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Abstract.  The comprehension and structural modeling of masonry constructions is fundamental to safeguard the 
integrity of built cultural assets and intervene through adequate actions, especially in earthquake-prone regions. 
Despite the availability of several modeling strategies and modern computing power, modeling masonry remains a 
great challenge because of still demanding computational efforts, constraints in performing destructive or semi-
destructive in-situ tests, and material uncertainties. This paper investigates the shear behavior of masonry walls by 
applying a plane-stress FE continuum model with the Modified Masonry-like Material (MMLM). Epistemic 
uncertainty affecting input parameters of the MMLM is considered in a probabilistic framework. After appointing a 
suitable probability density function to input quantities according to prior engineering knowledge, uncertainties are 
propagated to outputs relying on gPCE-based surrogate models to considerably speed up the forward problem-
solving. The sensitivity of the response to input parameters is evaluated through the computation of Sobol’ indices 
pointing out the parameters more worthy to be further investigated, when dealing with the seismic assessment of 
masonry buildings. Finally, masonry mechanical properties are calibrated in a probabilistic setting with the Bayesian 
approach to the inverse problem based on the available measurements obtained from the experimental load-
displacement curves provided by shear compression in-situ tests. 
 

Keywords:  Bayesian updating; continuum models; gPCE; historical masonry; in-plane behavior; modified 
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1. Introduction 
 

The comprehension and modeling of the behavior of historical masonry structures is a tall order 

due to the difficulty of adequately describing the characteristics of masonry given the presence of 

significant material, modeling, and geometrical uncertainties, with often a limited possibility of 

carrying out destructive tests (Krentowski et al. 2023). At the same time, a proper simulation of 

mechanical behavior is fundamental to intervene with suitable actions and maintain the integrity of 
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the structure, especially in seismic-prone areas (Formisano et al. 2023). 

Scientific research has progressed greatly in the past 20 years with the tremendous 

advancement in the computational capabilities and development of increasingly sophisticated 

modeling strategies (Roca et al. 2010). Notwithstanding, the characterization of masonry still 

remains an issue and the choice of the modeling technique still reckons with the availability of 

data to feed models. Among various approaches, Finite Element Method (FEM) represents a good 

compromise among many elements at stake, namely model accuracy, computational burden, need 

for relatively limited material parameters from experimental testing among others (Saloustros et 

al. 2015, Asteris and Plevris 2015), and is the most widespread numerical tool for structural 

analyses.  

Particularly FE models based on continuum mechanics are widely used also among 

practitioners thanks to the relative simplicity in the description of masonry. In fact, it is accounted 

for as an equivalent homogenized continuum body capable of deforming, thus reducing the 

necessity for carrying out time-consuming/ resource-intensive destructive tests on different 

masonry components. In this sense, FE continuum models belong to macromodels, where no 

distinction between bricks or stones and mortar is made. 

Several non-linear constitutive laws are proposed in the framework of continuum 

macromodeling of masonry, and are based on plasticity (Dragon and Mróz 1979, Lourenço et al. 

1998) damage mechanics (Løland 1980, Papa 1996, Berto et al. 2002, Mazars 1984) fracture 

mechanics with smeared crack approaches (Hillerborg et al. 1976) or local crack-cracking 

algorithms (Clemente 2006, Clemente et al. 2006, Saloustros et al. 2015, Saloustros et al. 2018) or 

plastic-damage models (Lubliner et al. 1989, Lee and Fenves 1998). Some of them, like the latter, 

have been originally developed for the simulation of concrete and later adapted for masonry, while 

others are suitable for solids with low tensile resistance.  

In this paper, the Modified Masonry-like Material, which is the implemented version of the no-

tension stress material of Di Pasquale (1982) through the introduction of the bounded shear stress, 

and a limited tensile resistance, is adopted (Lucchesi et al. 2018b). The isotropic material 

considers damage on the basis of the exceeding of a chosen stress value as explained in Section 

2.1. 

