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Abstract.  Although some prediction models have successfully developed for ultra-high performance concrete 
(UHPC), they do not provide insights and explicit relations between all constituents and its consistency, and 
compressive strength. In the present study, based on the experimental results, several mathematical models have been 
evaluated to predict the consistency and the 28-day compressive strength of UHPC. The models used were Linear, 
Logarithmic, Inverse, Power, Compound, Quadratic, Cubic, Mixed, Sinusoidal and Cosine equations. The 
applicability and accuracy of these models were investigated using experimental data, which were collected from 
literature. The comparisons between the models and the experimental results confirm that the majority of models 
give acceptable prediction with a high accuracy and trivial error rates, except Linear, Mixed, Sinusoidal and Cosine 
equations. The assessment of the models using numerical methods revealed that the Quadratic and Inverse equations 
based models provide the highest predictability of the compressive strength at 28 days and consistency, respectively. 
Hence, they can be used as a reliable tool in mixture design of the UHPC. 
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1. Introduction 
 

Ultra-high performance concrete (UHPC) is described by its high compressive strength, high 

toughness, dense material, low capillary porosity, and long-term durability (Meng et al. 2016, 

Meng et al. 2018). Given the high mechanical properties, UHPC has been used in structures for 

construction (Wang et al. 2021, Liu et al. 2019, Bao et al. 2017), repair (Zmetra et al. 2017, Du et 

al. 2021, Cheng et al. 2021), and rehabilitation (Guo et al. 2021, Qi et al. 2021, Yin et al. 2017). 

The mechanical properties of UHPC such as the compressive strength and slump flow are a highly 
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nonlinear functions of its constituents. The significance of expert frameworks for predicting the 

compressive strength and slump flow of UHPC is greatly distinguished in material technology. 

The effect of various constituent materials on compressive, flexural, and tensile strengths, 

fiber-matrix bond, rheological, applicable flow models, measurement techniques and errors 

associated with the interpretation of rheological measurements was investigated. In addition, the 

rheological properties requirements of UHPC and strategies to control rheology were considered. 

It was observed that the silica fume content, ranging from 10% to 15%, by mass of cementitious 

materials, established the highest fiber-matrix bond, flexural and tensile properties. Such silica 

fume content was found to result in lower viscosity and more uniformly distributed fibers as 

determined by image analysis. Also, the addition of steel wool in steel fiber-reinforced UHPC 

Compared to control UHPC with no steel wool, produced significant improvement in the fiber-

matrix bond and mechanical properties of UHPC. Surrounding the steel fibers with steel wool, 

enhanced the bond between steel fibers and a UHPC matrix (Khayat et al. 2019, Wu et al. 2019, 

Regalwar et al. 2020). Some researchers developed a numerical study with experimental work to 

predict several mechanical properties of UHPC. For instance, a numerical study comparing to tie 

interaction model was investigated to estimate the load capacity of structures where UHPC is 

joined as an overlay and normal strength concrete as substrate section. It was shown that 

employing the numerical model provided a better prediction of the failure loads when compared to 

the tied model. Moreover, Impact responses of UHPC targets with 3 Vol-% steel fibers and UHPC 

targets with ultra-high molecular weight polyethylene (UHMWPE) fibers were investigated 

subjected to high-velocity projectile penetration. The experimental results were compared with the 

numerical results in terms of the depth of penetration and crater diameter as well as projectile 

abrasions and damages (Liu et al. 2018, Farzad et al. 2019). 

Modeling UHPC in the fresh and hardened state is usually a valuable aim and a difficult task at 

the identical time. This task is difficult due to the non-linearity of UHPC. The heterogeneity of 

UHPC and the large number of factors affecting its properties are the sources of this non-linearity. 

A considerable number of studies concerning the prediction of UHPC properties have been carried 

out, and the plenty of improved prediction techniques were proposed including empirical or 

computational modeling and statistical techniques. Many modeling methods were used to predict 

the mechanical properties (compressive, flexural, and tensile strengths in particular) of UHPC, 

including the artificial neural network (Abellán-García 2020, Bui et al. 2018, Al-Shamiri et al. 

2019, Ghafari et al. 2015, Qu et al. 2017), and regression models (Wu et al. 2019, Dao et al. 2020, 

Nguyen et al. 2022). Some methods were proposed based on the artificial neural network, which 

was trained using different data to estimat the compressive strength of UHPC with several mix 

design factors (Abellán-García 2020, Qu et al. 2017, Ghafari et al. 2015). These experimental 

data-based models considered the effects of constituent materials such as steel fiber content and 

shape, silica fume, quartz flour, and superplasticizer quantities on different mechanical properties 

of UHPC. Some prediction models were presented to predict the compressive, flexural, and tensile 

strengths of these type of concretes. However, no study was investigated the same for using the 

silica fume, quartz flour, and steel fibers together as ingredients. 

In this paper, a comprehensive 53 mix designs of UHPC with 7 ingredients, which are collected 

from literature (Ghafari et al. 2015) have been used to evaluate the mathematical models to predict 

its slump flow, and 28-day compressive strength. Regression models including Linear, 

Logarithmic, Inverse, Power, Compound, Quadratic, Cubic, Mixed, Sinusoidal and Cosine 

equations are evaluated to provide explicit equations between ingredients and mechanical 

properties of UHPC. These models were justified using statistical parameters such as R2, and Error 
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percentage with experimental observations. The lowest error percentage of 7, and 9.4, and the R2 

of 0.97, and 0.92 are obtained for Inverse-type 2, and Quadratic-type 2 regression models in 

predicting slump flow, and 28-day compressive strength, respectively. The present results not only 

show better performance with those from previous study in terms of error%, and R2, but also have 

explicit relations of slump flow, and compressive strength with 7 input ingredients. 

