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Abstract.  The effectiveness of coupling with a bolted rim is assessed in this research using a newly designed 
optimization algorithm. The current study, which is provided here, evaluates 10 contemporary metaheuristic 
approaches for enhancing the coupling with bolted rim design problem. The algorithms used are particle swarm 
optimization (PSO), crow search algorithm (CSA), enhanced honeybee mating optimization (EHBMO), Harmony 
search algorithm (HSA), Krill heard algorithm (KHA), Pattern search algorithm (PSA), Charged system search 
algorithm (CSSA), Salp swarm algorithm (SSA), Big bang big crunch optimization (B-BBBCO), Gradient based 
Algorithm (GBA). The contribution of the paper is to optimize the coupling with bolted rim problem by comparing 
these 10 algorithms and to find which algorithm gives the best optimized result.   These algorithm’s performance is 
evaluated statistically and subjectively. 
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1. Introduction 
 

The coupling with bolted rim problem is proposed by Giraud-Moreau and Lafon. Couplings are 

often utilised in mechanical transmission design. Because of the vast and very diversified fields of 

action of the equipment and installations they outfit, flexible couplings with non- metallic materials 

are extremely important (compressors, pumps, generators, pulleys, cranes, conveyors, mixers, piston 

motors, general industrial applications, as well as in the metallurgical industry, the mining industry, 

the paper industry, and the pulp industry). In applications, couplings are constructed in a wide range 

of constructive solutions, making a unified and widely accepted classification difficult. Coupling 

has been employed in a wide range of applications around the world, including light towers, air 

pumps, welding sets, and other gear with high driving inertia. Two cast iron hubs, a super-elastic 

rubber element, and locking hardware comprise the connection. Torque is delivered from one part 

of the coupling to the other by bolts in a rigid coupling, and shafts must be aligned in this 

configuration. Let us consider the elementary mechanism represented in Fig. 1, made up of some 

elementary connections, and intended to transmit by adhesion a torque between two shafts coaxial. 
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Fig. 1 Coupling bolted rim (Ali Riza et al. 2019) 

 

 

2. Objective 
 

The objective of the paper is to minimize the weight of the coupling by using 10 non- traditional 

optimization techniques and validating the results using simulation in ANSYS. 

 

 

3. Literature survey 
 

Ali Rıza Yıldız implements the butterfly optimization approach which is used to solve the 

problem of coupling with a bolted rim (BOA). Finally, the BOA is used to a shape optimization 

problem. Suspension arm of the vehicle. It comes from the Kriging metamodeling system. This 

method is for obtaining objective and constraint equations functions in the optimization of shapes 

(Betul et al. 2020). He also introduced the new adaptive mixed differential (NAMDE) algorithm for 

the coupling with bolted rim problem. To update the values of mutation and crossover factors, the 

system employs a self-adaptive process. The objective function for the coupling with a bolted rim 

problem increased by 10%. Hammoudi Abderazek offers the Adaptive Mixed Differential Evolution 

(AMDE), a unique evolutionary approach for optimising the coupling with bolted rim problem with 

mixed variables (Hammoudi et al. 2019). Laurence Giraud-Moreau compared two evolutionary 

algorithms – the genetic algorithm and the evolution method-in terms of coupling with bolted rim 

problems (Laurance et al. 2002). Pascal Lafon has formulated the coupling with plates problem to 

minimize its radius, number of bolts and torque (Lafon et al. 1994). Ali Riza Yildiz is also compared 

six mechanical models by using ten meta-heuristic methods to optimize these six designs (Ali Riza 

et al. 2019). 

In the specialist literature, engineering design optimization problems are commonly used to 

demonstrate the efficiency of new restricted optimization techniques. To overcome these nonlinear 

engineering issues, many researchers adopted unconventional solutions. These nonlinear 

engineering problems typically involve a heterogeneous set of design variables (discrete or 

continuous), nonlinear objective functions, and nonlinear constraints, some of which may be active 

at the global optimum. Constraints are particularly significant in engineering design issues since 

they are generally placed on the problem statement. It can be tough to fulfil at times, making the 

search laborious and inefficient. 

The optimization is carried out with various solvers for the two extreme values of the parameters. 

Because they are stochastic, the outcomes may differ from trial to trial. As a result, the solver uses 
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the parameter’s final value after running the problem for 20 attempts (Emad et al. 2005). To 

overcome the local optima trap shortcoming and improve the solution quality of a recently 

introduced arithmetic optimization algorithm (AOA), the Nelder–Mead local search methodology 

has been incorporated into the basic AOA framework (Betul et al. 2023).  a novel generalized normal 

distribution algorithm that is integrated with elite oppositional-based learning (HGNDO-EOBL) is 

studied and employed to optimize the design of the eight benchmark engineering functions (Pranav 

et al. 2023).  A novel metaheuristic called Chaotic Marine Predators Algorithm (CMPA) is proposed 

and investigated for the optimization of engineering problems (Sumit et al. 2023). A novel hybrid 

metaheuristic optimization algorithm named chaotic Runge Kutta optimization (CRUN). He 10 

diverse chaotic maps are being incorporated with the base Runge Kutta optimization (RUN) 

algorithm to improve their performance (Betul et al. 2022). 

 

 

4. Mathematical modelling 
 

The coupling with bolted rim is mathematically formulated as follows. The objective function 

includes three terms with weighting coefficients. d is discrete, N is an integer, 𝑅𝐵 and M are 

continuous variables. The problem is subjected to eleven inequality constraints 

 

4.1 Initial expression 
 

The study we are doing here assumes that the shaft-plate connection has already been chosen and 

sized. We will also admit that the shape of the plates is imposed by manufacturing conditions. 

The quantity to be minimized is clearly identifiable and is written, with the notations of the Fig. 

1: 

𝑅 = 𝑅𝑀 + 𝑏1 + 𝑏2 + 𝑐 

𝑅𝑀: Larger radius of the shaft - hub connections. 

C: Thickness of the outer protective rim, depending on the process for obtaining trays. 

The functional relationships that can be written about this mechanism are as follows: 

The functional equation defining the minimum torque transmissible by this coupling gives: 

𝑀 = 𝑄𝑚 ∙ 𝑓𝑚 ∙ 𝑁 ∙ 𝑅𝐵 

𝑄𝑚: Minimum preload in the bolt. 