Particularly, the Modified Masonry-like Material is here used to evaluate its ability to 

reproduce the mechanical behavior of structures in terms of failure modes. In fact, said constitutive 

law is utilized to simulate the response of a masonry panel in shear-compression, which is 

characterized by a recurrent static scheme in literature and the availability of a large amount of 

data, thanks to some in-situ tests carried out as part of the seismic evaluation of many school 

buildings in Florence, Italy (Beconcini et al. 2021). The panel was subject to an increasing 

horizontal force with constant vertical load to reproduce the experimental behavior.  

Within this context, given the uncertainty that often affects the mechanical properties of 

historical masonry, a probabilistic framework, see Section 2.1, is set to account for their inner 

variability (Sỳkora and Holickỳ 2010, Sykora et al. 2013, Croce et al. 2021b), and the effect of 

such variations on outputs is evaluated through sensitivity analysis.  

The inputs in the Modified Masonry-like Material are expressed in probabilistic terms 

according to engineering judgment and prior knowledge about their variability. Thanks to the so-

defined probabilistic framework, global Sensitivity Analyses (SA) to quantify the influence of 

uncertain input mechanical parameters on the response are performed by computing Sobol’Indices 

(SIs) (Sudret 2008, Saltelli 2008, Sudret and Mai 2015), as described in Section 2.3. To reduce the 

number of analyses and efficiently perform the evaluation of SIs we defined the surrogate model of 
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the response, an analytical replica of the numerical FE model, which expresses the relationship 

between output quantity of interest and inputs in mathematical terms. The definition of the 

approximated response surface builds upon the general Polynomial Chaos Expansion (gPCE) 

(Wiener 1938, Marzouk et al. 2007, Sudret 2015, Ghanem and Red-Horse 2017). 

Finally, the inverse problem is solved by leveraging the Bayesian approach (Tarantola 2005, 

Matthies et al. 2016, Matthies et al. 2016), thus allowing us to update the prior pdfs or input 

parameters to the posterior version based on the experimental load-displacement curves from the 

shear compression in-situ tests (Section 2.4). The proposed methodology is applied to a relevant 

case study in Section 3. 

 

 

2. Material and methods 
 

2.1 Numerical simulation procedure 
 

The Modified Masonry-Like Material sees its first formulation in the no-tension material (Di 

Pasquale 1982, Di Pasquale1984, Como and Grimaldi 1985, Romano and Romano 1985, Lucchesi 

et al. 2008) and it is suitable to describe the behavior of solid incapable or scarcely capable of 

withstanding tensile stresses, such as masonry. 

The initial formulation of the no-tension material is that of an isotropic non-linear elastic 

material with infinite compressive resistance, and zero tensile resistance. Since the material cannot 

take any positive (tensile) value, the stress tensor is negative semidefinite. Moreover, the strain 

tensor is given by the sum of an elastic component and an inelastic part. The first is proportional to 

the current stress level, and the second represents the occurrence of a fracture for the exceeding of 

the tensile stress. 

Subsequent refinements of the original constitutive law regarded the introduction of a 

restriction to the attainable tensile and compressive stresses (Lucchesi et al. 2008) so that limited 

tensile and compressive stresses can be reached. Further developments entailed the definition of a 

limit to the tangential (shear) stress (Lucchesi et al. 2017, Lucchesi et al. 2018a). 

In the current paper, the constitutive law adopts the more advanced formulation of the 

Masonry-like Material with bounded shear, compressive, and tensile stresses, whose 

implementation in the FE MADY code (Lucchesi et al. 2017b) allows the real failures to be better 

reproduced. The code relies on the explicit formulation of the Modified Masonry-like Material in 

the isotropic 2D, and 3D case. A Newton-Raphson iterative procedure is used to find the solution 

of the nonlinear system deriving from the discretization of the structure into finite elements. For 

each area, the tangent stiffness matrix is evaluated by explicitly computing the derivative of the 

stress with respect to the strain. Fig. 1 shows the domains of the original no-tension material and 

the implemented one. The latter is still a “normal elastic material” (Del Piero 1989) hyper-elastic 

and stress-bounded, and belongs to the 'deformation theory of plasticity' (Kachanov 2004). 