 

 

2. Data collection 
 

Creating a general and reliable dataset is a vital step in developing mathematical models. For 

this purpose, a comprehensive literature review was carried out to collect data from published 

research papers. Different cementitious materials, fine and ultra-fine aggregates, shapes and types 

of fibers, fillers, superplasticizer, and etc... have been incorporated in UHPC to improve its 

consistency and strength. Therefore, there are many input features that could be considered for a 

mathematical model to predict the slump flow, and the compressive strength of UHPC. 

Considering the numerous experimental studies that used such materials in UHPC mixture 

designs, along with several curing regimes, a large dataset comprising various mixture components 

was collected. Thus, a dataset consisting of 53 mix designs, 159 test observations, and 7 input 

features were assigned to develop the prediction models. The following constituents have been 

used in extracted data: 

• Ordinary Portland cement type I 52.5 R, 

• siliceous sand (SA), with maximum aggregates’ size of 0.6 mm, 

• silica fume, 

• Quartz flour with particles’ size lower than 10 µm used as micro filler 

• polycarboxylate ether based superplasticizers, 

• DRAMIX steel micro fibers, with diameter/length of 0.2/0.15 mm 
Table 1 reports the mix proportions, and Figs. 1 and 2 present the slump flow, and the 28-day 

compressive strength results used in this study, respectively.  (Ghafari et al. 2015). As illustrated in 
Fig. 1, minimum and maximum values of the slump flows are 171 mm (related to design mix no. 
33) and 234 mm (related to design mix no. 47). Fig. 2 shows that minimum and maximum values 
of the compressive strength are 90 MPa and 200 MPa, which are related to design mix nos. 9 and 
43, respectively. Mix 9 contains 𝑤/𝐶 = 0.26  , silica fume=36 Kg, quartz flour=297 Kg, 
superplasticizer=36 Kg, without the steel fibers, while mix 43 contains 𝑤/𝐶 = 0.23  , silica 
fume=36 Kg, quartz flour=243 Kg, superplasticizer=36 Kg, with steel fibers=160 Kg. This means 
that in mix 43, water to cement ratio have been decreased and the steel fibers have been increased 
respect to mix 9. 

 

 
Table 1 Mix proportions considered in dataset extracted from literature. (Ghafari et al. 2015) 

Design 

No. 

Water 

(Kg) 

Cement 

(Kg) 

Sand 

(Kg) 

Silica Fume 

(Kg) 

Quartz Flour 

(Kg) 

Super Plasticizer 

(Kg) 

Steel Fibers  

(Kg) 

1 190 800 844 48 216 36 80 

2 200 896 765 54 216 36 0 

3 200 896 739 42 324 36 0 

4 210 832 686 54 297 48 0 

5 190 800 844 48 216 36 80 

6 190 800 924 48 189 36 0 
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Table 1 Continued 

Design 

No. 

Water 

(Kg) 

Cement 

(Kg) 

Sand 

(Kg) 

Silica Fume 

(Kg) 

Quartz Flour 

(Kg) 

Super Plasticizer 

(Kg) 

Steel Fibers  

(Kg) 

7 190 800 924 36 243 36 0 

8 180 736 924 48 243 36 80 

9 200 768 897 36 297 36 0 

10 200 768 871 48 243 36 0 

11 200 1088 897 36 0 36 0 

12 200 1024 871 48 0 36 0 

13 200 960 897 36 108 36 0 

14 180 704 1029 36 243 36 0 

15 200 832 897 48 162 36 0 

16 180 640 1161 42 189 36 0 

17 200 864 792 42 216 48 160 

18 180 704 950 60 216 36 0 

19 180 704 950 60 216 36 0 

20 170 704 976 48 270 36 0 

21 200 864 844 48 162 36 0 

22 200 928 818 48 162 36 0 

23 200 800 818 48 243 36 80 

24 200 896 897 48 108 36 0 

25 200 800 792 48 243 36 160 

26 200 832 897 48 162 36 0 

27 200 768 897 54 189 36 0 

28 200 768 897 60 162 36 0 

29 200 768 897 72 108 36 0 

30 160 672 1029 48 270 36 0 

31 200 768 897 42 243 36 0 

32 190 800 844 48 216 36 80 

33 180 864 818 48 270 36 0 

34 190 864 818 42 270 36 0 

35 190 800 871 48 243 36 0 

36 190 768 897 36 273 36 160 

37 190 864 818 42 270 36 0 

38 180 736 924 48 243 36 80 

39 160 672 1029 48 270 36 0 

40 200 800 818 48 243 36 80 

41 160 704 1082 36 243 36 0 

42 190 736 924 54 216 36 0 

43 180 768 924 36 243 36 160 

44 180 736 950 48 243 36 0 

45 210 800 792 48 243 36 160 

46 180 768 871 48 243 36 0 

47 200 768 879 36 270 36 0 

48 200 864 792 42 216 48 160 

49 180 800 950 48 162 36 160 

50 210 800 792 48 243 36 160 

51 190 768 844 48 243 36 80 

52 200 768 897 66 135 36 0 

53 180 768 871 42 243 36 160 
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Fig. 1 Results of the slump flow tests for the mixes (Ghafari et al. 2015) 

 

 

Fig. 2 Results of the 28-day compressive strength tests for the mixes (Ghafari et al. 2015) 

 

 

3. Prediction modelling 
 

Sixteen multivariable regression models have been developed by including empirical and 

statistical techniques to evaluate the accuracy of 28-day compressive strength and slump flow of 

UHPC predictions. The quantities of cement, sand, silica fume, quartz flour, water, 

superplasticizer and steel fibers have been considered as design variables to generate the models. 

 

3.1 UHPC compressive strength and slump flow prediction models 
 

UHPC strength and slump flow are influenced by many factors such as water to cement ratio, 

quantities of silica fume, quartz flour, steel fibers, and superplasticizer dosage. This research 

represented several regression models that can help to predict the 28-day compressive strength and 

the rate of slump flow for different UHPC mix designs. 

Based on design parameters and statistical properties, various mathematical patterns including 

linear, logarithmic, inverse, power, compound, quadratic, cubic and linear with inverse mixed 

equations based models were adopted to predict the UHPC 28-day compressive strength and 

slump flow. The models are expressed in Eqs. 1 to 48 which mathematical features of the models 

543



 

 

 

 

 

 

Alireza Habibi, Meysam Mollazadeh, Aryan Bazrafkan and Naida Ademovic 

are described below. 

