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Abstract.  In this work, we propose combining an advanced optimal control algorithm with a geometrically exact 
beam model. For simplicity, the 2D Reissner beam model is chosen to represent large displacements and rotations. 
The difficulty pertains to the nonlinear nature of beam kinematics affecting the tangent stiffness matrix, making it 
non-constant, which compromises direct use of optimal control methods for linear problems. Thus, we seek to 
accommodate a time varying control using linear-quadratic regulator (LQR) algorithm with the proposed 
geometrically nonlinear beam model. We provide a detailed theoretical formulation and its numerical implementation 
in a variational format form. Several illustrative numerical examples are provided to confirm an excellent 
performance of the proposed methodology. 
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1. Introduction 
 

With a quest for increasing renewable energy share, the European Community has launched the 

grand challenge of delivering wind-turbine installations that can provide 10 MW electric power 

per year, which doubles the current maximal capacity in Europe. Our main research hypothesis 

(see Fig. 1) is that such a production increase can be achieved with combined efforts of exploring 

technological innovation towards larger wind-turbines with flexible blades as flexible multibody 

systems in order to guarantee the turbine safety under extreme wind conditions.  

The main impact of this project is to significantly improve upon the currently dominant system 

of wind-turbines with stiff blades developed for offshore locations in Denmark and Northern 

Germany, which offer near optimal conditions with steady winds. In order to further quantify  
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(a) (b) (c) 

Fig. 1 Meeting 10 MW EU challenge (a) single wind-turbine with 10MW production rough estimate 

(Ibrahimbegovic 2018) at 10 m/s wind speeds requires 100 m long flexible blades; (b) direct problem: wind-

turbine farm loads computations with reduced power for each wind-turbine due to wakes and drag forces; (c) 

control of large vibration of flexible wind-turbine blades 

 

 

existing margins for progress for the location with variable wind speeds, we note that the Danish-

German wind-turbine system, which is currently predominantly used in France, remains 

operational on the average only 24.7% of the time. Furthermore, even the optimal wind conditions 

cannot deliver the maximum production, since the blades are stopped for wind speeds of over 90 

km/h (e.g., only 78.8% of full capacity was provided by storm Ciara that hit France on February 

10, 2020, since the turbines at coastal location had to be switched off due to wind speeds reaching 

120 km/h). 

The main goal of this work is to provide the increased interval of wind speeds in that we will 

allow for an increase of the highest operational wind speeds and thus for better harvesting of wind 

resources. Such improvement requires corresponding contributions in nonlinear dynamics and, 

more precisely, the numerical models of large wind-turbines with flexible blades that will provide 

improved safety under extreme wind conditions. Also, in order to control stability and avoid 

damage, we need to provide the corresponding algorithms for control of the vibrations of the 

geometrically exact beam that is used as the basic ingredient in constructing the numerical model 

of flexible wind-turbine blades. 

In order to ensure the desired response of the structure and suppress its vibrations, many papers 

and books are focused on searching for the most appropriate control algorithm. The proportional-

integral-derivative (PID) controllers have been used for many years for linear problems, due to 

their simplicity, efficiency and reliability, PID controllers and their different modifications are still 

the most popular to use for control processes of flexible systems. Special attention is focused on 

optimization of PID controller parameters. To design an optimal analogue and discrete PID 

controller, an analogue and discrete time linear quadratic regulator (LQR) as suggested in (Das et 

al. 2013). Optimal tuning of PI/PID controller for time-delay processes using LQR is further 

proposed in (He et al. 2000).    

Many studies have investigated the control problems of the flexible system mechanics. In 

addition to other analyses, (Rafiee et al. 2017) gave a critical review of control algorithms applied 

to rotating composite beams and blades. The position control of a flexible four bar mechanism has 

been provided by PID controller while proportional controller has been used to suppress vibration 

in (Trevisani et al. 2003). Optimal control algorithms, based on linear quadratic regulator (LQR), 

are very popular due of their robustness and has been used to improve overall performances of 

flexible structures: with friction compensation for flexible high-speed rack feeders in (Schindele et 

al. 2014); for Stewart platform with flexible legs (Chen et al. 2018), for flexible beam linkage  
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Fig. 2 Initial and deformed configuration of a geometrically exact 2D beam 

 

 

(Zhou et al. 2001), flexible riser (Song et al. 2021), Timoshenko beam (Hernández et al. 2011). 