The Modified Masonry-Like Material model is characterized by the following mechanical input 

parameters: compressive (𝑓𝑚) and tensile strength (𝑓𝑡), cohesion (𝑓𝑣0), tangent of the friction angle 

(𝜇) and elastic properties (Young’s modulus 𝐸 and Poisson’s ratio 𝜈). The characterization of these 

parameters is often based on previous practices without performing a proper calibration that 

considers their expected variability and the experimental data. In the following section, a 

probabilistic framework is proposed. Firstly, it is aimed to evaluate the sensitivity of the model 

response to the variation of the input parameters. This is useful to understand which of them have  
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(a) (b) 

Fig. 1 Failure domain or the first formulation of the no-tension material (a), Failure domain of the more 

advanced version of the MMLM (b) 

 

 

more influence on the output quantity of interest, and thus are worthy of further investigation to be 

better characterized. Then, the Bayesian updating is presented as the final step of the method to 

adequately calibrate the mechanical parameters by using available measurements. 

 

2.2 Probabilistic framework for the assessment and calibration of masonry material 
 

The steps of the probabilistic framework defined for the evaluation of the effects of the 

variation of masonry mechanical parameters in relation to the uncertainties that normally affect 

such material and their calibration based on experimental measurements can be synthesized as 

follows with reference to Fig. 2: 

• Choice of suitable prior pdfs of the mechanical properties of masonry based on expert 

judgment and available a priori knowledge, 

• Solution of the forward problem relying on the surrogation of the response, i.e., by generating 

the analytical surface of the outcomes, 

• Computation of Sobol’ Indices (SIs) to evaluate the global sensitivity of the model (outputs) in 

dependence of the variation of input parameters, 

• Calibration of the FE model by tapping into measurements from experimental campaigns to 

update prior pdfs and define new posterior pdfs, with the aim of better matching theoretical and 

experimental outcomes. 

 

2.1.1 gPCE-based surrogate model 
In this paper, the probabilistic framework within which the propagation of input uncertainties to 

outputs and the model calibration are carried out relies on the definition of a gPCE-based surrogate 

model (Xiu and Karniadakis 2002, Xiu 2010). The latter, belonging to spectral methods for 

uncertainty expansion, is based on the reconstruction of a multidimensional response surface 

through a particular basis of the probability space made of polynomials chosen from the Askley 

scheme, which are orthogonal with respect to the underlying probability measure defined by the a-

priori input random variables.  
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Fig. 2 Probabilistic framework for mechanical parameters calibration 

 

 

An analytical representation of the predicted measurable response replaces the map, which 

makes the computational costs more affordable even when the runs of the FE model are highly 

demanding. In fact, only a limited number of deterministic solver calls of the FE model (𝑃) 

evaluated at the collocation points of the monomial cubature rule (MCR) are required, according to 

the grade of the polynomial expansion (𝑛) and the number of input RVs (𝑘), 𝑃 = (𝑛 + 1)𝑘 (Wei 

2008). 

 

2.2.2 Sensitivity Analysis (SA) through Sobol’ indices (SIs) 
A variance-based global sensitivity analysis (SA) to estimate the global impact of input 

uncertainties was performed in terms of first-order Sobol’ Indices, which allowed us to decompose 

the variation of the model output into different contributions caused by different input parameters 

(Saltelli and Sobol’ 1995, Sobol 2001). 

Even if SIs can be computed through a Monte Carlo Simulation (MCS) (Sobol 2001), this 

approach is unfeasibly burdensome because of the necessity of running the FE models as many 

times as many the samples of the input parameters there are to build the corresponding output 

distribution. However, the gPCE-based surrogate model allows us to overcome this issue, by 

analytically computating SIs (Sudret 2008). 

