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Abstract.  First introduced in 2016, the dynamic foundation model is an interesting topic in which the foundation is 
described close to reality by taking into account the influence of the foundation mass in the calculation of oscillation 
and is an important parameter that should be considered. In this paper, a follow-up investigation is conducted with the 
object of the Mindlin plate on a nonlinear dynamic foundation under moving loads. The base model includes 
nonlinear elastic springs, linear Pasternak parameters, viscous damping, and foundation mass. The problem is 
formulated by the finite element analysis and solved by the Newmark-β method. The displacement results at the 
center of the plate are analyzed and discussed with the change of various parameters including the nonlinear stiffness, 
the foundation mass, and the load velocity. The dynamic response of the plate sufficiently depends on the foundation 
mass. 
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1. Introduction 
 

The foundation model was first proposed by Winkler in 1867, this is the most basic model and 

is still widely applied in designs, calculations, and researches up to the present. From the 

development demands in construction, especially crucial for high-speed transportation systems 

such as the road-foundation-vehicles system, or airplane-runway system, it can be seen the model 

plays a very important role to most accurately predict the behavior of the structure. Since then, a 

series of studies have been born and are expanding, such as the infinite plate on the elastic 

foundation with variant velocity (Huang and Thambiratnam 2001); the investigation of the 

dynamic response of the plate and the resonance with parameters of the foundation stiffness, the 
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velocity, and frequency of the moving load (Huang et al. 2002); the investigation of the viscosity 

of the foundation and comparison with the elastic system, using Fourier transform for analysis of 

the infinite plate (Kim and McCullough 2003); the dynamic response of the laminated composite 

plates with varying parameters of the sprung mass, analyzed by finite element model (Mohebpour 

and Ahmadzadeh 2011); the study of the effects of velocity (with its varying tangents) and its 

initial value on the dynamic response of the plate (Li et al. 2013); the study of free vibration of 

elastically restrained Timoshenko beam on an arbitrary variable Winkler foundation and under 

axial load (Ghannadiasl and Mofid 2015); the analysis of solution for the elastic bending of beams 

lying on a linearly variable Winkler support (Froio et al. 2017); the analysis of FG-CNT reinforced 

composite conical panel subjected to moving load using Ritz method (Kiani 2017); the study of 

the dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load (Kiani 

2017); the study of critical velocities of a beam on nonlinear elastic foundation under harmonic 

moving load (Froio et al. 2017); the analytical solution for the elastic bending of beams lying on a 

linearly variable Winkler support (Froio and Rizzi 2017); the analytical solution for a finite Euler-

Bernoulli beam with single discontinuity in section under arbitrary dynamic loads (Yu et al. 2018); 

the analysis of a uniform Bernoulli-Euler beam on Winkler foundation subjected to harmonic 

moving load (Jiya and Shaba 2018); the study of the dynamics of a beam on a bilinear elastic 

foundation under harmonic moving load (Froio et al. 2018); the dynamic response of a finite beam 

resting on a Winkler foundation to a load moving on its surface with variable speed (Beskou and 

Muho 2018); the influence of graphene platelets on the response of composite plates subjected to a 

moving load (Kiani 2020); the dynamic response of plates resting on a fractional viscoelastic 

foundation and subjected to a moving load (Praharaj and Datta 2020); the dynamic response of 

railway track resting on variable foundation using finite element method (Phadke and Jaiswal 

2021); the dynamic analysis of railway track on variable foundation under harmonic moving load 

(Phadke and Jaiswal 2021); a development of an analytical method for calculating beams on a 

variable elastic Winkler foundation (Yu et al. 2021); the study of free and forced vibrations of 

graphene platelets reinforced composite laminated arches subjected to moving load (Kiani 2022); 

the analysis of arbitrary thick graphene platelet reinforced composite plates subjected to moving 

load using a shear and normal deformable plate model (Jafari and Kiani 2022a); a four-variable 

shear and normal deformable quasi-3D beam model to analyze the free and forced vibrations of 

FG-GPLRC beams under moving load (Jafari and Kiani 2022b). However, the lack of connection 

between the springs, and the discontinuity of the foundation displacement between the loaded and 

the unloaded part are the existing limitations of this type of model (Teodoru and Muşat 2010). 