𝑓𝑚: Minimum coefficient of friction between the plates. 

By using the calculation models of bolted joints resulting from one can write the following 

relationships: 

Maximum Von Mises equivalent stress in the bolt 

𝜎𝐵 = √(
𝑄𝑀

2

𝑆𝑒

) + 3(
16𝐶2

𝑛𝑑𝑒
3 ) 

𝑄𝑁: Maximum preload in the bolt. 

𝑆𝑒: Equivalent resistant cross section of the screw. 

𝑑𝑒: Diameter of the resistant section. 

Maximum torque applied to the screw during tightening: 

𝐶 = (16.0𝑝)𝑄𝑀 

p: The pitch of the screw. 
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𝑑2: Average diameter on the side of the screw threads. 

𝑓1: Coefficient of friction screw - nut. 

Preload installed in the bolt during tightening: 

𝑄𝑀 = 𝛼𝑄𝑚 

With α Uncertainty coefficient, linked to the tightening tool used 

The functional equations resulting from geometric conditions are as follows: 

Resistance section of 𝑆𝑒 the bolt: 𝑆𝑒 =
𝜋𝑑𝑒

2

4
 

Interval between bolts: 𝑠 =
2𝜋𝑅𝐵

𝑁
 

On the shelves: 𝑅𝐵 = 𝑅𝑀 + 𝑏1 

On the diameters: 𝑑𝑒 = 𝜙1(𝑑) 

𝑑2 = 𝜙2(𝑑)  

On the step: 𝑝 = 𝜙3(𝑑) 

Geometric dimensions of the tightening tool: 

𝑏𝑚 = 𝜙4(𝑑)  𝑠𝑚 = 𝜙5(𝑑)  
Finally, the following limiting functional conditions should be added: 

On the static resistance of the bolt: 𝜎𝐵 = 0.9𝑅𝑒 

Re Yield strength of the quality class of the screws considered. 

On the torque transmitted: 𝑀 ≥ 𝑀𝑇 

On the number of bolts: 𝑁 ≥ 𝑁𝑚 

On the diameter of the bolts: 𝑑 ≥ 𝑑𝑚 

On the overall dimensions of the tightening tool: 𝑏2 ≥ 𝑏𝑚 

𝑏1 ≥ 𝑏𝑚 

𝑠 ≥ 𝑠𝑚 

The above relationships involve the following 26 parameters: 

 Functional parameters: 𝑀, 𝑀𝑇, 𝑄𝑚, 𝑄𝑀, 𝐶, 𝛼, 𝜎𝐵 

Geometric parameters: 𝑑𝑚, 𝑑, 𝑑𝑒, 𝑑2, 𝑝, 𝑆𝑒, 𝑠, 𝑏1, 𝑏2, 𝑏𝑚, 𝑠𝑚, 𝑁, 𝑁𝑚, 𝑅3, 𝑅𝑀, 𝑐 Material 

parameters of bolts and plates: 𝑅𝑒, 𝑓𝑚, 𝑓1 

The relations 𝜑𝑖 relating the various geometrical parameters concerning the bolt and the 

tightening are not explained here. They express the fact that the parameters like the step and the 

mean and flank diameter of threads depend on the diameter of the bolts d. These are values 

normalized accessible only by the value of d. In subsequent calculations the values of these 

parameters will be extracted from an array from the value of d. In the expression of problem, the 

functions 𝜑𝑖 will be kept to-simplify the writing of the conditions functional. 

We will assume that the values of the following 9 parameters: 

𝑀𝑇, 𝑓𝑚, 𝑓1, 𝛼, 𝑅𝑒, 𝑁𝑚, 𝑅𝑀, 𝑐, 𝑑𝑚 

have been fixed by a global functional analysis, they will be considered as data from the problem. 

Eleven constraints and an objective function are in this optimization problem. N bolts of diameter 

d are set at radius 𝑅𝐵 to convey twist via adhesion. The goal is to discover the coupling with the 

smallest radius, the fewest bolts, and the least twist. This is a multi-criteria objective function with 

weighting coefficients of 𝛽1, 𝛽2, and 𝛽3. In the restricted linkage between the shaft and the coupler 

is postulated in this investigation selected. One discrete variable (d), one integer variable (N), two 

continuous variables (𝑅𝐵, M), 11 inequality constraints, and 5 discrete bolt parameters (𝜙𝑖(d), i =1, 

…, 5). make up the specified optimization problem. 
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4.2 Final expression: reduction of the number of variables 
 

We will express this problem according to the following 4 variables 

𝑑, 𝑁, 𝑅𝐵, 𝑀 

By combining the functional equations with the condition functional limit, we obtain the relation 
𝛼.𝑀

𝑁.𝑅𝐵
< 𝐾(𝑑)  With: 𝐾(𝑑) =

0.9𝑓𝑚𝑅𝑒𝜋(𝜙(𝑑))2

4√1+3(0.16𝜙3(𝑑)𝐽1/𝜙1(𝑑))2
 

Likewise, the combinations of the functional equations with the respective inequalities and allow 

to write: 
2𝜋𝑅𝐵

𝑁
≥ 𝜙5(𝑑) 

𝑅𝐵 ≥ 𝑅𝑀 + 𝜙4(𝑑) 

We try to minimize the expression: 

𝑅 = 𝑅𝑀 + 𝑏1 + 𝑏2 + 𝑐 = 𝑅𝐵 + 𝑏2 + 𝑐 

𝑏2 ≥ 𝑏𝑚. 