 

2.2.3 The Bayesian approach to the inverse method 
The calibration of input parameters is here made possible by the availability of load and 

displacement data from in-situ tests carried out on the investigated masonry panel (Beconcini et al. 

2021). 

Particularly, the inverse problem, which entails the updating of the prior distributions of input 

variables based on the measurements of output quantities, builds upon the use of Bayes’ theorem 

within a probabilistic framework. 
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Let 𝑀 be the forward model. The relationship between the vector of input random parameters 

𝑸 and the observable 𝒖 given by 𝑀 reads as 

𝒖 = M(𝒒),     𝐺: 𝑅𝑘 → 𝑅𝑚 (1) 

where 𝒖 ∈  𝑅𝑚 is a vector gathering the response quantities and 𝑀 is the forward model (FE Mady 

code). Particularly, the assumption of the existence of a deterministic solver that has 𝒒 as a set of 

inputs and returns a unique response vector 𝒖 is made. 𝑀 generally, does not have an explicit 

form, so the numerical solution of some partial equation is required. At any rate, here 𝑀 is referred 

to in general terms with no reference to a specific formulation. Since measurement errors are 

intrinsic in the data measurement process, observable data 𝒅 may not match exactly the response 

true value u.  

Thus, if we consider additional unavoidable observational errors 𝜀, the relationship between 

real data 𝒅, computational model 𝑀, and its outcomes 𝒖, and the error 𝜀 is 

𝒅 = 𝒖 +  𝜺 = 𝑴(𝒁) +  𝜺, (2) 

where 𝜺 ∈  𝑅𝑚 is one realization of a random vector 𝑬: 𝛺 → 𝑅𝑚 modelling the measurement error. 

Here, we assume 𝑬 to be some mutually independent Gaussian random variables with joint pdf 

𝝅𝑬(𝜺) = ∏ 𝝅𝜺𝒊
(𝜺𝒊)

𝒎

𝒊=𝟏

. (3) 

The Bayesian approach estimates the updated density of the random vector 𝑸 given a set of 

observations 𝒅. The Bayes rule can be written by 

𝜋(𝒒) =
𝜋(𝒅|𝒒)𝜋(𝒒)

∫ 𝜋(𝒅|𝒒)𝜋(𝒒)𝑑𝒒
, (4) 

where 𝜋(𝒒) is the prior probability density of 𝑸, 𝜋(𝒅|𝒒) the likelihood function, and 𝜋(𝒒|𝒅) the 

density of 𝑸 conditioned by the data 𝒅 (posterior probability density of 𝑸). Equation (5) presumes 

𝑸 and 𝒅 to have a joint pdf, which does not generally exist since 𝒅 is a function of 𝑸, unless the 

observational error is a discrete white noise process, that is uncorrelated. In this case, the model for 

the random variable representing the error 𝜺 determines the existence of the likelihood function 

𝐿(𝒒) = 𝜋(𝒅|𝒒) = ∏ 𝜋𝜀𝑖
(𝑑𝑖 − 𝑀𝑖(𝑞))

𝑚

𝑖=1

= ∏ 𝜋𝜀𝑖
(𝑑𝑖 − 𝑢𝑖).

𝑚

𝑖=1

 (5) 

At any rate, the posterior distribution 𝜋(𝒒|𝒅)  does not have a closed form and numerical 

methods need to be employed for its estimation. In the case at hand, the Markov Chain Monte 

Carlo (MCMC) method is used. It samples from the posterior distribution with a random walk and 

builds a Markov chain with the desired pdf as its equilibrium distribution (Tierney 1994). The 

method, despite being characterized by slow convergency, is a solid method within the civil 

engineering field (Landi et al. 2021).  