The above limitations from the Winkler model have been also the motivation for a series of 

studies to be written to improve and bring the model closer to the real foundation. First of all, it 

was the solution for connecting the separate springs or taking into account the shear deformation 

in the foundation. These models all gave good results when analyzing the behavior of plate 

structures on the foundation under different types of moving loads by different methods, such as 

the analysis of the two-parameter model (Pasternak foundations) by numerical approach (Ferreira 

et al. 2010); the survey of the beam resting on the Vlasov foundation by numerical method 

(Teodoru and Muşat 2010); the plate on the Pasternak foundation with 3D analysis based on elastic 

theory (Liu et al. 2017); the study of vibration of orthotropic rectangular plates under the action of 

moving distributed masses and resting on a variable elastic Pasternak foundation with clamped end 

conditions (Awodola and Adeoye 2021). After that, a series of extensive studies for the 

nonlinearity with or without damping of the background model was also performed. In fact, the 

spring reaction shows a third-order dependence on the vertical displacement. The results obtained 

84



 

 

 

 

 

 

The plate on the nonlinear dynamic foundation under moving load 

from the study show that there was a remarkable difference between the models of nonlinear and 

linear foundation, such as the laminated plate resting on the nonlinear foundation (Chien and Chen 

2005); the investigation of the beam resting on the nonlinear by the Galerkin method (Ding et al. 

2012); the beam resting on the nonlinear Pasternak foundation with six parameters (Yang et al. 

2013); the beam resting on the nonuniform linear foundations and bilinear foundation (Jorge et al. 

2015a, b); the nonuniform beam resting on the nonlinear foundation with varying velocities and 

loads (Abdelghany et al. 2015);  the analysis of large displacement of the beam resting on the 

nonlinear foundation (Froio et al. 2017); the beam resting on the nonlinear foundation with 

primary resonance study (Karahan and Pakdemirli 2017); the analysis of the nonlinear dynamics 

(Zhou et al. 2017); the beam resting on linear, bilinear, and nonlinear models by finite element 

approach with critical and ranges of velocities (Rodrigues et al. 2018); the infinite beam resting on 

the nonlinear foundation with large deflections (Ahmad et al. 2018); the dynamic response of 

plates resting on a fractional viscoelastic foundation and subjected to a moving load (Praharaj and 

Datta 2020); the effects of initial compression/tension, foundation damping and pasternak medium 

on the dynamics of shear and normal deformable GPLRC beams under moving load (Wang and 

Kiani 2022).  

Most recently, when considering the effects of the mass of the foundation on the dynamic 

structures but was ignored, a new model of foundation that considered the theoretical influence of 

the foundation mass was suggested to analyze the dynamic response of the superstructures resting 

on the foundation (Nguyen and Pham 2016, Nguyen et al. 2016a, b, Nguyen et al. 2020a, b) and 

was tested using a simple model (Pham et al. 2018) for the results of the foundation mass in 

oscillation participation had a remarkable influence on the dynamic properties of the system. This 

is close to reality because the foundation always has a density and oscillates with the structures 

subjected to dynamic loads, causing a specific inertia force and acting together with the inertia 

force of the structure. This influence gradually decreases with the foundation depth because the 

natural frequency is inversely proportional to the foundation depth in the structural system. 

To further study the dynamic foundation model and bring it closer and closer to the real model, 

this paper presents an investigation on the plate dynamic response resting on nonlinear foundation 

under moving loads. The applied numerical method is built and developed by the MATLAB 

programming language to analyze the dynamics of a plate resting on a nonlinear foundation 

considering the mass. By using the developed numerical method, this paper investigates the 

influence of different parameters (in other words, they are basic variables can be appeared in 

reality) on stiffness, mass, shear modulus, viscous damping of the foundation, and the moving load 

velocity. Moreover, the peak and time-dependent displacements of the center of the plate will be 

presented and discussed. 