Active vibration control of a piezoelectric beam was investigated in (Neto et al. 2013, Vasques 

et al. 2006), where several different popular control strategies were applied and compared: the 

constant gain velocity feedback (CGVF), the constant amplitude velocity feedback (CAVF), LQR 

and Linear Quadratic Gaussian controller (LQG) in (Vasques et al. 2006) and CAVF, CGVF and 

LQR regulator (Neto et al. 2013). More works on control theory can be referenced in the books of 

(Trelat 2005, Lewis et al. 2012, Glad et al. 2000, Kirk 2004). The main novelty of this work is to 

choose among numerous control algorithms the most suitable strategy for control of the vibrations 

of the geometrically exact Reissner beam. In this paper we still use the optimal control based on 

LQR algorithm but accounting for changing tangent stiffness resulting with a nonlinear form of the 

Kalman gain based upon Riccati’s solution. 

The outline of the paper is as follows. In Section 2, we briefly present the geometrically exact 

beam model that is used for representing the large motion of the flexible blades in nonlinear 

dynamics framework. In Section 3, we present the corresponding developments of optimal 

nonlinear control for this model with a state feedback loop. Details of numerical implementation 

are given in Section 4, followed by the results of numerical simulation given in Section 5. In 

Section 6, we state the conclusions. 

 

 

2. Brief on 2D Reissner’s beam model 
 

We consider a geometrically exact 2D Reissner's beam with the points of its neutral axis 

parametrized by 𝑠 ∈ [0, 𝐿], see Fig. 2, where 𝐿 is its length and 𝐴 is the beam cross-section. Thus, 

the beam volume 𝑉 is given as 𝑉 = 𝐿 × 𝐴. Let the beam domain Ω can be considered as an open 

bounded set 𝑉 = 𝐿 × 𝐴 with smooth boundary 𝜕Ω =  𝜕Ω𝑢⋃𝜕Ω𝜎 and ∅ = 𝜕Ω𝑢⋂𝜕Ω𝜎 . The initial 

configuration is described by the position vector 𝒙 of a point on the beam neutral axis and an 

orthonormal basis with unit vectors 𝒆𝑖 , (𝑖 = 1,2).  

Thus, the tangent to the neutral axis is defined as 𝒆1 = 𝒙′, where 𝒆2
𝑇 ⋅ 𝒆1 = 0. The notation 

(⋅) = 𝜕(⋅)/𝜕𝑠  indicates the partial derivative with respect to 𝑠 ≡ 𝑥 . The beam deformed 

configuration is described by 

75



 

 

 

 

 

 

Suljo Ljukovac, Adnan Ibrahimbegovic and Maida Cohodar-Husic 

 (1) 

where 𝝓,  𝒕2 and 𝑥2 ∈ 𝐴 are the position vector of the neutral axis in the deformed configuration, 

the unit vector normal to 𝒕1 that lies in the cross-sectional plane and corresponding cross-sectional 

parameter, respectively. The unit vector 𝒕1 in the deformed configuration is orthogonal to the beam 

cross-section, but not necessarily tangent to the neutral axis. 

By considering the shear flexibility of the beam, we can state that the orthogonality condition 

no longer holds in the deformed configuration 

 
(2) 

We recall the special orthogonal transformation 𝑆𝑂(2), which is the necessary ingredient of the 

finite strain theory, and it is responsible for planar rotation or mapping between the basis 𝒆𝑖 to 𝒕𝑖, 

(𝑖 = 1,2). Such transformation is given by the rotation tensor  𝜦(𝜓): 𝒆𝑖 → 𝒕𝑖 with the components 

 
(3) 

 

2.1 Beam kinematics and weak form of balance equations in statics 
 

The spatial strain measure for shear flexible beams with curvature is defined as the difference 

between beam neutral axis tangent 𝝋′  and cross-section unit normal 𝒕1  (see Fig. 2), which is 

defined as 

 
(4) 

where 𝜺 represents axial, and shear strains and and 𝜿 contains the curvature strain, respectively. 

The same strain measure can be formulated in the material form by using the pull-back operation 

(Ibrahimbegovic et al. 2023), along with rotation tensor 𝜦 in Eq. (3) 

      
(5) 

Once we obtain the strain measures in Eqs. (4) and (5), we can state the stress resultant forces 

𝑵 and moment 𝑴 in the material description by employing the simplest constitutive law of linear 

elasticity 

     
(6) 

where the strains 𝑬 and 𝑲 are given in Eq. (5). The spatial force 𝒏 and moment 𝒎 resultants can 

be transformed by push-forward operation of the material objects in Eq. (6) 

    
(7) 

For clarification, the stress resultants in Eq. (6) are obtained through the integration of the Biot-

type stress 𝑻𝒆1 = 𝜦𝑇𝑷𝒆1 (where 𝑷 is the first Piola-Kirchhoff stress) over the beam cross-section 