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 are cement, sand, silica fume, quartz flour, water, superplasticizer and 

steel fibers, respectively. Each relation contains some constant coefficients (b0-b31) which are 

determined by the least-square method. This method is used to minimize the error between 

predicted response by the relation and measured response by the test. Regression are performed on 

the compressive strength and the slump flow applying the proposed models and considering seven 

variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 and 𝑥7 as the independent variables.  

 

3.1.1 Linear equation based model 

𝑓1(𝑥) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝑏5𝑥5 + 𝑏6𝑥6 + 𝑏7𝑥7 (1) 

𝑓𝑐𝑚 = −66.8 + 0.25𝑥1 + 0.08𝑥2 + 1.3𝑥3 + 0.23𝑥4 − 1.1𝑥5 + 0.69𝑥6 + 0.37𝑥7 (2) 

𝑆𝑙𝑚 = 282.2 + 0.17𝑥1 + 0.068𝑥2 + 1.1𝑥3 + 0.14𝑥4 − 0.97𝑥5 + 0.42𝑥6 + 0.08𝑥7 (3) 

 

3.1.2 Logarithmic equation based model 

𝑓2(𝑥) = 𝑏0 + 𝑏1ln⁡(𝑥1) + 𝑏2ln⁡(𝑥2) + 𝑏3ln⁡(𝑥3) + 𝑏4ln⁡(𝑥4) + ⁡𝑏5ln⁡(𝑥5) + 𝑏6ln⁡(𝑥6) +
𝑏7ln⁡(𝑥7)  

(4) 

𝑓𝑐𝑚 = −7209.1 + 731.9ln⁡(𝑥1) + 317.3ln⁡(𝑥2) + 157ln⁡(𝑥3) + 222.8ln⁡(𝑥4) −
321.9ln⁡(𝑥5) − 17.8ln⁡(𝑥6) + 62.9ln⁡(𝑥7)  

(5) 

𝑆𝑙𝑚 = −3541.6 + 461.4 ln(𝑥1) + 40.69 ln(𝑥2) + 117.8 ln(𝑥3) + 152 ln(𝑥4) − 171 ln(𝑥5) −
36.1ln⁡(𝑥6) + 28.1ln⁡(𝑥7)  

(6) 

 

3.1.3 Inverse equation based model 
3.1.3.1 Inverse equation based model -Type one 

𝑓3(𝑥) = 𝑏0 +
𝑏1

𝑥1
+

𝑏2

𝑥2
+

𝑏3

𝑥3
+

𝑏4

𝑥4
+

𝑏5

𝑥5
+

𝑏6

𝑥6
+

𝑏7

𝑥7
  (7) 

𝑓𝑐𝑚 = 1563.8 −
615358.5

𝑥1
−

373440.2

𝑥2
−

7164.3

𝑥3
−

49518.5

𝑥4
+

49084.9

𝑥5
+

366.6

𝑥6
−

7257.7

𝑥7
  (8) 

𝑆𝑙𝑚 = 945 −
395360

𝑥1
−

104620

𝑥2
−

5322.6

𝑥3
−

34124.4

𝑥4
+

24558

𝑥5
+

1366

𝑥6
−

3268.5

𝑥7
  (9) 

 

3.1.3.2 Inverse equation based model -Type two 

𝑓4(𝑥) = 𝑏0 +
𝑏1

𝑥1
+

𝑏2

𝑥2
+

𝑏3

𝑥3
+

𝑏4

𝑥4
+

𝑏5

𝑥5
+

𝑏6

𝑥6
+

𝑏7

𝑥7
+

𝑏8
𝑥5
𝑥1

+
𝑏9
𝑥4
𝑥1

+
𝑏10
𝑥5

𝑥4+𝑥3+𝑥1

  (10) 

fcm = 231 −
93308

x1
−

32181.3

x2
−

1346.8

x3
−

14.098

x4
+

34979.7

x5
−

2721

x6
−

0.378

x7
+

10.25
x5
x1

+
0.016
x4
x1

−

2658192.55
x5

x4+x3+x1

  
(11) 
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𝑆𝑙𝑚 = 173 +
90988.6

𝑥1
−

52927.9

𝑥2
−

4767.7

𝑥3
−

249110.8

𝑥4
+

59193.9

𝑥5
+

3910.3

𝑥6
−

3112.4

𝑥7
−

58
𝑥5
𝑥1

+
270
𝑥4
𝑥1

+

14812775.58
𝑥5

𝑥4+𝑥3+𝑥1

  
(12) 

 

3.1.3.3 Inverse equation based model -Type three 

𝑓5(𝑥) = 𝑏0 +
𝑏1

𝑥1
+

𝑏2

𝑥2
+

𝑏3

𝑥3
+

𝑏4

𝑥4
+

𝑏5

𝑥5
+

𝑏6

𝑥6
+

𝑏7

𝑥7
+

𝑏8
𝑥5
𝑥1

+
𝑏9
𝑥4
𝑥1

+
𝑏10
𝑥5

𝑥4+𝑥3+𝑥1

+ 𝑏11𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7  (13) 

𝑓𝑐𝑚 = 232 −
93308

𝑥1
−

32181

𝑥2
−

1347

𝑥3
−

14

𝑥4
+

34979

𝑥5
−

2721

𝑥6
−

0.378

𝑥7
+

11
𝑥5
𝑥1

+
0.016
𝑥4
𝑥1

−
2658192

𝑥5
𝑥4+𝑥3+𝑥1

−

2.68 × 10−0.14𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7  

(14) 

𝑆𝑙𝑚 = 4160 −
3677141

𝑥1
+

20783

𝑥2
+

2058

𝑥3
−

2487983

𝑥4
+

2930348

𝑥5
+

10527

𝑥6
−

15219

𝑥7
−

3738
𝑥5
𝑥1

+
3154
𝑥4
𝑥1

−

330211
𝑥5

𝑥4+𝑥3+𝑥1

− 2.7 × 10−0.14𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7  
(15) 