 

 

2. Methodology and formulation 
 

2.1 The nonlinear dynamic foundation model 
 

A dynamic foundation model including all characteristics of the nonlinear dynamic foundation 

was suggested by Nguyen et al. (2016b) to supplement an important factor, which is the influence 

of the mass of foundation in oscillation, of the Winkler model types. This idealized model, as 

shown in Fig. 1, includes the linear elastic stiffness 𝑘𝑙 plus nonlinear elastic stiffness 𝑘𝑛𝑙 (in which 

the relation of force-displacement is expressed in a cubic term), the parameter of foundation shear  
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Fig. 1 The dynamic foundation model 

 

 

layer 𝑘𝑠, the viscous damping 𝑐𝑓 and the foundation mass density 𝜌𝑓. Based on the principles of 

dynamic equilibrium, the mass of the foundation is calculated as several lumped masses 𝑚𝑓 at the 

top of the elastic springs which connect the elastic springs with the shear layer. The lumped mass 

𝑚𝑓  is a parameter that makes the dynamic foundation model significantly different from other 

models, which are massless ones.  

The corresponding force-displacement relation of foundation under pressure 𝑞(𝑥, 𝑦, 𝑡) at the 

time t, as shown in Fig. 2, can be described and satisfied as the following partial differential 

equation 

( ) ( ) ( ) ( ),,

0 0 0, , , , , , , , 0
y tx t

NN
q x y t r x y t m x y t c x y t

x y


+ + − − − =

 
                  (1) 

In which, total shear force per unit length, which are the connections between the springs and 

make the loaded and unloaded parts continuously, of a shear layer in 𝑥 -axis and 𝑦 -axis, 

respectively, can be expressed as 

( )

( )

1

, ,

0

1

, ,

0

, ,

, ,

x t xz t S

y t yz t S

w x y t
N dz k
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w x y t
N dz k

y






= =




= =







                                                  (2) 

The reaction of nonlinear elastic spring, inertia force caused by the foundation mass, and 

foundation viscous damping resistance, respectively, is given by 

( ) ( ) ( )

( )
( )

3

0

2

0 2

, , , , , ,

, ,
, ,

l nl

f

r x y t k w x y t k w x y t

w x y t
m x y t m

t

= +


=



                     (3) 

We can see that it would be a shortage not to consider the mass of the foundation participating 

in the oscillation for the dynamic problem (this will be satisfactory in the static problem). 

( )
( )

0

, ,
, , f

w x y t
c x y t c

t


=


                                         (4) 

The lumped mass 𝑚𝑓representing the foundation mass can be written as 

Xks

kl , knl
Z

c
f

m
f

q(x,y)

Rigid layer
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Fig. 2 Dynamic equilibrium on the shear layer: (a) stresses; (b) forces acting 

 

 

Fig. 3 Model of Mindlin plate on nonlinear dynamic foundation under moving load 

 

 

f fm =                                                (5) 

where 𝛽 = 𝛼𝑓𝐻𝑓 is a dimensionless parameter that depends on the experimental influence factor  

 

𝛼𝑓 and the depth of the foundation 𝐻𝑓. This formulation clearly describes how to calculate the 

mass of the foundation participating in oscillation. In practice, the influence of wheel axle loads 

will decrease with the depth of the foundation when considering the foundation as a homogeneous 

elastic half-space. In other words, the mass of the foundation participating in the oscillation 

decreases with the depth of the foundation. 

 

2.2 Finite element formulation 
 

Consider a Mindlin rectangular plate with width 𝐵 , length 𝐿  and uniform thickness ℎ  on a 

nonlinear foundation considering the foundation mass under moving load, as shown in Fig. 3. The 

quadrilateral four-node element as shown in Fig. 4, Q4, is used to develop the numerical method 

according to the finite element method. Three global degrees of freedom of each node are vertical 

displacement 𝑤, rotation about 𝑦 -axis and 𝑥 -axis, 𝜃𝑥 and 𝜃𝑦, respectively. 

Consider the plane in the middle of the plate, the vector of vertical displacement and rotation 

angles of at any node of the plate can be expressed as 

 
T

x yw  =d                                           (6) 

In order to remove the restriction of the rectangular shape of physical space, the natural  

h
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Fig. 4 Quadrilateral four-node elements, Q4: (a) in global coordinates; (b) in natural coordinates 

 

 

coordinates (𝑟, 𝑠)  are applied for mapping between two coordinate systems for each element. 