(e.g., see Reissner 1972) with 
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(8) 

where 𝑵 = (𝑁1, 𝑁2)𝑇 and 𝑴 = 𝑀𝒆3. The work conjugate couple of the stress resultants in Eq. (8) 

and strain measures in Eq. (5) can be given in an alternative form proposed by Reissner as 𝒓 =
(𝑁, 𝑉, 𝑀)𝑇 = (𝑁1, 𝑁2, 𝑀)𝑇  and 𝜮 = (𝛴, 𝛤, 𝐾)𝑇 = (𝐸1, 𝐸2, 𝐾)𝑇 , respectively. Thus, one can write 

the Biot strain measure as 

 
(9) 

The internal strain energy of the geometrically exact beam can be stated with respect to 

different work conjugate couples  

 
(10) 

By finding the first variation of the strain energy in Eq. (10) with respect to the virtual 

displacement and rotation, one can obtain the internal virtual work in following form 

 
(11) 

where 𝛿𝑭, 𝛿𝑯 and 𝛿𝜮 are variations of the deformation gradient, the Biot strain tensor and the 

Reissner strain measure [4], respectively. These variations of the strains in Eq. (4) are obtained by 

push-forward (e.g. see [1]) sequence of the material strains in Eq. (5) 

 

(12) 

 

2.2 Dynamics framework 
 

To simulate the beam response in real-time control, we need to extend the Reissner beam 

model to the dynamics framework. The inertial velocity of the material point in Eq.(1) can be 

obtained by taking the first derivative with respect to time 

 (13) 

where the notation superposed dot indicates the time derivative (⋅̇) = 𝜕(⋅)/𝜕𝑡 . The material 

velocity of points located on the neutral axis is given by 𝝋̇, while the change in direction of the 

unit base vectors 𝒕𝑖 corresponds to the material velocity of the rotating frame. In that sense, we 

first need to find the time derivative of the orthogonal tensor 𝚲 as 

 
(14) 

where 𝑾 is a skew-symmetric matrix. By using the result in Eq. (14), one can further find the time 

derivative of unit vectors 𝒕𝑖 in Eq. (13) as follows 

 
(15) 
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Fig. 3 Modern control sequence with state feedback (closed) loop signa 

 

 

With the help of the result in Eqs. (13) and (15), the kinetic energy of the beam can be written as a 

quadratic form 

 
(16) 

where 𝐴𝜌 = ∫ 𝜌𝑑𝐴
𝐴

 and 𝐽𝜌 = ∫ 𝜌𝑥2
2𝑑𝐴

𝐴
 are mass of the beam per unit length and cross-sectional 

moment of inertia, respectively. The total system energy is constructed as the Hamiltonian 

functional (as a quadratic form of the generalized coordinates and its time derivatives), which 

involves the sum of kinetic and potential energy given in Eqs. (10) and (16)  

 
(17) 

The dynamic equilibrium can be obtained by finding the variation of the energy functional in 

Eq. (17) with respect to virtual displacements and rotation. Next, by applying Hamilton’s principle 

we can state the weak form of equilibrium equations in spatial description as 

 

(18) 

where the static term corresponds to the one already stated in Eq. (11). 

 

 

3. Optimal nonlinear control with state feedback loop 
 

In this section, we consider a development of the modern control algorithms (see Fig. 3), which 

we seek to use for the presented Reissner’s beam model. Such a procedure includes dynamic 

optimization with respect to cost-to-go function (also referred to as index performance or payoff 

function) and imposed boundary conditions, with the goal of achieving that the system behaves in 

an optimal manner. The key ingredients of the optimal control problem can be formulated as 

follows: i) a mathematical model, which is given in Eq. (18), represented by a set of non-linear 

differential equations, ii) specification of the cost-to-go function, from where we derive optimal 

control law by finding extremum, iii) imposed boundary conditions on the states and/or controls. 

We note that the optimization procedure for this kind of problem is standard, but the 

complexity can vary with respect to the type of control we wish to implement. Here, we are 

interested in delivering the optimal control for the MIMO (multiple-inputs-multiple-outputs) 

system based on the state variable representation, from which we derive a set of first-order 
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differential equations. Moreover, the dynamic optimization task involves the conditions and 

system variables that change in time, which is a more challenging task than controlling a system 

under steady-state conditions, (see e.g., Trelat 2005, Kirk 2005, Lewis 2012). We further trace the 

necessary steps in nonlinear control design in order to cast the optimal control law for a finite time 

linear quadratic regulator. 