On the whole, it is feasible when the model requires only one update, as in the present case. The 

computation of the acceptance probability 𝑟 of each step 𝑗 of the random walk given by 

𝑟 = 𝑚𝑖𝑛 {1,
𝐿 (𝒒(𝑗+1))𝜋(𝒒(𝑗+1))

𝐿 (𝒒(𝑗))𝜋(𝒒(𝑗))
}, (6) 
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which requires the computation of 𝐿(𝒒) in Eq. (5) and the evaluation of the model response for 

each sample drawn from the prior distribution, making the process computationally demanding. 

Nonetheless, having a surrogate model the sampling can be made efficient making the procedure 

significantly faster (Rosić et al. 2013).  

 

 

3. Numerical experiment and discussion 
 

3.1 Case study 
 

The MMLM constitutive law is tested on a real case study of a masonry panel, which is housed 

in the four-story masonry primary school “Cairoli Alamanni” dating back to the early twentieth 

century and located in Florence (Italy).  

The case study panel was tested through a shear compression in-situ experimental campaign 

involving the assessment of the seismic safety of more than 80 schools in Florence (Croce et al. 

2021a, Beconcini et al. 2021). Fig. 3 shows the geometrical features and mechanical properties of 

the panel derived through surveys and the combination of single and double flat jack tests.  

Moreover, Fig. 3 displays the mesh adopted for the investigated panel. The outer darker 

framework is modeled by linear elastic material since it falls outside the experimentally tested 

panel. On the other hand, the inner lighter part is modeled through the Modified Masonry-Like 

Material. 

The numerical model accounts for the real panel frame within the whole inter-floor masonry 

wall. This configuration alone is not sufficient to attain the effective compressive stress 𝜎0 and 

hence an additional uniformly distributed vertical load is applied. 

 

 

 

Fig. 3 Geometry and FE mesh of the case study 
 

435



 

 

 

 

 

 

Giada Bartolini, Anna De Falco and Filippo Landi 

   
(a) (b) (c) 

Fig. 4 Minimum principal stress (a), Anelastic tensile strain MMLM 𝐸𝑎  (b), experimental load displa-

cement curve (c) 

 

 

The mesh of the described model uses four-node plane stress (PS) elements with a 9-centimeter 

length side for a total of 2684 elements and 2839 vertices. To reproduce the real setting of the 

panel from the viewpoint of constraints the base is considered perfectly fixed and horizontal rollers 

are placed on the left side of the elastic frame to contemplate the presence of the orthogonal wall. 

Nonlinear static analyses are performed by prescribing an increasing horizontal displacement in 

half the height of the masonry panel while keeping the vertical load constant. 

Fig. 4(a) displays representative results of the analysis in terms of minimum principal stress 

distribution for the ultimate behavior of the investigated masonry panel simulated with mean 

values of the mechanical input parameters. Further, the damage caused by the tensile stress, 

accounted in a smeared damage approach though the norm of the inelastic tensile strain 𝐸𝑎, alias a 

measure of the damage on the entire panel, is displayed in Fig. 4(b). The experiential load-

displacement curve and the derived bilinear capacity curve are plotted in Fig. 4(c). 

The obtained concentration of negative stresses determining a highly compressed diagonal 

band is relevant and is in good agreement with the experimental damaged areas. The occurrence of 

two diagonal struts symmetrical to a horizontal line in half the height of the panel, corresponding 

to the application point of the horizontal increasing load, is pointed out also by the distribution of 

the higher values of the inelastic tensile damage. 

 

3.2 Probabilistic description of input parameters and gPCE-based surrogate model 
generation 

 

The input parameters for the definition of the Modified Masonry-like Material are the 

compressive resistance 𝑓𝑚, the tensile resistance 𝑓𝑡, the cohesion 𝑓𝑣0, the frictional angle 𝜇, the 

elastic Young’s modulus 𝐸, and the Poisson’s ratio 𝜈.  

Deriving these values is not effortless, because it would require the performing of extensive 

destructive and semi-destructive experimental campaigns, which contrast with the aim of 

safeguarding the integrity of historical masonry structures (Croce et al. 2021a). Therefore, the 

principal mechanical parameters have been collected into different masonry types defined based 

on proper statistical elaborations of an adequate number of tested samples.  