Because the element is isoparametric, the same shape functions are used to interpolate both 

coordinates and displacements within the considering element. Hence, the shape functions of Q4 

element, 𝑁𝑖(𝑖 = 1, . . . ,4)  are defined by Eq. (8), the displacement vector 𝒅  and the vertical 

displacement field 𝑤 in each plate element can be derived from the vector of nodal displacement 

𝒒𝑒 of the finite elements by using same each specific 𝑁𝑖(𝑖 = 1, . . . ,4) shape functions as follows, 

respectively 

( )( )
1

1 1
4

i i i

e

e

w

N rr ss

w

= + +

=

=

d Nq

N q

                               (7) 

in which, 𝜨, 𝑵𝑤 are the matrices including the shape function as   

 
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 
 

=
 
  

=

 =  
e

N

N

q

                   (8) 

Under flexural deformation, the elastic strain energy of the element is given by 

1 1 1 1

2 2 2 2e e e

T e T e T e T e

p b b s b b b s s

VV V V

U dV dV dV dV= + = +   ε σ γ σ ε D ε γ D γ                  (9) 

The element flexural and shear strains can be express as  

;   e e

b b sε = zB q γ = B q                   (10) 

where, 𝑩𝑏 , 𝑩𝑠  are the strain-displacement gradient matrices to identify curvatures for bending 

moments and shear forces of the element, respectively, and are obtained by derivation of the shape 

functions as 

 
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in which 

0 0

0

0 0 ;

0
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N x
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Substituting Eq. (10) into Eq. (9), one obtains 

31 1

2 12 2e e

eT T e e eT T e e

p b b b s s s s

A A

h
U dA h dA= + q B D B q q B D B q       (13) 

The element stiffness matrix is obtained by inference from Eq. (13) as 

3

12
e e

e T e T e

p b b b s s s s

A A

h
dA h dA= + K B D B B D B      (14) 

For states of pure bending and pure twist, the contribution of 
ℎ3

12
∫ 𝐵𝑏

𝑇𝐷𝑏𝐵𝑏𝑑𝐴𝑒
𝐴𝑒

 is correctly 

evaluated by all quadrature rules. In order to avoid the trouble of shear locking (in other words, the 

plate element becomes thin) for Mindlin element caused by positive definite penalty matrix 

𝜅𝑠ℎ ∫ 𝐵𝑠
𝑇𝐷𝑠𝐵𝑠𝑑𝐴𝑒

𝐴𝑒
, a chosen positive number 𝜅𝑠 = 5/6 is used for the shear correction factor, 

𝐷𝑏 , 𝐷𝑠  are the flexural and shear rigidity matrices, respectively, given by 

( )2

1 0
1 0

1 0 ;
0 11 2 1

1
0 0

2

b s

v
E E

v
v

v


 
 
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− +   −
 
 

D D                (15) 

In terms of the linear and nonlinear elastic stiffness, the energy caused by elastic strain of the 

nonlinear foundation is given by 

( )
3

2 41 1 1 1

2 4 2 4e e e

e eT T T e e eT T e e

nl l nl w l w w nl w

A A A

U k w k w dA k dA k dA
 

= + = + 
 
  q N N q q N N q  (16) 

The tangent stiffness matrix of nonlinear foundation for the plate element used in the 

Newmark-𝛽 method and the modified Newton-Raphson method is determined as follows 

( )
2

2

3
e e

T e T e enl
w l w w nl w we e

A A

U
k dA k dA


= +

   N N N N q N
q q

                         (17) 

The elementary linear stiffness matrix and tangent stiffness of foundation can be derived from 

Eq. (17), respectively, written as 
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( )
2
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=

=





K N N

K N N q N

                   ( 18) 

In connection with the shear layer stiffness, the elastic strain energy of the nonlinear foundation 

is given by 

22

, , , ,

1 1 1

2 2 2e e e

e eT T e e eT T e e

s s s x s s x s y s s y
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By inference from Eq. (19), the stiffness of the shear layer in matrix form is given by 
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                         (21) 

Let 𝜌 be the plate’s density, the plate kinetic energy can be manifested as 

( ) ( )( ) ( ) ( )

( )
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Where 𝑀𝑝
𝑒 is the elementary consistent plate’s mass matrix and may be written as 