 

3.1 State-space form 
 

In control theory, it is common to recast the quotations of motion in a so-called state-space 

form in order to simplify the analysis, resulting with a set of first-order differential equations that 

describe the system response in dynamics. We start by modifying the linearized form of dynamic 

equilibrium presented in Eq. (18), by selecting the first vector of state variables as 𝒙1(𝑡) =
(𝝋(𝑡), 𝜓(𝑡))𝑇 

 (19) 

where 𝑴, 𝑲 and 𝒖 are mass matrix, stiffness matrix and control variables, respectively. By further 

selecting another state space vector 𝒙2(𝑡) = 𝒙̇1(𝑡) = (𝝋̇(𝑡), 𝜓̇(𝑡))𝑇, we can obtain the state-space 

representation  

 

(20) 

where 𝒙1(0)  and 𝒙2(0)  are initial conditions of the state variables. With this state-space 

representation, which is given in Eq. (20), we have decreased the order of the differential 

equations from second-order to first-order. Thus, we can apply standard numerical solution 

procedure that are more stable and accurate. On the other side, the number of differential equations 

has doubled, from 𝑛 to 2𝑛, which implies a higher computational cost. However, this increase in 

computational cost is often outweighed by the benefits that the state-space form offers in terms of 

numerical stability, analysis and control design. 

A standard state-space representation can be given in matrix form, by introducing 𝒙̇(𝑡) =
(𝒙̇1(𝑡), 𝒙̇2(𝑡))𝑇 in Eq. (20) as follows 

 

(21) 

where 𝑨 ∈ ℝ𝑚𝑥𝑚 and 𝑩 ∈ ℝ𝑚𝑥𝑛 are state (or system) and input matrices. The expression in Eq. 

(21) can be rewritten in more compact form as 

 
(22) 

where 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡) is a state function. Since we consider time-varying systems, we note that 

only the state matrix 𝑨(𝑡) changes in time, while the input matrix 𝑩 remains constant. However, 

the following development should hold for both cases. 
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Table 1 The cost-to-go function can be constructed to support different problems in optimal control 

1. Minimum time 
  

2. Minimum control energy 
 

3. Terminal error  

4. Squared tracking error 
 

5. Linear quadratic regulator (LQR) 
 

 
 
3.2 The Hamilton-Jacobi-Bellman (HJB) equation 

 

A fundamental concept in optimal control involves various forms of cost-to-go functions which 

can be formulated with respect to the minimization objective, encompassing factors such as 

control of time, control of energy, terminal error, etc (see Table 1).  

Such a cost-to-go function 𝐽, represent a quantitative measure of how well a controlled dynamic 

system performs over a certain time, and thus one can give a general form of the function as 

 
(23) 

where the terms 𝛷(⋅) and ∫ 𝐿(⋅)𝑑𝑡 are given as a quadratic form representing terminal constraint 

at the final time and the sum of the cost rates, respectively. The integral function 𝐿(⋅) is also 

referred to as Lagrangian. Furthermore, we exploit the additive interval property of integrals to 

state the incremental change in the cost-to-go function for the time interval [𝑡, 𝑡 + Δ𝑡] 

 
(24) 

where 𝜏  is a dummy variable. We note that the cost-to-go function in Eq. (24) is updated 

recursively, where 𝒙 + Δ𝒙 is the state at time 𝑡 + Δ𝑡 which is computed as a system response for 

𝒙(𝑡) and 𝒖(𝑡). Among all the potential costs to go from time 𝑡 to 𝑡𝑓, given by Eq. (24), we select 

only the candidates 𝐽 ∗ (𝒙(𝑡), 𝑡)  that optimize the function 𝐽(𝒙(𝑡), 𝑡)  within the interval [𝑡 +
Δ𝑡, 𝑡𝑓]. Assuming that the optimal cost 𝐽 ∗ (𝒙 + Δ𝒙, 𝑡 + Δ𝑡) and control law 𝒖(𝑡 + Δ𝑡) are known 

for all 𝒙 + Δ𝒙, we can therefore compute optimal control law 𝒖(𝑡) for all 𝒙(𝑡) on the time interval 

[𝑡, 𝑡 + Δ𝑡] through the corresponding minimization procedure  

 
(25) 

which casts the principle of optimality on 𝜏 ∈ [𝑡, 𝑡 + 𝛥𝑡]. By finding the Taylor series expansion 

of the right hand side of Eq. (25) around the point (𝒙(𝑡), 𝑡), we get 

 
(26) 