 

3.1.4 Power equation based model 
3.1.4.1 Power equation based model -Type one 

𝑓6(𝑥) = 𝑏0𝑥1
𝑏1𝑥2

𝑏2𝑥3
𝑏3𝑥4

𝑏4𝑥5
𝑏5𝑥6

𝑏6𝑥7
𝑏7 (16) 

𝑓𝑐𝑚 = 7.255 × 10−6𝑥1
1.76𝑥2

0.78𝑥3
0.39𝑥4

0.613𝑥5
1.3𝑥6

0.12𝑥7
0.31 (17) 

𝑆𝑙𝑚 = 0.002𝑥1
1.7𝑥2

0.15𝑥3
0.45𝑥4

0.6𝑥5
0.76𝑥6

0.14𝑥7
0.13 (18) 

 

3.1.4.2 Power equation based model -Type two 

𝑓7(𝑥) = 𝑏0𝑥1
𝑏1𝑥2

𝑏2𝑥3
𝑏3𝑥4

𝑏4𝑥5
𝑏5𝑥6

𝑏6𝑥7
𝑏7(

𝑥5

𝑥1
)𝑏8(

𝑥4

𝑥1
)𝑏9(

𝑥5

𝑥1+𝑥4+𝑥3
)𝑏10  (19) 

𝑓𝑐𝑚 = 2.105𝑥1
3.881𝑥2

2.72𝑥3
2.40𝑥4

5.40𝑥5
3.5𝑥6

−0.24𝑥7
0.377(

𝑥5

𝑥1
)4.805(

𝑥4

𝑥1
)4.086(

𝑥5

𝑥1+𝑥4+𝑥3
)−10.036  (20) 

𝑆𝑙𝑚 = 1.470𝑥1
−2.17𝑥2

−0.128𝑥3
0.16𝑥4

2.524𝑥5
3.97𝑥6

−0.136𝑥7
0.140(

𝑥5

𝑥1
)−5.03(

𝑥4

𝑥1
)0.696(

𝑥5

𝑥1+𝑥4+𝑥3
)3.14  (21) 

 

3.1.4.3 Power equation based model -Type three 

𝑓8(𝑥) = 𝑏0𝑥1
𝑏1𝑥2

𝑏2𝑥3
𝑏3𝑥4

𝑏4𝑥5
𝑏5𝑥6

𝑏6𝑥7
𝑏7 + 𝑏8𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7 (22) 

𝑓𝑐𝑚 = 𝑥1
1.8𝑥2

0.78𝑥3
0.42𝑥4

0.610𝑥5
−1.9𝑥6

0.12𝑥7
0.38 + 8.2𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 (23) 

𝑆𝑙𝑚 = 0.006𝑥1
1.8𝑥2

−0.18𝑥3
0.50𝑥4

0.6𝑥5
−0.76𝑥6

−0.14𝑥7
0.13 + 6.25𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 (24) 
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3.1.5 Compound equation based model 

𝑓9(𝑥) = 𝑏0𝑏1
𝑥1𝑏2

𝑥2𝑏3
𝑥3𝑏4

𝑥4𝑏5
𝑥5𝑏6

𝑥6𝑏7
𝑥7 (25) 

𝑓𝑐𝑚 = 8.728 × 1.003𝑥1 × 1.001𝑥2 × 1.011𝑥3 × 1.003𝑥4 × 0.992𝑥5 × 1.001𝑥6 × 1.003𝑥7  (26) 

𝑆𝑙𝑚 = 31.36 × 1.002𝑥1 × 1.00𝑥2 × 1.011𝑥3 × 1.003𝑥4 × 0.995𝑥5 × 0.966𝑥6 × 1.02𝑥7  (27) 

 

3.1.6 Quadratic equation based model 
3.1.6.1 Quadratic equation based model -Type one 

𝑓10(𝑥) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝑏5𝑥5 + 𝑏6𝑥6 + 𝑏7𝑥7 + 𝑏8𝑥1𝑥2 + 𝑏9𝑥1𝑥3 +
𝑏10𝑥1𝑥4 + 𝑏11𝑥1𝑥5 + 𝑏12𝑥1𝑥6 + 𝑏13𝑥1𝑥7 + 𝑏14𝑥2𝑥3 + 𝑏15𝑥2𝑥4 + 𝑏16𝑥2𝑥5 + 𝑏17𝑥2𝑥6 +
𝑏18𝑥2𝑥7 + 𝑏19𝑥3𝑥4 + 𝑏20𝑥3𝑥5 + 𝑏21𝑥3𝑥6 + 𝑏22𝑥3𝑥7 + 𝑏23𝑥4𝑥5 + 𝑏24𝑥4𝑥6 + 𝑏25𝑥4𝑥7 +

𝑏26𝑥5𝑥6 + 𝑏27𝑥5𝑥7 + 𝑏28𝑥6𝑥7  

(28) 

𝑓𝑐𝑚 = 21403302 + 20413𝑥1 − 4026.6𝑥2 − 383860𝑥3 − 155621𝑥4 + 149106𝑥5 −
594238𝑥6 − 99670𝑥7 + 0.001𝑥1𝑥2 + 0.003𝑥1𝑥3 + 0.001𝑥1𝑥4 + 0.026𝑥1𝑥5 − 567.2𝑥1𝑥6 −

0.002𝑥1𝑥7 + 0.006𝑥2𝑥3 + 0.001𝑥2𝑥4 + 0.018𝑥2𝑥5 + 111.8𝑥2𝑥6 + 0.001𝑥2𝑥7 +
0.004𝑥3𝑥4 + 0.167𝑥3𝑥5 + 10662𝑥3𝑥6 − 0.013𝑥3𝑥7 + 0.036𝑥4𝑥5 + 4322𝑥4𝑥6 −