So, we will have systematically R minimal for 𝑏2=𝑏𝑚=𝜙4(𝑑). We bring each other back then 

to the following problem, comprising 4 description variables and 6 constrained functions 

inequality: Minimize the expression: 𝑅≥𝑅𝐵+𝜙4(𝑑)+𝑐 

Under constrained functions: 𝑀 ≥ 𝑀𝑇 
𝛼. 𝑀

𝑁. 𝑅𝐵
≤ 𝐾(𝑑) 

2𝜋𝑅𝐵

𝑁
≥ 𝜙5(𝑑) 

𝑅𝐵 ≥ 𝑅𝑀 + 𝜙4(𝑑) 

𝑁 ≥ 𝑁𝑚 

𝑑 ≥ 𝑑𝑚 

To present all the optimal design issues dealt with in this book, we adopt the following script 

which has the advantage of clearly identifying the chosen variables 

Minimize the objective function: 𝐹(𝑑, 𝑁, 𝑅𝐵, 𝑀)=𝑅=𝑅𝐵+𝜙4(𝑑)+𝑐 

Under constrained functions: 𝑐1(𝑑, 𝑁, 𝑅𝐵 , 𝑀) = 𝑀𝑅 − 𝑀 ≤ 0 

𝑐2(𝑑, 𝑁, 𝑅𝐵 , 𝑀) =
𝛼. 𝑀

𝑁. 𝑅𝐵
− 𝐾(𝑑) ≤ 0 

𝑐3(𝑑, 𝑁, 𝑅𝐵 , 𝑀) = 𝜙5(𝑑) −
2𝜋𝑅𝐵

𝑁
≤ 0 

𝑐4(𝑑, 𝑁, 𝑅𝐵 , 𝑀) = 𝑅𝑀 + 𝜙4(𝑑) − 𝑅𝐵 ≤ 0 

𝑐5(𝑑, 𝑁, 𝑅𝐵 , 𝑀) = 𝑁𝑚 − 𝑁 ≤ 0 

𝑐6(𝑑, 𝑁, 𝑅𝐵 , 𝑀) = 𝑑𝑚 − 𝑑 ≤ 0 

 

Variable vector: 𝑥={𝑑, 𝑁, 𝑅𝐵, 𝑀}𝑇 

From this example very representative of the type of optimization problems that we will have to 

deal with in optimal design, we can draw the following conclusions: 

We note that several types of variables intervene in this formulation: 

• Variables that may vary continuously between the limits defined by the field of solutions, such 

as moment M and radius 𝑅𝐵. We will name this type of variables: continuous variables. 

• Variables constrained to take integer values such as the number of bolts N or again discrete 
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variables such as the diameter of the bolts resulting from the standardization. 

The optimal design problem is therefore very often an optimization problem in mixed variables. 

Let us also underline the particularity of certain discrete variables such as here the diameter of the 

bolts. Indeed, some parameters are directly dependent on this type of variables, they act in a way as 

discrete “secondary” variables whose values are only accessible through tables. This situation is 

encountered for many of standardized mechanical construction elements (bearings for example) or 

standard (the joints). This type of problem is generally very constrained, in other words, the number 

of constrained functions is very often greater than the number of variables. However, the analytical 

expressions of the different functional relations often allow us to eliminate by substitution of the 

functional equations so that we very rarely have constrained functions equalities. Note finally that 

these are generally nonlinear problems, comprising frequently monotonous functions (Lafon et al. 

1994). 

 

Minimize: 𝑓(𝑥) = 𝛽1 (
𝑁

𝑁𝑀
) + 𝛽2 (

𝑅𝐵+𝜙4(𝑑)+𝑐

𝑅𝑀
) + 𝛽2 (

𝑀

𝑀𝑅
) 

Subject to the constraints: 𝑔1(𝑥) =
𝛼𝑀

𝑁𝑅𝐵𝐾(𝑑)
− 1 ≤ 0 

𝑔2(𝑥) = 1 −
2𝜋𝑅𝐵

𝜙5(𝑑)𝑁
≤ 0 

𝑔3(𝑥) = 1 −
𝑅𝐵

𝜙4(𝑑)
+ 𝑅𝑀 

𝑔4(𝑥) = 𝑁 − 𝑁max ≤ 0 

𝑔5(𝑥) = 𝑅 − 𝑅max ≤ 0 

𝑔4(𝑥) = 𝑁𝑚 − 𝑁 ≤ 0 

𝑔7(𝑥) = 𝑅𝑀 − 𝑅𝐵 ≤ 0 

𝑔8(𝑥) = 𝑀 − 𝑀max ≤ 0 

𝑔9(𝑥) = 𝑀𝑅 − 𝑀 ≤ 0 

𝑔10(𝑥) = 𝑑 − 24 ≤ 0 

𝑔11(𝑥) = 6 − 𝑑 ≤ 0 

𝐾(𝑑) =
0.9𝑓𝑚𝑅𝑒𝜋(𝜙(𝑑))2

4√1 + 3(0.16𝜙3(𝑑)𝑓1/𝜙1(𝑑))2
 

𝑀𝑇=40 Nm, Mmax=1000 Nm, 𝑓𝑚=0.15, 𝑓1=0.15, 𝛼=1.5, 𝑅𝑒=627 MPa, 𝑁𝑚=8, 

𝑁max=100, 𝑅𝑀=50 mm, 𝑅max=1000 mm, C=5 mm, 𝛽1=𝛽2=𝛽3=1, 6≤𝑑≤248≤𝑁≤100, 

50≤𝑅𝐵≤1000, 40≤𝑀≤1000. 

 

Simplified: 
 

Minimize:  

(
𝑁

8
) + (

𝑅𝐵+𝜙4(𝑑)+5

50
) + (

𝑀

40
)  

Subject to the constraints: 

𝑔1(𝑥): 
1.5𝑀

𝑁𝑅𝐵𝐾(𝑑)
− 1 ≤ 0 

𝑔2(𝑥): 1 −
2(3.14)𝑅𝐵

𝜙5(𝑑)𝑁
≤ 0 
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𝑔3(𝑥): 1 −
𝑅𝐵

𝜙4(𝑑)𝑁
+ 50 

𝑔4(𝑥): 𝑁 ≤ 100 

𝑔5(𝑥): 𝑅 ≤ 1000 

𝑔6(𝑥): 8 ≤ 𝑁 

𝑔7(𝑥): 50 ≤ 𝑅𝐵 

𝑔8(𝑥): 𝑀 ≤ 1000 

𝑔9(𝑥): 40 ≤ 𝑀 

𝑔10(𝑥): 𝑑 ≤ 24 

𝑔11(𝑥): 6 ≤ 𝑑 

𝐾(𝑑) =
(265.7853)(𝜙(𝑑))2

4√1 + 3(0.16𝜙3(𝑑)0.15/𝜙1(𝑑))2
 

8 ≤ 𝑁 ≤ 100, 50 ≤ 𝑅𝐵 ≤ 1000, 40 ≤ 𝑀 ≤ 1000. 
 