The typical range of values of reference parameters of some recurrent masonry typologies can 
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be found in the Guidelines for the application of the Italian Building Code (Italian Ministry of 

Infrastructures and Transportation 2018) and its specifications (Italian Public Works Council 

2019).  

In this paper, the choice of the reference masonry typology, namely the so-called “partially 

dressed stone” of the Guidelines, was guided by the results in terms of 𝑓𝑚 and 𝐸, obtained from 

experimental in-situ campaigns (Beconcini et al. 2021). 

The statistical data to describe its mechanical properties required as inputs for the numerical 

model with the Modified Masonry-like Material are those of “Class II” (Croce et al. 2021b). This 

is a medium-quality masonry chosen because the mean value of the distribution of 𝑓𝑚 and 𝐸 is 

similar to the values obtained through the in-situ tests of the case study panel. 

The pdfs and statistical data identifying the distribution of the independent random variables 

are reported in Table 1, along with the corresponding polynomial for gPCE from the Askey scheme 

(Marzouk et al. 2007). 

Masonry mechanical parameters are generally linked to the quality and type of masonry. 

Nevertheless, the relation among the different mechanical properties of masonry is by no means 

easy to obtain. There are several elements, such as the quality and dimensions of single 

components, i.e., adobe block and mortar joints, which play a role in determining the mechanical 

properties. Given the extreme variability of masonry typologies, the eventual correlation among 

mechanical properties, if any, is closely case-related, and generalizations are hardly doable. In this 

sense, many studies have sought to find relations between the various mechanical properties of 

masonry. 

One of the few renowned relations that hold between the mechanical properties of masonry is  

𝑓𝑡 = 1.5 ∙ 𝜏0 (7) 

from (Turnsek and Cacovic 1971), where the tensile stress 𝑓𝑡  is equal to the shear strength 𝜏0 

amplified by 1.5 times. 

Apart from that, there are not many other proven correlations that hold among mechanical 

properties of masonry, despite constant research in this direction. 

For example, (Sánchez 2022) has recently tried to derive a correlation between the mechanical 

properties of masonry considering an extensive review of several experimental studies from many 

countries over the last 15 years of research. However, it revealed that it is not straightforward to 

obtain correlation even for laboratory specimens, let alone on real case studies such as the one at 

hand.  

In light of this, and also considering that for the relation (7) one of the two mechanical 

properties (𝜏0) does not belong to the input parameters of the Modified Masonry-like Material, the 

authors deemed it licit to consider the mechanical properties of masonry as independent random 

variables. 

As for the assumed values, the mean and the standard deviation of 𝑓𝑚 and 𝐸 directly derive 

from “Class II”, statistical data defining the distribution of 𝑓𝑡 and 𝑓𝑣0 comes from data available 

for “partially dressed stone” in the Guidelines for the application of the Italian Building Code; 𝜇 

and 𝜈 are instead based on the expert judgments and are values generally adopted for masonry 

(Bracchi et al. 2016). In fact, in Bracchi et al. (2016) the lower limit of  𝜈 is 0.15, and the upper 

one is set to a value roughly around 0.33, as defined in (Italian Public Works Council 2019). 

Moreover, extensive experimental campaigns (Bosiljkov et al. 2005, Tomaževič 2009) show that 

the range of Poisson’s ratio is wide, being also dependent on the load level. 

Even if it can reach up also values of 0.5 for very anisotropic masonry (Bracchi et al. 2016) 
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Table 1 Parameters, distributions, and orthogonal polynomials 

Parameter Distribution Statistical data [MPa] Polynomial 

𝑓𝑚 log-normal 𝜎=1.91, 𝜇=0.23 Hermite 

𝑓𝑡 log-normal 𝜎=0.0645, 𝜇=0.012 Hermite 

𝑓𝑣0 uniform min=0.3, max=0,6 Legendre 

𝜇 uniform min=0.2, max=1.0 Legendre 

𝐸 log-normal 𝜎=1384, 𝜇=290.64 Hermite 

𝜈 uniform min=0.15, max=0.25 Legendre 

 

 

most values available in the scientific literature (Lourenço et al. 1998, Lucchesi et al. 2018b) (for 

both 𝜈 =0.18), falls within the range chosen for the uniform distribution of 𝜈 in this paper (0.15- 

0.25). 