Through a minor manipulation of Eq. (27) and by taking the limit as Δ𝑡 → 0, we can derive the 

partial differential equation that governs the optimal cost 𝐽 ∗ (𝒙(𝑡), 𝑡) 
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(27) 

where the result is denoted as the Hamilton-Jacobi-Bellman (HJB) equation. If we denote the 

Lagrange multipliers as 
𝜕𝐽∗(𝒙(𝑡),𝑡)

𝜕𝒙
= 𝞴(𝑡), and the state equation as 𝒙̇(𝑡) = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡), we 

can rewrite the HJB equation as follows 

 
(28) 

The result in Eq. (28) can be recast in a more standard form that employs the Hamiltonian 

𝐻(𝒙(𝑡), 𝒖(𝑡), 𝞴(𝑡), 𝑡) in place of the Lagrangian 𝐿(𝒙(𝑡), 𝒖(𝑡), 𝑡), where the relation is given as 

 (29) 

We can further introduce the result Eq. (29) into the HJB equation in Eq. (28), which results 

 
(30) 

The result obtained in Eq. (30) yields the optimal control law for a nonlinear system using 

closed-loop or state feedback, where the solution, in most cases, can only be obtained numerically. 

 

3.3 Finite time linear quadratic regulator (LQR) algorithm 
 

Here we present the advanced control algorithm, denoted as linear quadratic regulator (LQR), 

which optimizes both the control effort (minimal control energy) and the performance of the 

system with respect to time. In order to determine the optimal control law 𝒖 ∗ (𝑡), we first define 

the cost-to-go function 𝐽(𝒙(𝑡), 𝑡) as a quadratic form (see Table 1) 

 
(31) 

where 𝑸 = 𝑸𝑇 > 0, 𝑸𝑓 and 𝑹 = 𝑹𝑇 > 0 are matrices related to the penalty of state error, terminal 

error and control effort. According to Eq. (29) we can define the Hamiltonian as follows 

 
(32) 

To perform optimization of function in Eq. (31), we employ the HJB principle in Eq. (30), 

where the minimization task reads 

 
(33) 

Now, we can obtain stationary condition, state and co-state equations by finding the first 

derivative of the Hamiltonian 𝐻  with respect to control variable 𝒖 , state 𝒙  and Lagrange 

multipliers 𝞴, respectively 

 

(34) 
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where we obtain the optimal control law 𝒖 ∗ (𝞴(𝑡), 𝑡) which minimizes the functional in Eq. (33). 

The result in Eq. (34) can be rewritten in matrix form as 

 
(35) 

To provide the closed-loop or state feedback control, we a priori need to redefine the optimal 

control 𝒖 ∗ (𝞴(𝑡), 𝑡) in terms of the state variable 𝒙(𝑡). If we assume that the optimal cost-to-go 

function has a following solution form 𝐽 ∗ (𝒙(𝑡), 𝑡) =
1

2
𝒙𝑇 ⋅ 𝑺(𝑡)𝒙, where 𝑺(𝑡) = 𝑺𝑇(𝑡) > 0, then 

the Lagrange multipliers and time variation of the cost-to-go function can be given as 

 
(36) 

Now, we can rewrite the optimal control law 𝒖 ∗ (𝒙, 𝑡) in Eq. (34) as 

 (37) 

where −𝑹−1𝑩𝑇𝑺(𝑡) is denoted as Kalman gain. By combining the results in Eqs. (35), (36) and 

(37), one can cast the Riccati differential equation in matrix form as follows  

 (38) 

where the final state condition is given 𝑺(𝑡𝑓) = 𝑸𝑓. For clarification, the solution procedure of the 

LQR problem reduces to numerical integration of the Riccati differential equation Eq. (38) 

backwards in time. Once the solution 𝑺(𝑡) is obtained, we can compute the optimal feedback gain 

𝒖 ∗(t) at the time 𝑡 (see Eq. (37)), and then update the state equation 

 (39) 

Thus, we can proceed with the computation of the system response forward in time for the 

given control signal in Eq. (37).  

 

 

4. Numerical implementation 
 

In this section, we present the numerical implementation of the 2D beam with nonlinear 

kinematics. Since the linearization of the weak form was elaborated in [2,3], we will omit a 

detailed explanation. Furthermore, we show the essential steps involved in the development of 

discrete computation algorithm of optimal control law.  