 

5. Optimization algorithm 
 

The following are some of the most common problems with classic gradient methods and 

traditional direct approaches: 

• It converges to an optimal solution based on the original solution chosen. 

• Most algorithms are prone to limiting themselves to a sun-optimal answer. 

• A problem solved by one algorithm may not be efficient when applied to another. 

• Algorithms are inefficient for solving problems with non-linear objectives, discrete variables, 

and a large number of restrictions. 

• On a parallel computer, algorithms cannot be employed efficiently. 

In general, standard techniques such as steepest descent, dynamic programming, and linear 

programming make it difficult to address large-scale issues with nonlinear objectives functions. 

Traditional algorithms cannot address non-differentiable problems because they require gradient 

information. Some optimization problems have a large number of local optima. As a result of this 

issue, there is a need to build more powerful optimization approaches, and research has discovered 

our non-traditional optimization (Emad et al. 2005). 

Comparing to the traditional with non-traditional methods, 

• Non-traditional methods will give global results, but in traditional method we can get only local 

results, 

• Non-traditional methods can be used to solve any methods and, for traditional we can use only 

specific methods. 

Time consumption will be low in the non-traditional method, it takes more time in traditional 

method. 

The following non-traditional optimization algorithms are used. 

1. Particle swarm optimization (PSO), 

2. Crow search algorithm (CSA), 

3. Enhanced honeybee mating optimization (EHBMO), 

4. Harmony search algorithm (HSA), 

5. Krill heard algorithm (KHA), 

6. Pattern search algorithm (PSA), 
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7. Charged system search algorithm (CSSA), 

8. Salp swarm algorithm (SSA), 

9. Big bang big crunch optimization (B-BBBCO), 

10. Gradient based Algorithm (GBA). 

 

5.1 Particle Swarm Optimization (PSO) 
 

Particle swarm optimization (PSO) is initiated by Kennedy and Eberhart in 1995. Particle Swarm 

Optimization is a swarm-intelligence technique, where swarm intelligence refers to any algorithm 

or problem-solving tool inspired by the mutual behaviour of social insect colonies and other animal 

societies. Particle swarm optimization got inspired by flocking of birds and fish schooling. 

Example of Swarm, 

• A swarm of bees surrounds their hives 

• An ant colony with each and every one of its delegates as ants 

• A flock of birds is a swarm of birds 

• An immune system is a swarm of cells 

• A crowd is a swarm of people 

Self-organization and exertion disunity are two fundamental aspects of this swarm intelligence. 

The situation and velocity of the bird or particle are associated in particle swarm optimization (James 

et al. 2010). 

 

5.2 Crow Search Algorithm (CSA) 
 

Askar Zadeh introduced CSA, a new population-based algorithm that mimics the behaviour of a 

crow hiding food. Crows are gifted birds that can recognise people’s faces and warn their families 

when they are in danger. Crows are more cunning when it comes to concealing their food and 

remembering where it is hidden. The goal is to keep researchers interested in optimization and 

swarm intelligence algorithms. When all food locations are compared, the place with the most food 

heaped or stored is considered the global optimal solution, and the amount of food is the objective 

function. When the crow’s gifted behaviour is applied to a variety of optimization issues, the results 

are astonishing (Alireza et al. 2016). 

 

5.3 Harmony Search Algorithm (HSA) 
 

Harmony search algorithm is evolved by Geem in 2001. HS is developed depend on the 

symphonic presentation process. Typically, the numerous classifications of decision variables with 

extreme equality and inequality which carries the non-linear and non-convex objective function in 

engineering optimization problem. Subsequently, executing traditional methods in optimization 

problems which faces numerous dilemmas. To vanquish the dilemma of the complex optimization 

problems, Meta-heuristic optimization algorithm will be the systematic replacement. In music 

spontaneity procedure, preconceived group of musicians strive to tune the pitch on their instruments 

to attain a pleasant harmony (Mubina et al. 2021a). 

 

5.4 Enhanced honeybee-mating optimization (EHBMO) 
 

Enhanced honeybee-mating optimization (EHBMO) is new method on honeybee-mating 
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optimization (HBMO). This HBMO is swarm-based procedure that is inclined by some process on 

honeybee-mating. Comparing to other meta-heuristic optimization algorithms, EHBMO is highly 

competitive. EHBMO is the algorithm which is introduced newly. EHBMO gave so many ideas for 

the researchers, and they’ve learnt so many techniques on HBMO. An implementation of Enhanced 

Honeybee Mating optimization algorithm (EHBMO) in order to reflection in plant growth is planned 

for solving the problem in the power system which has fault estimation. Here, Simulating, and 

original power systems are not wisely examined that can be pondered by different situations. And 

the other application of EHBMO is a recent HBMOA for non-smooth economic send off. A basic 

concept of the HBMO conveys about the work of the honeybee, and they are social insects. They 

build their own hives, and they toil in the extremely organized pecking order. There are three forms 

in the honeybee community: the queen, drones, and workers (Mubina et al. 2021b). 

 

5.5 Charged System Search Algorithm (CSSA) 
 

The Charged System Search (CSS) employs a number of charged particles that interact with one 

another based only on their fitness values and separation lengths as determined by the Coulomb 

regulating law. To illustrate the similarities and differences between the CSS set of rules and some 

well-known meta-heuristics, a comparison is made. The CSS set of rules has been used to optimise 

a few benchmarks frame examples. CSS’s results are compared to those of existing meta-heuristic 

algorithms, indicating the new set of rules’ robustness (Ali Kaveh et al. 2019). 

 

5.6 Big-Bang Big Crunch Optimization (B-BBCO) 
 

Genetic algorithms (GA) and simulated annealing (SA) procedures are examples of innovations 

derived from nature. Traditional evolution algorithms are all human-based search methods with 

random variables and options. The study’s principal implication is that it proposes a technique of 

writing a novel based on one of the universe’s development hypotheses, namely the Big Bang and 

the Big Crunch Theory. Power distribution causes disruption and randomness during the Big Bang 

phase, while particles that are randomly distributed are drawn to order during the Big Crunch phase. 