3
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0 0
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                                     (23) 

The kinetic energy of the foundation is given by 

( ) ( ) ( )21 1 1

2 2 2e e e

T T
e e T e e e e e e

f f w f w f

A A A

T m w dA m dA dA= = =  q N N q q M q                 (24) 

in which, 𝑀𝑓
𝑒 is the foundation’ mass matrix and is given by 
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e

e T

f w f w

A

m dA= M N N                           (25) 

The dissipation energy of the viscous damping of foundation property can be written as 

( ) ( ) ( )21 1 1

2 2 2e e e

T T
e e T e e e e e e

f f w f w f

A A A

R c w dA c dA dA= = =  q N N q q C q               (26) 

where 𝐶𝑓
𝑒 the damping matrix of the foundation and is given by  

e

e T e

f w f w

A

c dA= C N N                        (27) 

When a concentrated load 𝑃 travels along the center axis of the plate in 𝑥-direction with a 

constant speed 𝑉 at each time 𝑡, the external load vector can be written as 

( ) 0 0
2

T

B
P x Vt y 
  

= − −  
  

p                                            (28) 

where 𝛿(𝑥 − 𝑉𝑡) and 𝛿 (𝑦 −
𝐵

2
) are Dirac delta functions that are used to solve a concentrated 

moving load problem. The potential energy produced in a plate by the moving load may be 

expressed as 

( )
T

T e

pV = =pd p Nq                         (29) 

Utilizing the finite element methods, the governing equations can be obtained from the 

Lagrangian equation as follows 

0
f

e e e

Rd L L

dt q q q

     
+ + =    

       
                (30) 

In which, 𝐿 = 𝑇𝑝 + 𝑇𝑓 − (𝑈𝑝 + 𝑈𝑛𝑙 + 𝑈𝑠 − 𝑉𝑝)  is the total kinetic and potential energies of the 

global system. Substituting Eq. (13), (16), (18), (21), (24), (26) and (29) into (30) one obtains 

( ) ( )e e e e e e e e e e T

p f f p l nl s+ + + + + + =M M q C q K K K K q N p                (31) 

Assembling the formulation of all finite elements and identifying the boundary conditions in a 

discrete system, the motion equation is obtained in the global system 

( )t+ + =Mq Cq Kq P               (32) 

Respectively, the global vector of acceleration, velocity, displacement are represented by 

𝑞̈, 𝑞̇, 𝑞; the global matrix of mass, viscous damping and stiffness are represented by 𝑀, 𝐶, 𝐾 and the 

global external load vector is 𝑃(𝑡). The Eq. (32) can be solved by employing each time step by 

integration method based on the Newmark-𝛽 algorithm, and integrated by the iteration method of 

the modified Newton-Raphson. 
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Fig. 5 Model of Mindlin plate on nonlinear dynamic foundation under moving load 

 

 

3. Numerical results 
 

The purpose of this section is to carry out various numerical examples to study the dynamic 

properties and the plate responses resting on a nonlinear foundation under moving load 

considering the mass of the foundation. The first example considers the effects of the nonlinear 

elastic stiffness of the foundation by different parameters, including 𝐾3 = 105, 106, … ,1011, 1012. 

Later on, the effects of various parameters of foundation mass, including 𝛽 =
0,0.25,0.5,0.75 and 1 are examined. Then, a parametric study will be performed in the subsequent 

sections in order to investigate the effect of the load velocity, linear stiffness, shear stiffness, and 

damping of the foundation. The dimensionless foundation coefficients 𝐾1, 𝐾2, and 𝐾3 which are 

defined as follows is used for investigation (Ferreira et al. 2010, Jahromi et al. 2013, Liu et al. 

