configuration of the (15,0) zigzag SWCNT; 

-210×2.34/ ar and n = 4 

 

 

  
(a) (15, 0) SWCNT (b) (14, 0) SWCNT 

Fig. 3 Change in band gap energy under radial corrugation 
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(a) 0 (b) 2.34 × 10
-2

 (c) 3.60 × 10
-2

 

   

(d) 0 (e) 2.34 × 10
-2

 (f) 3.60 × 10
-2

 

Fig. 4 Dispersion relation under radial corrugation in the case of the (a)-(c) (15,0), (d)-(f) (14,0) 

zigzag SWCNT. (15,0) SWCNT is the metallic material without any deformation, while 

(14,0) SWCNT is the semiconducting material without any deformation. 

 

 
Therefore, N(n,m) of (15,0) and (14,0) CNT are 

60
15

154 2

)0,15( 


N                            (17) 

and 

56
14

144 2

)0,14( 


N                          (18) 

respectively. We note that L(n,m) and N(n,m) given in here are defined in the unit cell, and periodic 

boundary condition is imposed in the axial direction of CNTs. This means that CNTs have an 
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infinite length in the axial direction. 

 

 

4. Results and discussion 
 

Fig. 3 shows the band gap energy E  as a function of ar /  in the case of a (15,0) zigzag 

SWCNT whose E  is zero at 0/ ar , i.e., without any deformation, which means that the 

(15,0) zigzag SWCNT is in a metallic state as is well known. We found that E  increases with 

an increasing ar /  and reaches the maximum value at 
2104.2/ ar . Further increase in 

ar /  causes a decrease in E , and finally E  becomes zero. We should emphasize that these 

observations show the metal-semiconductor-metal transition induced by radial corrugation. The 

E  of the (14,0) zigzag SWCNT is finite at 0/ ar , and this is a well-known characteristic of 

semiconducting CNTs. With an increasing ar / , E  slightly increases to 75.0E eV when 

ar /  is about 1.2×10
-2

, and then, E  decreases to zero. This means that the (14,0) CNT under 

radial corrugation undergoes a semiconductor-metal transition. We note that anisotropic 

compression does not contribute to the increase in E (Umeno et al. 2004, Umeno 2011). This 

means that anisotropic compression of the cross-section plays an essentially different role than the 

isotropic counterpart by hydrostatic pressure, although both the two fall into the category of radial 

deformation. 

These transitions are attributable to the alternation of the band branch with regard to the highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) shown in 

Fig. 4. Fig. 4 shows the electronic band structure for three different values of ar / , which are set 

to (a) and (d) 0, (b) and (e) 2.34×10
-2

, (c) and (f) 3.60×10
-2

. The top three and bottom three panels 

show the band structure in the case of (15,0) and (14,0) zigzag SWCNTs, respectively. The band 

branch of the HOMO shifts to the higher energy region, and that of the next highest occupied 

molecular orbital (NHOMO) shifts to the lower energy region with an increasing ar / . This 

situation explains the metal-to-semiconductor transition. These two branches cross, and the 

HOMO branch changes into the NHOMO branch, and vice versa, at some value of ar / , as 

shown in Figs. 4 (b) and 4(e). The semiconductor to metal transition can be explained that several 

band overlaps further increase of ar /  given in Figs. 4 (c) and 4(f). The same situation occurs 

for the LUMO and the next lowest unoccupied molecular orbital. 

Radial corrugation is realized by the interaction between the SWCNTs and the elastic medium. 

Our model does not take this interaction into account, but simply corrugates the cross-sectional 

shape artificially according to Eq. (9). Therefore, a more realistic atomic configuration should be 

calculated by using, for example, a molecular dynamics simulation. 
 

 
 

5. Conclusion 
 

We numerically calculated the band gap energy of (15, 0) and (14, 0) SWCNTs under radial 

corrugation. The radial corrugation induced a metal-semiconductor-metal and a semiconductor- 

metal transition in the cases of the (15, 0) and (14, 0) SWCNTs, respectively. These findings can 

be understood by observing the dispersion relation, that is, the HOMO and LUMO band branches 

change with an increasing ar / . 
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