0.001𝑥4𝑥7 − 4143.3𝑥5𝑥6 + 0.010𝑥5𝑥7 + 2768.7𝑥6𝑥7  

(29) 

𝑆𝑙𝑚 = −6678237 + 28345𝑥1 + 82.8𝑥2 − 280367𝑥3 − 141053𝑥4 + 190824𝑥5 +
185450𝑥6 − 86222𝑥7 + 0.001𝑥1𝑥2 + 0.10𝑥1𝑥3 + 1.296𝑥1𝑥4 + 0.001𝑥1𝑥5 − 787.4𝑥1𝑥6 −

0.007𝑥1𝑥7 − 0.011𝑥2𝑥3 − 0.001𝑥2𝑥4 − 0.007𝑥2𝑥5 − 2.271𝑥2𝑥6 − 0.005𝑥2𝑥7 −
0.001𝑥3𝑥4 − 0.141𝑥3𝑥5 + 7788.8𝑥3𝑥6 − 0.037𝑥3𝑥7 + 0.001𝑥4𝑥5 + 3918.2𝑥4𝑥6 −

0.007𝑥4𝑥7 − 5300.3𝑥5𝑥6 − 0.01𝑥5𝑥7 + 2395.8𝑥6𝑥7  

(30) 

 

3.1.6.2 Quadratic equation based model -Type two 

𝑓11(𝑥) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝑏5𝑥5 + 𝑏6𝑥6 + 𝑏7𝑥7 + 𝑏8𝑥1𝑥2 + 𝑏9𝑥1𝑥3 +
𝑏10𝑥1𝑥4 + 𝑏11𝑥1𝑥5 + 𝑏12𝑥1𝑥6 + 𝑏13𝑥1𝑥7 + 𝑏14𝑥2𝑥3 + 𝑏15𝑥2𝑥4 + 𝑏16𝑥2𝑥5 + 𝑏17𝑥2𝑥6 +
𝑏18𝑥2𝑥7 + 𝑏19𝑥3𝑥4 + 𝑏20𝑥3𝑥5 + 𝑏21𝑥3𝑥6 + 𝑏22𝑥3𝑥7 + 𝑏23𝑥4𝑥5 + 𝑏24𝑥4𝑥6 + 𝑏25𝑥4𝑥7 +

𝑏26𝑥5𝑥6 + 𝑏27𝑥5𝑥7 + 𝑏28𝑥6𝑥7 + 𝑏29 (
𝑥5

𝑥1
) + 𝑏30 (

𝑥4

𝑥1
) + 𝑏31(

𝑥5

𝑥1+𝑥4+𝑥3
)  

(31) 

𝑓𝑐𝑚 = −458894 + 34564𝑥1 + 661.4𝑥2 + 2980338𝑥3 − 835917𝑥4 + 278927𝑥5 +
12960𝑥6 − 189576𝑥7 + 0.003𝑥1𝑥2 + 0.014𝑥1𝑥3 − 0.012𝑥1𝑥4 + 0.043𝑥1𝑥5 − 960.3𝑥1𝑥6 −
0.008𝑥1𝑥7 − 0.006𝑥2𝑥3 + 0.001𝑥2𝑥4 − 18.4𝑥2𝑥6 − 0.004𝑥2𝑥7−0.005𝑥3𝑥4 − 0.041𝑥3𝑥5 −

82787𝑥3𝑥6 − 0.035𝑥3𝑥7 + 0.011𝑥4𝑥5 + 23220𝑥4𝑥6 − 0.008𝑥4𝑥7 − 7749.5𝑥5𝑥6 +

0.010𝑥5𝑥7 + 5266.3𝑥6𝑥7 + 11628 (
𝑥5

𝑥1
) − 11487 (

𝑥4

𝑥1
) − 351.5(

𝑥5

𝑥1+𝑥4+𝑥3
)  

(32) 

𝑆𝑙𝑚 = 69403572 − 200306𝑥1 − 197.77𝑥2 − 955594𝑥3 + 519002𝑥4 − 24643𝑥5 −
1927570𝑥6 + 229739𝑥7 − 0.002𝑥1𝑥2 − 0.005𝑥1𝑥3 − 0.006𝑥1𝑥4 + 0.038𝑥1𝑥5 +
5563.7𝑥1𝑥6 − 0.009𝑥2𝑥3 − 0.00𝑥2𝑥4 + 0.045𝑥2𝑥5 + 5.33𝑥2𝑥6 − 0.003𝑥2𝑥7 −

0.001𝑥3𝑥4 − 0.076𝑥3𝑥5 + 26544𝑥3𝑥6 − 0.009𝑥3𝑥7 − 0.076𝑥4𝑥5 − 14417𝑥4𝑥6 −

683.1𝑥5𝑥6 − 0.008𝑥5𝑥7 − 6381.5𝑥6𝑥7 + 9926.7 (
𝑥5

𝑥1
) − 2158.2 (

𝑥4

𝑥1
) + 909.4(

𝑥5

𝑥1+𝑥4+𝑥3
)  

(33) 
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3.1.7 Cubic equation based model  

𝑓12(𝑥) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝑏5𝑥5 + 𝑏6𝑥6 + 𝑏7𝑥7 + 𝑏8𝑥1
2 + 𝑏9𝑥2

2 + 𝑏10𝑥3
2 +

𝑏11𝑥4
2 + 𝑏12𝑥5

2 + 𝑏13𝑥6
2 + 𝑏14𝑥7

2 + 𝑏15𝑥1
3 + 𝑏16𝑥2

3 + 𝑏17𝑥3
3 + 𝑏18𝑥4

3 + 𝑏19𝑥5
3 + 𝑏20𝑥6

3 +
𝑏21𝑥7

3  

(34) 

𝑓𝑐𝑚 = 1 − 3.2𝑥1 + 2.1𝑥2 + 1.6𝑥3 − 0.26𝑥4 + 1.6𝑥5 + 2.1𝑥6 + 3679944856𝑥7 +
0.004𝑥1