On the other hand, 𝜇 can be inferred from (Lucchesi et al. 2008). In the simulations of masonry 

panels with the Modified Masonry-like Material in MADY code 𝜇  varies over the range of 

0≤𝜇≤1.73, corresponding to a frictional angle between 0°-60°. This range can be narrowed down 

considering that 𝜇  generally falls in an interval from 0.4 (dry stone masonry) to 0.2 (rubble 

masonry) (Angelillo et al. 2014). Further, also values of the frictional angle equal to 30°-40° (i.e., 

0.36≤𝜇≤0.34) are still realistic (Sarhosis et al. 2015). Therefore, 𝜇 can take a value between 0.2 

and 1.0 in the chosen uniform distribution. 

Finally, 𝑓𝑡 is indirectly deduced from the Italian Public Works Council (2019), there being here 

only the range of values of 𝜏0, the shear strength. 𝑓𝑡 can be easily obtained with the following 

simple relation  𝑓𝑡 = 1.5 ∙ 𝜏0  (Turnsek and Cacovic 1971). The Italian Public Works Council 

(2019) does not include any value of 𝑓𝑣0, being the shear-failure unlikely to occur for the masonry 

typology at hand. For this reason, the minimum takes a high value so as not to make 𝜏0  the 

parameter responsible of the panel failure. 

In this paper, the generation of the proxy model is carried out by adopting a three-degree gPC 

expansion after assessing that the maximum difference between the surrogate surface and the 

solution of the FE model is not relevant from an engineering point of view. Fig. 5 proves that a  

 

 

 
Fig. 5 Error of the two measurements (displacement at 2/3 of the ultimate load (𝛿2/3) and 

ultimate load (𝐹𝑢𝑙𝑡 )) simulated with the surrogate model as a function of the degree of the 

expansion with respect to the FE solution 
 

438



 

 

 

 

 

 

Stochastic identification of masonry parameters in 2D finite elements continuum models 

  
(a) 𝛿2/3 (b) 𝐹𝑢𝑙𝑡 

Fig. 6 Response surfaces for displacement 𝛿2/3  (a) and ultimate load 𝐹𝑢𝑙𝑡 (b) 

 
                 Table 2 Sobol Indices of mechanical input parameters 

Parameter SIs,1 (𝐹𝑢𝑙𝑡) SIs,2 (𝛿2/3) 

𝑓𝑚 0.820 0.275 

𝑓𝑡 0.002 =0.000 

𝑓𝑣0 0.074 0.007 

𝜇 0.104 0.01 

𝐸 =0.000 0.706 

𝜈 =0.000 0.002 

 

 

three-degree expansion is adequate to set the error between the deterministic FE model and the  

surrogate one below to the 1% for both the displacement at 2/3 (𝛿2/3) of the ultimate load, and the 

ultimate load (𝐹𝑢𝑙𝑡). 

In Fig. 6, representative response surfaces are displayed. The first one shows the displacement 

measured at 2/3 of the ultimate load, 𝛿2/3, considering the variations of 𝑓𝑚 and 𝐸 (Fig. 6(a)) while 

the other mechanical parameters take the following values: 𝑓𝑡 = 0.041 MPa, 𝑓𝑣0 = 0.321 MPa, 

𝜇 = 0.255, 𝜈 = 0.157. The second surface for the ultimate load 𝐹𝑢𝑙𝑡  (Fig. 6(b)) is obtained by 

varying 𝑓𝑚 and 𝑓𝑡 , and assuming the other inputs as follows: 𝑓𝑣0 = 0.501 MPa, 𝜇 = 0.464, 𝜈 =
0.157, 𝐸 = 834 MPa. 