Encouraged by this hypothesis, the Big Bang-Big Crunch (BB-BC) approach was developed, which 

creates random points in the Big Bang category and then narrows them down to a single point of 

representation through a heavy or low-income institution in the Big Bang fall phase. The authors of 

this study show that the performance of the new approach (BB-BC) suggests a high level of 

enhanced genetic search algorithm, which outperforms the traditional genetic algorithm (GA) for 

many benchmark tasks (Pavel et al.). 

 

5.7 Krill Herd Algorithm (KHA) 
 

Krill Herd (KH) is a current and recent meta heuristic optimization algorithm, that has been lately 

preferred by Gandomi and Alavi in 2012. Krill Herd algorithm is based on the replication of the 

herding character of krill individuals. The short distances of every individual krill from food and 

from highest solidity of the herd are examined as the objective function for the krill movement. To 

solve the engineering optimization problem, this krill herd (KH) is instigated. KH can be applied to 

some of the design problems to find a feasible solution. When compared to other optimization 

algorithm, the presentation of KH represents the state-of-the-art in the part. The outcome is a better 

global optimization solution (Amir et al. 2016). 
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Table1 Specific parameter settings of used algorithms 

Algorithm Parameter Settings 

PSO wmin=0.9, wmax=0.4, c1=2, c2=2 

CSA c1=c2=c3=2, ω=0.5, AP=0.2, fl=2, Vmax=[2]D 

EHBMO No. of drones=40, No. of broods=10, No. of selected genes in crossover=8 

HSA HMS=50, HMCR=0.5 fixed, PAR=0.5 

KHA Nmax= 0.01, Vf=0.02, Dmax=0.005 

PSA Only the common parameters (Fes and NP) 

CSSA rand-Random value between [0,1], c=0.1, ɛ=0.001 

SSA Only the common parameters (Fes and NP) 

B-BBCO Npop=100, kls=30, α=0.8, Ns=5 

GBA Only the common parameters (Fes and NP) 

wmin, wmax are respectively the min and max inertia weight 0.4, c1 and c2 are acceleration factors. HMS- 

Harmony Memory Size, PAR-Pitch Adjustment rate, HMCR-Harmony Memory Consideration rate, Npop- 

Population size, Kls- no. of non-improvement iteration, α-Reduction rate, Ns-no. of neighbours created in each 

generation, Nmax-Maximum induced speed, Vf-The foraging speed, Dmax-The maximum diffusion speed, c1, c2, 

c3–acceleration, ω- inertia weight, fl-length of the crow’s flight, AP-perceptual probability of crow, Vmax- 

upper limit of the particle update velocity 

 

 

5.8 Pattern Search Algorithm (PSA) 
 

Pattern search algorithm (PSA) is to compose a group of local search algorithm assisted by solid 

convergence proofs. They run by the principle of assessing the objective function repetitively in a 

stencil-based way. Pattern search algorithm is utilized to find the pattern or substring from another 

bigger string. To solve the engineering optimization problem, this Pattern search (PSA) is applied. 

PSA can be applied to some of the design problems to find a feasible solution. When compared to 

other optimization algorithms, the presentation of PSA represents the state-of-the-art in the area. 

This results in a better global optimization solution (Miloš et al. 2014). 

 

5.9 Salp Swarm Algorithm (SSA) 
 

Salp Swarm Algorithm (SSA) is the novel optimization algorithm which is used to solve the 

optimization problems with single and multi-objectives. The major inspiration of salp swarm 

algorithm is the behaviour of the salp’s swarming on their navigation and foraging in the oceans. To 

solve the engineering optimization problem, this Salp Swarm Algorithm (SSA) is instigated. SSA 

can applied to some of the design problems to find feasible solution. When compared to other 

optimization algorithm, the presentation of SSA represents the state-of-the- art in the area. This 

results in better global optimization solution (Laith et al. 2019). 

 

5.10 Gradient-Based Algorithm (GBA) 
 

Gradient-Based Algorithm (GBA) is a current and recent meta heuristic optimization algorithm, 

which needs gradient or delicate details in order to function evaluations and to decide enough search 

directions for a more fit design through the optimization replications. In optimization problems,  
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Table 2 FEs number and the NP size for the algorithms 

Problem NP tmax FEs 

Coupling with bolted rim 20 250 5000 

 
Table 3 Diameter of the bolts (d) 

Trail no. PSO EHDMO HSA CSA CSSA BBCO GBA KHA PSA SSA 

1 6.0000 6.0012 6.1253 6.1122 6.3265 6.4565 6.5237 6.4565 6.2563 6.1230 

2 6.0000 6.0023 6.1232 6.1122 6.9865 6.4565 6.5632 6.5645 6.2563 6.1254 

3 6.0000 6.0052 6.1254 6.1122 6.8956 6.4565 6.5412 6.5645 6.2563 6.1256 

4 6.0000 6.0045 6.1252 6.1122 6.6585 6.4565 6.5698 6.6545 6.2563 6.1254 

5 6.0000 6.0012 6.1200 6.1122 6.5897 6.4565 6.5237 6.4565 6.2563 6.1254 

6 6.0000 6.0025 6.1230 6.1122 6.5485 6.4565 6.5413 6.5465 6.2563 6.1236 

7 6.0000 6.0013 6.1230 6.1122 6.5699 6.4565 6.5633 6.5654 6.2563 6.1235 

8 6.0000 6.0021 6.2301 6.1122 6.6666 6.4565 6.5215 6.6545 6.2563 6.1254 

9 6.0000 6.0022 6.2013 6.1122 6.5854 6.4565 6.5422 6.5465 6.2563 6.1237 

10 6.0000 6.0011 6.3201 6.1122 6.5455 6.4565 6.5370 6.6566 6.2563 6.1525 

11 6.0000 6.0052 6.2323 6.1122 6.5556 6.4565 6.5237 6.6666 6.2563 6.1254 

12 6.0000 6.0045 6.3261 6.1122 6.6547 6.4565 6.5700 6.5645 6.2563 6.1452 

13 6.0000 6.0045 6.3210 6.1122 6.6655 6.4565 6.5637 6.5555 6.2563 6.1255 

14 6.0000 6.0014 6.3201 6.1122 6.5667 6.4565 6.5413 6.4544 6.2563 6.1254 

15 6.0000 6.0015 6.3223 6.1122 6.6546 6.4565 6.5699 6.5545 6.2563 6.1254 

16 6.0000 6.0078 6.3220 6.1122 6.5859 6.4565 6.5237 6.5565 6.2563 6.1290 

17 6.0000 6.0085 6.3211 6.1122 6.9999 6.4565 6.5423 6.6655 6.2563 6.1857 

18 6.0000 6.0015 6.3250 6.1122 6.5688 6.4565 6.5245 6.5544 6.2563 6.1479 

19 6.0000 6.0015 6.3210 6.1122 6.5666 6.4565 6.5698 6.5645 6.2563 6.1570 

20 6.0000 6.0015 6.3201 6.1122 6.6590 6.4565 6.5488 6.6544 6.2563 6.1523 

Average 6.0000 6.0031 6.2374 6.1122 6.6425 6.4565 6.5452 6.5728 6.2563 6.1346 

 