2 − 0.003𝑥2
2 − 0.014𝑥3

2 + 0.02𝑥4
2 − 0.016𝑥5

2 − 0.724𝑥6
2 − 6898966𝑥7

2 − 1.951𝑥1
3 +

1.001𝑥2
3 + 3.069𝑥3

3 − 3.354𝑥4
3 + 2.35𝑥5

3 − 0.12𝑥6
3 + 28746𝑥7

3  

(35) 

𝑆𝑙𝑚 = 3.85 − 4.6𝑥1 + 2.2𝑥2 + 5.6𝑥3 − 0.46𝑥4 + 1.8𝑥5 + 2.3𝑥6 + 2579988856𝑥7 +
0.003𝑥1

2 − 0.002𝑥2
2 − 0.015𝑥3

2 + 0.22𝑥4
2 − 0.017𝑥5

2 − 0.734𝑥6
2 − 7568966𝑥7

2 − 1.551𝑥1
3 +

1.021𝑥2
3 + 4.079𝑥3

3 − 4.254𝑥4
3 + 2.55𝑥5

3 − 0.22𝑥6
3 + 18736𝑥7

3  

(36) 

 

3.1.8 Linear with Inverse mixed equation based model 
3.1.8.1 Linear with type one -Inverse mixed equation based model 

𝑓13(𝑥) = 𝑏0 + 𝑏1𝑥1 +
𝑏2

𝑥1
+ 𝑏3𝑥2 +

𝑏4

𝑥2
+ 𝑏5𝑥3 +

𝑏6

𝑥3
+ 𝑏7𝑥4 +

𝑏8

𝑥4
+ 𝑏9𝑥5 +

𝑏10

𝑥5
+ 𝑏11𝑥6 +

𝑏12

𝑥6
+

𝑏13𝑥7 +
𝑏14

𝑥7
  

(37) 

𝑓𝑐𝑚 = 707926 − 0.1𝑥1 −
200492

𝑥1
− 0.14𝑥2 +

0.047

𝑥2
+ 0.35𝑥3 +

247872

𝑥3
+ 0.7𝑥4 −

852.4

𝑥4
−

0.48𝑥5 −
0.176

𝑥5
− 8414𝑥6 −

2.5

𝑥6
+ 66426𝑥7 −

5471060

𝑥7
  

(38) 

𝑆𝑙𝑚 = 74882 − 16.4𝑥1 +
8179261

𝑥1
− 2.5𝑥2 +

66426

𝑥2
− 16.4𝑥3 −

12950295

𝑥3
− 136.2𝑥4 −

205520

𝑥4
+ 425.7𝑥5 −

4571060

𝑥5
− 1755.7𝑥6 −

3066973

𝑥6
+ 98𝑥7 +

3081814

𝑥7
  

(39) 

 

3.1.8.2 Linear with type two -Inverse mixed equation based model 

𝑓14(𝑥) = 𝑏0 + 𝑏1𝑥1 +
𝑏2

𝑥1
+ 𝑏3𝑥2 +

𝑏4

𝑥2
+ 𝑏5𝑥3 +

𝑏6

𝑥3
+ 𝑏7𝑥4 +

𝑏8

𝑥4
+ 𝑏9𝑥5 +

𝑏10

𝑥5
+ 𝑏11𝑥6 +

𝑏12

𝑥6
+

𝑏13𝑥7 +
𝑏14

𝑥7
+ 𝑏15𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7  

(40) 

𝑓𝑐𝑚 = 2582041 − 0.313𝑥1 −
336458

𝑥1
+ 0.491𝑥2 +

380176

𝑥2
+ 1.038𝑥3 +

169.384

𝑥3
+ 0.101𝑥4 −

0.098

𝑥4
− 5.82𝑥5 −

145499

𝑥5
− 30718.6𝑥6 −

53080345

𝑥6
+ 0.13𝑥7 +

0.221

𝑥7
+ 7.739 ×

10−13𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7  

(41) 

𝑆𝑙𝑚 = −8488691 − 1352𝑥1 +
5262900

𝑥1
+ 1623𝑥2 +

1842530

𝑥2
− 5.67𝑥3 +

1578091

𝑥3
+

57378𝑥4 +
86912006

𝑥4
− 3879.5𝑥5 +

43068132

𝑥5
+ 27900𝑥6 +

48325462

𝑥6
− 4058.2𝑥7 +

10252898

𝑥7
+ 3.588 × 10−13𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7  

(42) 
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3.1.9 Sinusoidal equation based model 

𝑓15(𝑥) = 𝑏0 + 𝑏1𝑠𝑖𝑛𝑥1 + 𝑏2𝑠𝑖𝑛𝑥2 + 𝑏3𝑠𝑖𝑛𝑥3 + 𝑏4𝑠𝑖𝑛𝑥4 + 𝑏5𝑠𝑖𝑛𝑥5 + 𝑏6𝑠𝑖𝑛𝑥6 + 𝑏7𝑠𝑖𝑛𝑥7 (43) 

𝑓𝑐𝑚 = 38.68 + 3.145𝑠𝑖𝑛𝑥1 − 3.365𝑠𝑖𝑛𝑥2 − 61.775𝑠𝑖𝑛𝑥3 + 3.90𝑠𝑖𝑛𝑥4 − 10𝑠𝑖𝑛𝑥5 −
87.62𝑠𝑖𝑛𝑥6 + 18.61𝑠𝑖𝑛𝑥7  

(44) 

𝑆𝑙𝑚 = 492.2 + 43.5𝑠𝑖𝑛𝑥1 − 6.9𝑠𝑖𝑛𝑥2 + 83.5𝑠𝑖𝑛𝑥3 − 1.1𝑠𝑖𝑛𝑥4 − 0.042𝑠𝑖𝑛𝑥5 +
278.88𝑠𝑖𝑛𝑥6 + 7.65𝑠𝑖𝑛𝑥7  

(45) 

 