2017) as 

( )

4 2 6 3

1 2 3 2
; ; ;

12 1

l s nlk B k B k B Eh
K K K D

D D D 
= = = =

−
                                (33) 

In this section, a model shown in Fig. 5 is used for investigation. The dimensions of the plate 

are given as 20 m in length (𝐿), 10 m in width (𝐵), and 0.2 m in thickness (ℎ). Young’s modulus, 

Poisson’s ratio, the plate mass density is 𝐸 = 3.1 × 1010N/m2, 𝜈 = 0.2, 𝜌 = 2500kg/m3, 

respectively. The dynamic foundation properties are assumed by the foundation coefficient 𝐾1 =
50, 𝐾2 = 10, and the damping coefficient 𝑐𝑓 = 100 Ns/m3, the ratio of foundation mass density to 

plate’s mass density is given as 𝜇 = 0.75. A load 𝑃 = 100 kN moves along the longitudinal 

centerline of the plates with constant velocity 𝑉(m/s). The boundary conditions are simple 

supports at two short edges (Hughes 1987). In this investigation, the plate is discretized into 

20 × 10 rectangular meshes, in which the aspect ratio of the longest dimension to the shortest 

dimension of a rectangular element is 1 to increase the accuracy (Logan 2017) and the refinement 

of the mesh is acceptable to study (Bazeley et al. 1965, Irons et al. 1972, MacNeal et al. 1985,  
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The plate on the nonlinear dynamic foundation under moving load 

  
(a)  = 0 (b)  = 0.5 

Fig. 6 The displacement of the central point of plate for various values of nonlinear stiffness 

 

  
(a)  = 0 (b)  = 0.5 

Fig. 7 Vertical displacement under moving load for various values of nonlinear stiffness 

 

 

Taylor et al. 1986, Belytschko et al. 2000, Cook et al. 2002), and 50 time-steps are used in the 

Newmark-𝛽 method. 

 

3.1 The effects of the nonlinear elastic stiffness  
 

The nonlinear stiffness of the foundation are assumed by 𝐾3 = 105, 106, … ,1011, 1012 in two 

cases of foundation mass: 𝛽 = 0 (no considering the foundation mass) and 𝛽 = 0.5 (typical case 

between values of 0 and 1) are chosen correspondingly to the model without and with the effects 

of the foundation mass. The load’s speed 𝑉 = 60 m/s is used in this section. It can be observed 

from Figs. 6, 7 and 8 that when the nonlinear elastic stiffness of foundation is small (𝐾3 ≤ 107), 

the max displacement of plate is not significantly changed because the nonlinear stiffness 

contributes insignificantly to the global stiffness of the foundation. The max displacement of plate 

is reduced considerably when the nonlinear stiffness increases and 𝐾3 ≥ 108. Fig. 6 and Fig. 7 

show that the displacement curves coincide for various nonlinear stiffness at the early time of  
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(a)  = 0 (b)  = 0.5 

Fig. 8 Deflected shapes of longitudinal centerline when a load is at the center for various values of nonlinear 

stiffness 

 

  

(a) K3=109 (b) K3=1010 

Fig. 9 The vertical displacement of central point of plate for various foundation mass 

 

 

load’s moving. It can be explained that the displacement of plate is small when the load position is 

near the first support, thus the effect of the nonlinear stiffness is insignificant. In contrast, when 

the load position is far from the first support, the vertical displacement of plate increases, while the 

nonlinear stiffness increases and has a considerable contribution to the total stiffness of the system, 

thus the displacement curve changes. When the nonlinear stiffness is larger, the increment of 

displacement stops sooner. The dynamic response of plate changes remarkably when the 

foundation mass is considered, the displacement of plate at the early time of moving load increases 

less than the model which excludes the foundation mass. In addition, the peaks of displacement 

curves under moving load in the model with foundation mass occur later than the mentioned ones 

of the model without foundation mass. 

Fig. 8 shows various shapes of deflection along the centerline of the plate when the moving 

load arrives at the central point. It is clear that in case the foundation mass is excluded, the max 

value of deflections occurs at the center of the plate. In contrast, with the inclusion of the  

𝐾3 = 109 𝐾3 = 1010 
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The plate on the nonlinear dynamic foundation under moving load 

  
(a) K3=109 (b) K3=1010 

Fig. 10 Vertical displacement under moving load for various foundation mass 

 

  

(a) K3=109 (b) K3=1010 

Fig. 11 Deflected shapes of longitudinal centerline when a load is at center for various foundation mass 

 

 

foundation mass, the max value occurs earlier at the time 
𝑡

𝑇
< 0.5 and moves slightly to the center 

when the nonlinear stiffness of foundation increases. 