 

intent and restraint functions are frequently known as performance estimate. To solve the 

engineering optimization problem, this Gradient-Based Algorithm (GBA) is instigated. GBA can be 

applied to some of the design problems to find a feasible solution. When we compared to other 

optimization algorithm, the presentation of GBA represents the state-of-the-art in the area. This 

results the better global optimization solution (Jinseog et al. 2008). 

 

 
6. Methodology 
 

The performance of the non-traditional algorithm will vary for every run, and it is assured that 

the solution is global optimum. So, for every problem twenty trail runs were performed in all 

algorithms and the average value of the solution was obtained from all the trails (Hammoudi et al. 

2018). The Specific parameters are set for different algorithms as in Table 1 and the FEs number 

and NP size are taken as in Table 2. 

 

DIAMETER OF THE BOLTS (d) 

 

To determine the diameter of a bolt, measure the distance between the outer threads on one side  
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Fig. 2 Diameter of the bolts (d) 

 
Table 4 Number of bolts (N) 

Trial no PSO EHDMO HSA CSA CSSA BBCO GBA KHA PSA SSA 

1 8.0000 8.0011 8.0123 8.2564 8.7896 8.5645 8.5632 8.5645 8.5469 8.0023 

2 8.0000 8.0012 8.0123 8.2564 8.7898 8.5645 8.5412 8.6545 8.5469 8.0056 

3 8.0000 8.0015 8.3210 8.2564 8.8660 8.5645 8.5699 8.6666 8.5469 8.0054 

4 8.0000 8.0021 8.3210 8.2564 8.8990 8.5645 8.5413 8.5466 8.5469 8.0059 

5 8.0000 8.0025 8.0213 8.2564 8.8788 8.5645 8.5699 8.5555 8.5469 8.0023 

6 8.0000 8.0021 8.3212 8.2564 8.6589 8.5645 8.5215 8.5645 8.5469 8.0054 

7 8.0000 8.0011 8.3212 8.2564 8.6589 8.5645 8.5633 8.4455 8.5469 8.0087 

8 8.0000 8.0000 8.3232 8.2564 8.6589 8.5645 8.5623 8.5565 8.5469 8.0056 

9 8.0000 8.0025 8.1212 8.2564 8.6599 8.5645 8.5326 8.4445 8.5469 8.0024 

10 8.0000 8.0036 8.0202 8.2564 8.9999 8.5645 8.5632 8.6545 8.5469 8.0012 

11 8.0000 8.0025 8.0120 8.2564 8.7777 8.5645 8.5624 8.5655 8.5469 8.0045 

12 8.0000 8.0025 8.0321 8.2564 8.6869 8.5645 8.5690 8.5554 8.5469 8.0078 

13 8.0000 8.0045 8.3201 8.2564 8.5657 8.5645 8.5478 8.5556 8.5469 8.0056 

14 8.0000 8.0071 8.3201 8.2564 8.5649 8.5645 8.5698 8.5556 8.5469 8.0098 

15 8.0000 8.0015 8.3201 8.2564 8.5699 8.5645 8.5412 8.5555 8.5469 8.0025 

16 8.0000 8.0015 8.3250 8.2564 8.5470 8.5645 8.5632 8.5554 8.5469 8.0069 

17 8.0000 8.0061 8.0236 8.2564 8.5699 8.5645 8.5478 8.5666 8.5469 8.0091 

18 8.0000 8.0052 8.0215 8.2564 8.5699 8.5645 8.5698 8.5555 8.5469 8.0073 

19 8.0000 8.0000 8.2365 8.2564 8.5699 8.5645 8.5478 8.6545 8.5469 8.0055 

20 8.0000 8.0045 8.3210 8.2564 8.5699 8.5645 8.5622 8.6565 8.5469 8.0056 

Average 8.0000 8.0027 8.1863 8.2564 8.6925 8.5645 8.5555 8.5715 8.5469 8.0055 

 

 

and the outside threads on the other. This is known as the main diameter, and it is usually the correct 

size of the bolt. All ten Optimization methods are used and the value of d in tabulated as in Table 3. 
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Fig. 3 Number of bolts (N) 

 
Table 5 Radius of the bolts (RB) 

Trial no PSO EHDMO HAS CSA CSSA BBCO GBA KHA PSA SSA 

1 56.5432 59.0000 58.9658 58.2356 59.6589 58.6596 58.9857 58.6596 57.8659 57.2360 

2 56.5432 59.2365 58.9865 58.2356 59.6986 58.6596 58.9745 58.3265 57.8659 57.2370 

3 56.5432 59.6584 58.6598 58.2356 59.6585 58.6596 58.9652 58.6598 57.8659 57.5237 

4 56.5432 59.3265 58.6549 58.2356 59.6855 58.6596 58.9633 58.2366 57.8659 57.2145 

5 56.5432 59.3266 58.9685 58.2356 59.6859 58.6596 58.9654 58.6598 57.8659 57.3652 

6 56.5432 59.6590 58.9875 58.2356 59.6854 58.6596 58.6599 58.9865 57.8659 57.3265 

7 56.5432 59.6548 58.9325 58.2356 59.4875 58.6596 58.9652 58.9689 57.8659 57.2146 

8 56.5432 59.6895 58.9658 58.2356 59.8888 58.6596 58.9875 58.9865 57.8659 57.6986 

9 56.5432 59.6854 58.6599 58.2356 59.6686 58.6596 58.9633 58.3652 57.8659 57.2365 