3.1.10 Cosine equation based model 

𝑓16(𝑥) = 𝑏0 + 𝑏1𝑐𝑜𝑠𝑥1 + 𝑏2𝑐𝑜𝑠𝑥2 + 𝑏3𝑐𝑜𝑠𝑥3 + 𝑏4𝑐𝑜𝑠𝑥4 + 𝑏5𝑐𝑜𝑠𝑥5 + 𝑏6𝑐𝑜𝑠𝑥6 + 𝑏7𝑐𝑜𝑠𝑥7 (46) 

𝑓𝑐𝑚 = 38.68 − 3.145𝑐𝑜𝑠𝑥1 − 3.365𝑐𝑜𝑠𝑥2 − 61.775𝑐𝑜𝑠𝑥3 + 3.9𝑐𝑜𝑠𝑥4 − 10𝑐𝑜𝑠𝑥5 −
87.62𝑐𝑜𝑠𝑥6 + 18.61𝑐𝑜𝑠𝑥7  

(47) 

𝑆𝑙𝑚 = 492.2 + 43.5𝑐𝑜𝑠𝑥1 − 6.9𝑐𝑜𝑠𝑥2 + 83.5𝑐𝑜𝑠𝑥3 − 1.1𝑐𝑜𝑠𝑥4 − 0.042𝑐𝑜𝑠𝑥5 +
278.88𝑐𝑜𝑠𝑥6 + 7.65𝑐𝑜𝑠𝑥7  

(48) 

 

 
4. Results and discussion 
 

In this research, the mixture proportioning as given in Table 1 and test results of the 53 

concrete mixes as shown in Figs. 1 and 2, were used to derive statistical models for estimating 28-

day compressive strength, and slump flow of UHPC. Proper mathematical models were developed 

for the 28-day compressive strength, and the slump flow as functions of mix proportions. The 

sixteen mathematical models for each of responses (compressive strength and slump flow) were 

evaluated and examined based on their statistical characteristics. 

 

4.1 Characteristics of models 
 

Generally, error is made in prediction models due to limiting and scattering of existing data. 

Therefore, the error percentage of the models should be specified and evaluated. In the present 

study, the error percentage of different models for each mix design (as given in Table 1) is 

determined by Eq. 49. The maximum of these values are shown in Figs. 3 and 4 for the slump flow 

and the 28-day compressive strength, respectively. 

Based on a comparison among the error values of the proposed slump flow equations, as shown 

in Fig. 3, it was observed that the error% value of slump flow Inverse-type 2 regression model (Eq. 

(12)) was lower than the other fifteen models. Therefore, this model (Eq. (12)) showed the best 

relation to the experimental observation for predicting the slump flow of UHPC, whereas the 

slump flow Power-type 3 regression model (Eq. (24)) presented the greatest values of error%, 

consequently, this model showed the least relation to the experimental observation for predicting 

the slump flow of UHPC. Thus, the slump flow Inverse-type 2 regression model (Eq. (12)) was the 

well-related model with the highest accuracy among the studying sixteen models to represent the 

UHPC slump flow. The other models also excellently describe the slump flow development 

pattern. 

Also, by comparing among the error values of the proposed 28-day compressive strength  
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Fig. 3 Maximum errors of slump flow prediction models (%) 

 

 

Fig .4 Maximum errors of 28-day compressive strength prediction models (%) 

 

 

equations, as shown in Fig. 4, it can be concluded that the error% value of compressive strength 

Quadratic-type 2 regression model (Eq. (32)) was lower than the other fifteen models. Therefore, 

this model (Eq. (32)) showed the best relation to the experimental observation for predicting the 

28-day compressive strength of UHPC, whereas the compressive strength Cosine regression model 

(Eq. (47)) presented the greatest values of error%, consequently, this model showed the least 

relation to the experimental observation for predicting the 28-day compressive strength of UHPC. 

Thus, the compressive strength Quadratic-type 2 regression model (Eq. (32)) was the well-related 

model with the highest accuracy among the studying sixteen models to represent the UHPC 28-day 

compressive strength. The other models also excellently describe the compressive strength 

development pattern. 
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                                 Table 2 Comparative analysis of slump flow models 

R2 Slump flow Regression Models 

0.61 Eq. (3) 

0.95 Eq. (6) 

0.96 Eq. (9) 

0.97 Eq. (12) 

0.96 Eq. (15) 

0.95 Eq. (18) 

0.95 Eq. (21) 

0.83 Eq. (24) 

0.62 Eq. (27) 

0.83 Eq. (30) 

0.86 Eq. (33) 

0.83 Eq. (36) 

0.96 Eq. (39) 

0.96 Eq. (42) 

0.52 Eq. (45) 

0.69 Eq. (48) 

 

 
4.2 Correlation of models 
 

In order to evaluate the UHPC slump flow and 28-day compressive strength models correlation 

statistically, R2 values were measured. The values of R2 for the 16 mathematical models of UHPC 

slump flow are presented in Table 2. From this Table, the slump flow regression models can be 

ordered from least to greatest R2 values as follows: Eq. (45), Eq. (3), Eq. (27), Eq. (48), Eq. (24), 

Eq. (30), Eq. (36), Eq. (33), Eq. (6), Eq. (18), Eq. (21), Eq. (9), Eq. (15), Eq. (39), Eq. (42), and 

Eq. (12), which they are in the range between 0.52 to 0.97. In general, the proposed models have 

desired results. Therefore, according to the demanded accuracy, the proper model can be used with 

the appropriate number of terms. Based on comparison between the proposed equations, it was 

observed that R2 value of the slump flow Inverse-type 2 regression model (Eq. (12)) was greater 

than the other fifteen models. Therefore, this model (Eq. (12)) showed the best correlation to the 

experimental observation for predicting the UHPC slump flow, whereas the slump flow sinusoidal 

regression model (Eq. (45)) presented the lowest value of R2, consequently, this model showed the 

worst correlation to the experimental observation for predicting the UHPC slump flow. 

Accordingly, slump flow Inverse-type 2 regression model (Eq. (12)) was the well correlated model 

with the highest accuracy among the studied sixteen models to represent the UHPC slump flow. 