 

4.1 Discrete approximation for geometrically exact beam with 2-node element 
 

Here, we briefly discuss the choice of the shape functions. The piece-wise linear shape 

functions are chosen for discretization of the displacement and rotation fields that correspond to a 

2-node element. We consider a domain Ω ∈ ℝ2  divided into a finite number of elements with 

length Ω𝑒. It holds that Ω =∪Ω𝑒∈𝐼 Ω𝑒, where 𝐼 is a set with all elements. To construct the real and 

virtual fields, we use the same isoparametric shape functions defined as follows 

 
(40) 
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where 𝑁𝑎
𝑒(𝜉)  is the linear piece-wise shape function. The corresponding first derivatives of 

displacement and rotation fields, which are necessary ingredient to compute the strains, can easily 

be computed with 

 

(44) 

where the transformation to isoparametric coordinates employs the Jacobian, which is given by 

𝑗(𝜉) =
𝑑𝜉

𝑑𝑠
=

𝐿𝑒

2
. The same choice of shape functions can be used for discretization of real and 

virtual fields of velocity and acceleration. 

 

4.2 Linearized weak form of dynamic equilibrium 
 

Such a highly nonlinear dynamic problem we need to linearize, by finding the directional 

derivative with respect to incremental change in displacements and rotation. Taking into account 

that equilibrium is attained for the previous time step, we can write the linearized internal work of 

weak equilibrium equations in Eq. (18) as  

 

(44) 

where Δ𝝋 and Δ𝜓 are incremental displacements and rotation, respectively. It can be noticed that 

in Eq. (46) we get material 𝑲𝑚 and geometric 𝑲𝑔  part of the tangent stiffness as a product of 

consistent linearization, such that 𝑲 = 𝑲𝑚 + 𝑲𝑔. Furthermore, we can write explicit form of the 

material part of internal virtual work 

 

(45) 

as well as the linearized geometric part of internal virtual work 𝑲𝑔 

 
(46) 

The linearized inertia term is given as 

 
(47) 

thus, the linearized equilibrium equations can be written in a simplified form 

 
(48) 
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4.3 Discrete time computation algorithm of optimal control 
 

In this section, we provide the solution procedure for the LQR problem in a time discrete form. 

The state differential equation in Eq. (34) can be numerically integrated by explicit Euler forward 

scheme, where the state variables at time step 𝑛 + 1 are computed  

 

(49) 

With the help of the expression in Eq. (24), we can rewrite the cost-to-go function in discrete 

form for arbitrary time instant 𝜏 ∈ [0, 𝑛 + 1] as 

 
(50) 

where the computation of 𝜏 < 𝑛 + 1 is performed recursively. For clarification, if we consider two 

adjacent time instantes 𝑛 and 𝑛 + 1, the cost-to-go function is known for 𝑛 + 1 and it has a form 

 (51) 

while the cost-to-go function at time 𝑛 needs to be computed backwards in time. By using result in 

Eqs. (51) and (53), one can express the cost-to-go function at time 𝑛 with respect to variables in 

the same time instant as follows 

 

(52) 

According to the expression Eq. (37) the optimal control law in discrete form becomes  

 

 

(53) 

where 𝑲̄𝑛  is Kalman gain. Now, the optimal cost-to-go function from time 𝑛  to 𝑛 + 1 can be 

expressed in terms of Kalman gain as follows 

 
(54) 

By combining results in Eqs. (51) and (54) one can obtain the Riccati differential equation (see 

Eq. (38)) in discrete form 

 
(55) 

where the solution is computed recursively. 

 

 

5. Numerical examples 
 

In this section, we present several numerical examples that illustrate performance of the  
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Time varying LQR-based optimal control of geometrically exact Reissner’s beam model 

 

Fig. 4 Input geometry and material data 

 

  
(a) (b) 

Fig. 5 Validation of the present model with Matlab functions (a) state-space response; (b) time history of 

displacement 

 

 

proposed optimal control approach and its capabilities. The code development and computations 

are performed by using the research version of FEAP software, developed by Prof. R.L. Taylor at 

UC Berkeley (Taylor 2014). 

 

5.1 Linear case of uniaxial vibration of Reissner’s beam 
 

In this example, we firstly consider a simple 1D problem to verify the control algorithm for 

linear response of Reissner’s beam with an uniaxial tension load, see Fig. 4. Hence, we can verify 

the element control algorithm for the case where both stiffness and mass matrix are constant in 

time. For such a linear problem we can verify the computed response against the Matlab solvers 

LQR and discrete algebraic Riccati equations (idare). The beam of length 𝐿 = 10 is clamped at the 

left end, and submitted at the right end to imposed initial displacement of magnitude 𝑝 = 1. The 

rest of input data geometry and material properties are given in Fig. 4. We employed a single finite 

element model in order to provide the simplest possible illustration that can be compared against 

the spring-mass system. We note that by refining the mesh with (many) more beam elements, one 

has to control high frequency modes which can pollute the results and impair convergence.  