10 56.5432 59.6854 58.6985 58.2356 59.6546 58.6596 58.9633 58.2563 57.8659 57.2365 

11 56.5432 59.3254 58.9857 58.2356 59.6856 58.6596 58.9658 58.6523 57.8659 57.3265 

12 56.5432 59.1254 58.9654 58.2356 59.6546 58.6596 58.9633 58.6985 57.8659 57.2365 

13 56.5432 59.2341 58.9658 58.2356 59.6857 58.6596 58.9633 58.3652 57.8659 57.2666 

14 56.5432 59.7854 58.9654 58.2356 59.6856 58.6596 58.9632 58.2365 57.8659 57.8962 

15 56.5432 59.3652 58.9685 58.2356 59.6855 58.6596 58.9633 58.5698 57.8659 57.2650 

16 56.5432 59.5699 58.9685 58.2356 59.6556 58.6596 58.9521 58.5632 57.8659 57.3699 

17 56.5432 59.6588 58.9855 58.2356 59.6668 58.6596 58.9875 58.8965 57.8659 57.6895 

18 56.5432 59.6589 58.8570 58.2356 59.6589 58.6596 58.9235 58.6235 57.8659 57.8695 

19 56.5432 59.6542 58.9658 58.2356 59.6668 58.6596 58.9563 58.9568 57.8659 57.6325 

20 56.5432 59.5000 58.9865 58.2356 59.6559 58.6596 58.9536 58.3562 57.8659 57.2365 

Average 56.5432 59.4900 58.9047 58.2356 59.6736 58.6596 58.9492 58.6012 57.8659 57.4039 

 

0 5 10 15 20 25

7.44

8.37

9.30
8.0000

8.0032

8.0064
7.98

8.12

8.26

7.2

8.4

9.6

8.58

8.80

9.02
7.2

8.4

9.6

8.526

8.547

8.568
8.448

8.544

8.640

7.7

8.8

9.9

8.0024
8.0052
8.0080
8.0108

 

M

 PSO

  EHDMO

 

 HSA

 

 CSA

  CSSA

 

 BBCO

 

 GBA

 

 KHA

 

 PSA

 

 

 SSA

N 

13



 

 

 

 

 

 

Mubina Nancy and S. Elizabeth Amudhini Stephen 

0 5 10 15 20

53.6

60.3
58.83

59.20

59.57

58.65

58.80

58.95

54.0

58.5

63.0
59.50

59.67

59.84

55.2

59.8

64.4

58.74

58.85

58.96

58.41

58.74

59.07
54.0

58.5

63.0

57.3

57.6

57.9

 

Rb

 PSO
 

 EHDMO

 

 HSA

 

 CSA

 

 CSSA

 

 BBCO

 

 GBA

 

 KHA

 

 PSA

 

 

 SSA

 
Fig. 4 Radius of the bolts (RB) 

 

 

NUMBER OF BOLTS (N) 

 

There are certain number of bolts should be used for the process of the coupling with the bolted 

rim. Number of bolts also should be minimized to optimize the coupling with bolted rim. The values 

are tabulated in Table 4. 

 

RADIUS OF THE BOLT (𝑹𝑩) 

 

In bolted joints, the effective radius is a critical element in determining frictional torque beneath 

the bolt. Because the effective radius is difficult to measure accurately in practise, the mean radius 

is utilized, which is the mean value of the inner and outer radii of the contact region under the bolt 

head and the radius of the bolts are tabulated in Table 5. 

 

TORQUE OF THE BOLTS (M) 

 

Torque is a twisting and turning force, as opposed to tension, which formed by a straight pull. 

Torque, on the other hand, is used to generate tension. The optimized values of the torque of the 

bolts are tabulated in Table 6. The bolts thread angle transforms the force into tension in the bolt 

shank. The amount of stress created in the bolt is essential. 
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Table 6 Torque of the bolts (M) 

Trial no PSO EHDMO HAS CSA CSSA BBCO GBA KHA PSA SSA 

1 40.0000 40.2563 40.5214 40.9856 40.3265 40.3265 40.5896 40.3265 40.2355 40.0002 

2 40.0000 40.2564 40.3256 40.9856 40.5699 40.3265 40.5412 40.7856 40.2355 40.0006 

3 40.0000 40.2566 40.1111 40.9856 40.5869 40.3265 40.5699 40.9854 40.2355 40.0023 

4 40.0000 40.2514 40.2234 40.9856 40.5900 40.3265 40.5424 40.4532 40.2355 40.0052 

5 40.0000 40.1232 40.2563 40.9856 40.5699 40.3265 40.5242 40.6521 40.2355 40.0033 

6 40.0000 40.1251 40.2563 40.9856 40.8788 40.3265 40.5362 40.9874 40.2355 40.0021 

7 40.0000 40.1201 40.2653 40.9856 40.8888 40.3265 40.5986 40.6541 40.2355 40.0056 

8 40.0000 40.1250 40.3256 40.9856 40.9857 40.3265 40.5784 40.6321 40.2355 40.0058 

9 40.0000 40.1236 40.2365 40.9856 40.9999 40.3265 40.5862 40.9654 40.2355 40.0057 

10 40.0000 40.2512 40.2365 40.9856 40.5656 40.3265 40.5320 40.8523 40.2355 40.0024 

11 40.0000 40.2512 40.2365 40.9856 40.5855 40.3265 40.5793 40.8521 40.2355 40.0089 

12 40.0000 40.2365 40.2365 40.9856 40.5698 40.3265 40.5862 40.7412 40.2355 40.0088 

13 40.0000 40.2514 40.2365 40.9856 40.5699 40.3265 40.5486 40.8523 40.2355 40.0052 

14 40.0000 40.2514 40.2365 40.9856 40.5855 40.3265 40.5268 40.9632 40.2355 40.0066 

15 40.0000 40.2365 40.2365 40.9856 40.5698 40.3265 40.5963 40.8521 40.2355 40.0058 

16 40.0000 40.2365 40.2154 40.9856 40.5875 40.3265 40.5852 40.1250 40.2355 40.0065 

17 40.0000 40.2540 40.2514 40.9856 40.5698 40.3265 40.5741 40.3610 40.2355 40.0070 

18 40.0000 40.2540 40.2580 40.9856 40.5680 40.3265 40.5123 40.2365 40.2355 40.0026 