The other models also describe the slump flow development pattern properly. 

In addition, the values of R2 for the sixteen mathematical models of UHPC 28-day compressive 

strength are presented in Table 3. From this Table, the 28-day compressive strength regression 

models can be ordered from least to greatest R2 values as follows: Eq. (35), Eq. (17), Eq. (23), Eq. 

(5), Eq. (8), Eq. (44), Eq. (47), Eq. (20), Eq. (11), Eq. (14), Eq. (26), Eq. (2), Eq. (38), Eq. (41), 

Eq. (29), and Eq. (32), which they are in the range between 0.69 to 0.92. This indicates a good fit 

of the regression equations to the observations. However, the performance of the slump flow  
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                    Table 3 Comparative analysis of 28-day compressive strength models 

R2 Compressive Strength Regression Models 

0.82 Eq. (2) 

0.75 Eq. (5) 

0.75 Eq. (8) 

0.78 Eq. (11) 

0.8 Eq. (14) 

0.74 Eq. (17) 

0.77 Eq. (20) 

0.74 Eq. (23) 

0.81 Eq. (26) 

0.9 Eq. (29) 

0.92 Eq. (32) 

0.69 Eq. (35) 

0.85 Eq. (38) 

0.86 Eq. (41) 

0.75 Eq. (44) 

0.75 Eq. (47) 

 

 

relations is better than the compressive strength relations. In general, the proposed models have 

great results. Therefore, according to the demanded accuracy, the proper model can be used with 

the appropriate number of terms. In other words, the other models may be used to their simplicity, 

despite their lower correlation. Also, it was found that the Quadratic-type 1, and 2 compressive 

strength models (Eq. (29) and (32)) are more suitable than other models. However, the Quadratic-

type 2 model (Eq. (32)) represents the best fit to the experimental data. Therefore, this model (Eq. 

(32)) showed the best correlation to the experimental observation for predicting the 28-day 

compressive strength of UHPC, whereas the Cubic compressive strength model (Eq. (35)) 

presented the lowest value of R2, consequently, this model showed the least correlation to the 

experimental observation for predicting the 28-day compressive strength of UHPC. Accordingly, 

the Quadratic-type 2 compressive strength regression model (Eq. (32)) was the well correlated 

model with the highest accuracy among the studied sixteen models to represent the 28-day 

compressive strength of UHPC. The other models also describe the compressive strength 

development pattern excellently. 

 

 

5. Validation of the proposed models 
 

The accuracy of the proposed models is validated by comparing obtained results with those 

from the literature (Ghafari et al. 2015). The result indicated that the Inverse-type 2 slump flow 

model, and the Quadratic-type 2 compressive strength model can obtain a better prediction of the 

ultra-high performance concrete properties. These models are also much faster at solving 

problems. Therefore, the proposed mathematical models can provide an efficient and accurate tool 

to predict and design UHPC. 

The comparison among the experimental data as given in Table 4, and the results of proposed 

prediction models are presented in Table 5, where it is shown that the maximum differences of  

551



 

 

 

 

 

 

Alireza Habibi, Meysam Mollazadeh, Aryan Bazrafkan and Naida Ademovic 

Table 4 Mixtures for the proposed criteria (Ghafari et al. 2015) 

Constituents and Responses 

Mix 

Design 
Slump 

flow 

(mm) 

28-day 

Compressive 

strength (MPa) 

Steel 

fibers 

(Kg/m3) 

Super 

plasticizer 

(Kg/m3) 

Water 

(Kg/m3) 

Quartz 

flour 

(Kg/m3) 

Silica 

fume 

(Kg/m3) 

Sand 

(Kg/m3) 

Cement 

(Kg/m3) 

200 151 90 33 187 282 134 924 669 N1 

195 156 98 30 190 281 132 920 673 N2 

198 150 30 31 183 167 210 984 675 N3 

202 187 113 30 191 211 193 868 729 N4 

 
Table 5 Predicted responses by model versus experimental measurement 

 

 
(a) Slump flow 

 
(b) 28-day Compressive strength 

Fig. 5 Comparison between actual and predicted values: (a) Slump flow, (b) 28-day Compressive strength 
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Mix 

Design 

Slump flow (mm) 28-day Compressive strength (MPa) 

Experimental 

value 

Predicted 

value 

Difference 

(%) 

Experimental 

value 

Predicted 

value 

Difference 

(%) 

N1 200 189 5.5 151 165 -9.3 

N2 195 208 -6.7 156 170 -8.97 

N3 198 204 -3.03 150 139 7.3 

N4 202 193 4.5 187 205 -9.6 
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6.7%, and 9.6% exist in slump flow, and 28-day compressive strength, respectively. Moreover, the 

difference between actual and predicted values was given in Fig. 5. In Fig. 5 and approved by the 

findings of Table 5, the results obtained from the proposed prediction models are in agreement 

with those of the experimental values.  

 

 

6. Conclusions 
 

In this study, sixteen mathematical models were developed and evaluated to predict the slump 

flow, and 28-day compressive strength of UHPC. The experimental results were used to develop 

the models. To obtain these results, several mixes with different water/cement ratios, silica fume, 

quartz flour, superplasticizer and steel fibers quantities were made and tested. Some important 

results of the study are as follows:  

1) The Inverse-type 2 equation based model (Eq. (12)) was the well correlated model with the 

highest accuracy and the minimum error percentage among the other models to predict the 

slump flow of UHPC. 

2) The Quadratic-type 2 equation based model (Eq. (32)) was the well correlated model with 

the highest accuracy and the minimum error percentage among the other models to predict the 

28-day compressive strength of UHPC. 

3) Slump flow Power-type 3 regression model (Eq. (24)), and the 28-day compressive strength 

Cosine regression model (Eq. (47)) presented the maximum error percentages, consequently, 

these models showed the worst prediction to the experimental observation for predicting the 

UHPC slump flow, and 28-day compressive strength, and their values were 26.8%, and 35.3%, 

respectively. 
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