We performed numerical computation by using the Euler backward time integration scheme. 

To avoid amplitude decay, yet called numerical damping, due to insufficient scheme accuracy, we 

use a very small time step of Δ𝑡 = 0.0001𝑠 with 10⁴ steps for 1𝑠. First, we verify the proposed 

element accuracy in free vibration without control against the system response to initial states of 

state-space model in Matlab, obtained by calling the functions (sys=ss(A,B,C,D)] and 

[[y,t]=initial(sys,x0)). The results of these computations are given in Fig. 5., where the results are 

almost indistinguishable. 

Next, we seek to verify the computational response of the system against two Matlab solution  
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(a) (b) 

  
(c) (d) 

Fig. 6 State-space response (a) 𝑄 = 10; (b) 𝑄 = 10²; (c) 𝑄 = 10³, (d) 𝑄 = 10⁴ 

 

 

algorithms for algebraic Riccati’s equation lqr ([K,S,P]=lqr(A,B,Q,R,N)) and differential algebraic 

Riccati’s equations idare ([X,L,G]=idare(A,B,Q,R)). These algorithms provide the steady state 

solution and the time discrete solution of differential Riccati’s equations. The computations are 

performed for different values of penalty state error: 𝑸 = 𝑞𝑰, 𝑞 = (0,10,10², 10³, 10⁴) and 𝑹 =
𝑟𝑰, 𝑟 = 1. In Fig. 6., we present the computer state space diagrams for several values of matrix 𝑸.  

It can be seen from the figures that with the increase of the penalty value 𝑞, the amplitudes of 

oscillation of the displacement and velocity decrease. In both cases, when 𝑞 = 0, the amplitudes of 

oscillation of the displacement and velocity remain the same (undamped free vibrations), and at 

𝑞 = 10⁴, the oscillatory character of the time change for the displacement and velocity almost 

completely disappears. The oscillation amplitude of the displacement decreases from the initial 

value of 1 to zero at a time slightly greater than 0.2 s. The velocity changes from a zero initial 

value and reaches a value of around -7, and at a time of 0.3 s it drops to zero. In the case of a 

control law that is equal to zero at 𝑞 = 0, with an increase in the penalty value 𝑞, the control law 

takes on an oscillatory character and the oscillation amplitude increases with an increase of 𝑞. For 

value of 𝑞 = 10⁴, the oscillatory character of the control signal disappears, but there is an 

overshoot that is more than 6⋅102 at peak time of 0.09 s. Moreover, the output results match very 

well by comparing those obtained via idare and the present model. On the other hand the lqr with 

constant control law does not provide the same output, unless we increase the penalty state error  
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(a) (b) 

 
(c) 

Fig. 7 Output data-the time history of (a) displacement; (b) velocity, (c) control signal 

 

 

(compare Fig. 6(a) and 6(d)). The small value of the penalty state error is insufficient to achieve 

the optimal control goal by placing the structure in the final position within the given time. 

In Fig. 7, we show the comparison of computed results for time evolution of displacement, 

velocity and control with the proposed model for different penalty values. We see in Fig. 7(a) that 

increasing value of penalty state error leads to decreasing amplitude (much analogous to increased 

damping) for both displacement (Fig. 7(a)) and velocity (Fig. 7(b)), whereas it results in increased 

values of optimal control (Fig. 7(c).). 

To verify the solution algorithm of the Riccati differential equations in matrix form we present 

the Frobenius norm of the solution with respect again to different penalty values of 𝑸, see Fig. 8. It 

can be noticed that results are practically the same in the case of idare and the presented model. 

We note that for the steady state case, the Riccati solution remains constant in agreement with Eq. 

(38), which has influence on convergence rate (Fig. 6(a)). 

 

5.2 Slightly nonlinear case: Transverse vibration of Reissner’s beam 
 

In this example, we consider a slightly nonlinear case of the Reissner’s beam kinematics, where 

we impose small initial perturbation 𝑝 = 0.1 in the transverse direction to the beam axis. Input  
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(a) (b) 

  
(c) (d) 

Fig. 8 The Frobenius norm for different penalty error terms (a) 𝑞 = 10; (b) 𝑞 = 10²; (c) 𝑞 = 10³, (d) 𝑞 =
10⁴ 

 

 

data are the same as in the previous example, but with additional flexural stiffness 𝐸𝐼 = 10². We 

perform computations for 2, 4 and 8 finite elements in order to check the stability of computations 

due to presence of high frequency modes. Here we impose the control algorithm only in transverse 

direction, and we apply such control for all the elements with following penalty state error 𝑸 =
𝑞𝑰, 𝑞 = 10³ and penalty control 𝑹 = 𝑟𝑰, 𝑟 = 1. The simulations are performed with time step of 

Δ𝑡 = 0.0001𝑠 for total time of 5𝑠. The output results are given in Fig. 9, for state space response 

and time evolutions of free end displacement, velocity and control variable. 