 

3.3 Results of the Sensitivity Analysis (SA) 
 

The sensitivities of two quantities of interest, namely the horizontal ultimate load 𝐹𝑢𝑙𝑡 (SIs,1) 

and horizontal displacement 𝛿2/3  ((SIs,2), were analyzed with the help of the Sobol sensitivity 

Indices, as reported in Table 2. 

In the evaluation of the horizontal load the panel is subjected to, 𝑓𝑚 plays a key role with a SI 

equal to 0.820, which is in line with common knowledge alleging the increasing of shear resistance 

with growing values of the compressive load. Besides, the shear parameters 𝜇 and 𝑓𝑣0  are the 
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second and third most influential mechanical parameter with a SI equal to 0.104 and 0.074, as 

expected in a shear compression test. 

On the other hand, regarding the SA involving the evaluation of the influence of chosen input 

variables on the horizontal displacement a different impact of the different mechanical properties 

can be observed. Particularly, 𝐸 reports the highest SI with a value of 0.706, followed by 𝑓𝑚 with 

0.275, and 𝑓𝑣0 with 0.007. The remaining variables have nearly no influence on the horizontal 

displacement.  

 

3.4 Results of the Bayesian updating 
 

Within the probabilistic framework for the assessment and calibration of masonry material 

described in Section 2.2, the last step is the calibration of the numerical model.  

In the case at hand, the Bayesian updating of the pdfs of mechanical input parameters, has been 

performed by considering two different measurements obtained from in-situ experimental tests, 

namely the ultimate load 𝐹𝑢𝑙𝑡 = 208.6 kN, and the displacement 𝛿2/3 = 0.65 mm. The inverse 

problem is solved by applying the Markov Chain Monte Carlo method and the results are shown in 

Fig. 7. 

On the whole, the result of the updating shows that the pdfs of the various input parameters 

change in shape in different ways.  

Particularly, those parameters to which the model presents higher sensitivity, i.e., 𝑓𝑚  and 𝐸, 

correspond to the ones whose posteriors differ more significantly with respect to priors, which is in 

line with what can be inferred from the SA in terms of SIs. The posterior distribution of 𝑓𝑚 is 

characterized by a reduced coefficient of variation with respect to a priori one, with the mean 

passing from 1.91 MPa to 1.60 MPa. Similarly, the variability of the updated distribution of 𝐸 

decreases and the mean modifies its value from 1384 MPa to 1522 MPa.  

Moreover, for the mechanical properties characterized by low SIs (but different from zero), as 

in the case of the shear parameters 𝑓𝑣0 and 𝜇, the updating is helpful to derive pdfs capable of 

better describing the probability distribution.  

On the contrary, the parameters with SIs close to zero with respect to both used measurements, 

namely 𝑓𝑡 , and 𝜈, do not take much benefit from the updating because their relevance for the 

measured response is about nothing. 

 

 

4. Conclusions 
 

A probabilistic framework for uncertainty quantification computations and stochastic 

identification of masonry parameters in 2D finite elements continuum models is presented. The 

Modified Masonry-like Material (MMLM) is investigated with the aim to reproduce the 

experimental behavior of a masonry wall under horizontal loads.  

The proposed methodology allows one to clearly identify the relevant input parameters in the 

constitutive law that require adequate calibration to achieve a good agreement between the 

predicted and experimental response. In particular, with reference to a relevant case study, the 

results of SA highlight that the most relevant parameters in reproducing the shear behavior of such 

masonry walls are the compressive strength and the elastic modulus. Finally, these uncertain 

parameters are updated based on the outcomes of the in-situ shear-compression test in terms of 

ultimate load and elastic displacement. 
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Fig. 7 Results of Bayesian updating, prior and posterior distribution of the input parameters in a pairs scatter 

plot 
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