19 40.0000 40.2150 40.2541 40.9856 40.5698 40.3265 40.5456 40.3266 40.2355 40.0057 

20 40.0000 40.2514 40.2563 40.9856 40.5698 40.3265 40.5789 40.5632 40.2355 40.0066 

Average 40.0000 40.2163 40.2588 40.9856 40.6354 40.3265 40.5616 40.6584 40.2355 40.0048 

 

 

7. Result and discussion 
 

7.1 Consistency 
 

The consistency table gives the parameters that remain constant for all the trails. Aall the solvers 

give the value of PSO, CSA, BBCO and PSA for all the runs, which in turn indicates that the 

requirements are in the acceptable range. 

d-PSO (6.0000), CSA (6.1122), BBCO (6.4565), PSA (6.2563) 

N-PSO (8.0000), CSA (8.2564), BBCO (8.5645), PSA (8.5469) 

𝑅𝐵-PSO (56.5432), CSA (58.2356), BBCO (58.6596), PSA (57.8659) 

M-PSO (40.0000), CSA (40.9856), BBCO (40.3265), PSA (40.2355) 

So, we see that the solvers PSO, CSA, BBCO, PSA remains constant throughout their runs. 

 

7.2 Simplicity of Algorithm 
 

Of all the algorithm, we have taken PSO is the simplest followed by EHBMO, SSA, HSA, 

BBCO. 

 

7.3 Minimum values of variables 
 

Table 7, Table 8 and Fig. 2 present the best optimal solution and the statistical simulation results 

obtained by the algorithms for the coupling with a bolted rim problem. From Table 7, it can be seen  
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Fig. 5 Torque of the bolts (M) 

 
Table 7 Comparison of the best optimum solution for the coupling with bolted rim problem 

 PSO EHBMO HSA CSA CSSA BBCO GBA KHA PSA SSA 

d (mm) 6.0000 6.0031 6.2374 6.1122 6.6425 6.4565 6.5452 6.5728 6.2563 6.1346 

N 8 8.0027 8.186348 8.2564 8.6926 8.5645 8.5555 8.5715 8.5469 8.0055 

Rb (mm) 56.5432 59.4900 58.9047 58.2356 59.6737 58.6596 58.9493 58.6012 57.8659 57.40388 

M (Nm) 40 40.2163 40.2588 40.9856 40.6354 40.3265 40.5616 40.6584 40.2355 40.00484 

fmin 3.27 3.4854 3.4529 3.5236 3.46653 3.48569 3.4824 3.48604 3.312566 3.314609 

d-diameter of the bolts (mm), N-number of bolts, M-adhesion of torque (Nm), 𝑅𝐵-radius (mm) 

 

 

that all used approaches are able to find the global feasible solution. However, the PSO algorithm is 

the most robust in solving this problem with standard deviation values of 1.8225E-15, followed by 

EHBMO, SSA, HAS, CSA, CSSA, BBCO, PSA, GBA, KHA. 

• d-PSO (6) is better than EHBMO (6.0031) and SSA (6.1346) 

• M-PSO (40) is better than EHBMO (40.2163) and SSA (40.00484) 

• N-PSO (8) is better that EHBMO (8.0027) and SSA (8.0055) 

• 𝑅𝐵-PSO (56.5432) is better than EBHMO (59.4900) and SSA (57.40388) 
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Fig. 2 Compared chart of used optimization methods 

 
Table 8 Statistical result of the used algorithms for the coupling with a bolted rim 

Algorithm Best Mean Worst SD FEs 

PSO 3.27 3.27 3.27 1.8225E-15 5000 

EHDMO 3.45896 3.4854138 3.48999 0.006785632 5000 

HAS 3.45213 3.4528825 3.45622 0.001446476 5000 

CSA 3.5236 3.5236 3.5236 9.11252E-16 5000 

CSSA 3.4569 3.46653275 3.48965 0.01092365 5000 

BBCO 3.48569 3.48569 3.48569 9.11252E-16 5000 

GBA 3.05698 3.482424 3.507846 0.100156805 5000 

KHA 3.481254 3.48603996 3.489875 0.001730581 5000 

PSA 3.312566 3.312566 3.312566 1.8225E-15 5000 

SSA 3.48 3.31460911 3.317896 0.001966737 5000 

 

 

8. Conclusions 
 

The following are some of the most common problems with classic gradient methods and 

traditional direct approaches: 

• It converges to an optimal solution based on the original solution chosen. 

Most algorithms are prone to limiting themselves to a sun-optimal answer. 

• A problem solved by one algorithm may not be efficient when applied to another. 

• Algorithms are inefficient for solving problems with non-linear objectives, discrete variables, 

and a large number of restrictions. 

• On a parallel computer, algorithms cannot be employed efficiently. 

In general, standard techniques such as steepest descent, dynamic programming, and linear 

programming make it difficult to address large-scale issues with nonlinear objectives functions. 
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Traditional algorithms cannot address non-differentiable problems because they require gradient 

information. Some optimization problems have a large number of local optima. As a result of this 

issue, there is a need to build more powerful optimization approaches, and research has discovered 

our non-traditional optimization [6]. 

In this paper, we compared 10 meta-heuristic algorithms to solve the coupling with bolted rim 

problem. The algorithms used are particle swarm optimization (PSO), crow search algorithm (CSA), 

enhanced honeybee mating optimization (EHBMO), Harmony search algorithm (HSA), Krill heard 

algorithm (KHA), Pattern search algorithm (PSA), Charged system search algorithm (CSSA), Salp 

swarm algorithm (SSA), Big bang big crunch optimization (B-BBBCO), Gradient based Algorithm 

(GBA). These algorithm’s performance is evaluated statistically and subjectively. 

By comparing these methods, we’ve proved that PSO is the best optimization method comparing 

with other nine methods which we discussed in the result analysis. To minimize the number of 

bolts(N), diameter of the bolts(d), adhesion of torque(M) and the radius (𝑅𝐵), 

Particle Swarm Optimization (PSO) got the minimum value comparing with Enhanced Honey-

Bee Mating (EHBMO) and Salp Swarm Optimization (SSA). Therefore, for coupling with bolted 

rim problem Particle Swarm Optimization (PSO) is the best method. These results will be validated 

using simulation by ANSYS. 
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