Here we show the ability to establish the control of the system that evolves over the time, 

where the stiffness matrix is nearly constant in time, since the small vibration amplitudes remain 

close to the linear domain of small displacements and rotations. We observe that by increasing the 

number of elements the FE model contains more high frequency modes which makes the system 

more difficult to control (see Fig. 9(a)). Nonetheless, in this example the control algorithm for all 

discretizations successfully damped the vibrations. 

 

5.3 Nonlinear case: Large displacements and rotations of cantilever beam 
 

This example is chosen from (Ibrahimbegovic et al. 2004) controlled for quasi-static case. Here 

we present the computation for nonlinear dynamics that is made to transform the cantilever beam  
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Time varying LQR-based optimal control of geometrically exact Reissner’s beam model 

  
(a) (b) 

  
(c) (d) 

Fig. 9 Output data (a) state-space response, (b) the time history of y-displacement, (c) time history of y-

velocity, (d) time history of control law 

 

 

in the vertical position closest to the letter T. We present here the LQR algorithm that drives the 

system to non-zero setpoint, where the end states are 𝑥 = 0, 𝑦 = 15.356 and 𝜓 = 𝜋. To simulate 

dynamic response we adopted an additional parameter that pertains to mass density 𝜌 = 1. The 

geometry and the rest of material properties are given in (Ibrahimbegovic et al. 2004). 

We simulate a simplified model with few finite elements in order to avoid activation of high 

frequency modes. Also, we set on the control algorithm at the node 3 (see Fig. 10) for all three 

degrees of freedom. The adopted values of penalty terms of state error 𝑸 = 𝑞𝑰, 𝑞 = 10³  and 

control error 𝑹 = 𝑟𝑰, 𝑟 = 0.1. The computation is performed with time step Δ𝑡 = 0.001 s for total 

time of 𝑡 = 4 s. The output configurations and its y-displacement field at 6 times instants are given 

in Fig. 10. The state-space diagram and the state variables time dependency are presented in Fig. 

11. 

The simulation results show that the control algorithm managed to drive the system to non-zero 

setpoint in the domain of large displacements and rotations with optimal control policy. 

Additionally,  

one can observe in Fig. 11(a). that system converges to given values of displacement where 𝑢 and 

𝑣  are components of displacements in 𝑥  and 𝑦 direction, and 𝜓 is angle with respect to initial 

configuration. 
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(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Fig. 10 Displacement field in y direction for following time instants (a) 𝑡 = 0 s, (b)  𝑡 = 0.8 s, (c) 𝑡 = 1.6 s, 

(d) 𝑡 = 2.4 s, (e) 𝑡 = 3.2𝑠, (f) 𝑡 = 4 s 

 

 

6. Conclusions 
 

We have explored the efficiency of the time varying advanced control algorithm applied to the 

geometrically exact 2D beam model. We chose the linear-quadratic regulator (LQR) algorithm to 

drive the system into the desired state, where the optimal control strategy considers minimization 

task of the cost-to-go functional with respect to the state error and control effort. Due to the 

nonlinear nature of kinematics of the Reissner’s beam model, the beam tangent stiffness is 

constantly changing, Yet, the proposed optimization task reduces to the computation of the 

differential Riccati’s equation in each time step.  
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Time varying LQR-based optimal control of geometrically exact Reissner’s beam model 

  

(a) (b) 

 
(c) 

Fig. 11 Output data (a) state-space response, (b) displacement vs. time, (c) velocity vs. time 

 

 

The performance of the proposed model is simulated on several numerical examples. The first 

of them has verified that the method applies with no difficulty to a simple 1D linear case, which is 

confirmed by comparing the output data with computed results of widely known algorithms lqr 

and idare in Matlab. The second example deals with the finite element model with a slightly 

nonlinear case, where one can notice that the system provided stability by converging to the initial 

zero setpoint. In the final example we computed the response of a nonlinear system in the domain 

of large displacements and rotations setting, where we report that due to occurrence of high 

frequency modes the system is difficult to control. Therefore, here the penalty coefficients must be 

selected carefully. 
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