 

3.2 The effects of the mass of the foundation  
 

Next, we investigate the effects of five different coefficients of foundation mass 𝛽 =
0, 0.25, 0.5, 0.75, 1 in two cases of the foundation’s nonlinear stiffness: 𝐾3 = 109 and 𝐾3 = 1010. 

These two values are chosen for studying since they achieve peak displacements of the nonlinear 

foundation in the above investigation. The load velocity is kept constant at 𝑉 = 60 m/s in this 

investigation. It can be seen from Fig. 9 and Fig. 10 that the max vertical displacement of plate 

increases considerably when the foundation mass is considered in the model. In the first period, 

the displacement of plate decreases when the foundation mass increases, and the displacement line 

graph is shifted to the right. It can be explained that the period of vibration of the plate increases  

𝐾3 = 109 𝐾3 = 1010 

𝐾3 = 109 𝐾3 = 1010 
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(a) =0 (b) =0.25 

  

(c) =0.75 (d) =1 

Fig. 12 Effects of the varying load velocities and nonlinear stiffness on max displacement 

 

 

when foundation mass increases. The max displacement does not increase in proportion to the 

linear increment of the foundation mass, that the effect of the foundation mass on the max 

displacement also depends on the nonlinear stiffness of foundation. 

As shown in Fig. 11, the peak of deflected shape is off to the left side, when the nonlinear 

stiffness of foundation increases, the peak is closer to the center. When including the foundation 

mass, the curves on the left are under the line of 𝛽 = 0 (the foundation mass is excluded in the 

model), and the curves on the right are above the line of 𝛽 = 0. When the nonlinear stiffness 

increases, the curves on the left side move closer to the line of 𝛽 = 0, while on the right they 

remain unchanged. 

 

3.3 The effects of the load velocity  
 

First, the various parameters of the load velocity and the nonlinear stiffness are investigated in 

four different cases of foundation mass: 𝛽 = 0, 0.25, 0.75 and 1. 

Fig. 12 compares five different nonlinear stiffness of foundation in connection with the max 

displacement subjects to the various load velocity in the different coefficients of foundation mass. 

It is apparent that the max displacement of each nonlinear stiffness corresponds to different 

velocities of moving load. When the nonlinear stiffness is smaller, the lower load velocity will  

β = 0 
β = 0.25 

β = 0.75 β = 1 
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The plate on the nonlinear dynamic foundation under moving load 

  
(a) K3=0 (b) K3=108 

  
(c) K3=109 (d) K3=1010 

Fig. 13 Effects of the varying load velocities and foundation mass on max displacement 

 

  
(a) K1=50 (b) K1=100 

Fig. 14 Effects of linear stiffness on max displacement for various nonlinear stiffness and foundation mass 

where 𝐾2 = 10, 𝑐𝑓 = 100 Ns/m3 

 

 

cause a disadvantage to the structure. It is because when the nonlinear stiffness of the foundation 

decreases, the frequency of the system will decrease accordingly and resonate with the small value 

of load velocity. In contrast, when the coefficient of foundation mass increases, the peak of the  

𝐾3 = 108 

𝐾3 = 109 

𝐾3 = 0 

𝐾3 = 1010 

𝐾1 = 100 𝐾1 = 50 
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(a) K2=1 (b) K2=5 

Fig. 15 Effects shear stiffness on max displacement for various nonlinear stiffness and foundation mass 

where 𝐾1 = 50, 𝑐𝑓 = 100 Ns/m3 

 

  
(a) cf=0 (b) cf=104 

Fig. 16 Effects viscous damping of foundation on max displacement for various nonlinear stiffness and 

foundation mass where 𝐾1 = 50, 𝐾2 = 10 

 

 

curve occurs at the smaller load velocity due to the frequency of vibration decreases. The bigger 

foundation mass, the sharper width of the peak area. The max value is almost equal in all cases, 

but the corresponding velocity of a moving load is different. 

The load velocity and coefficient of foundation mass in four particular cases of the nonlinear 

stiffness of foundation: 𝐾3 = 0, 108, 109 and 1010  are then investigated in this section. Fig. 13  

shows a comparison of five particular coefficients of foundation mass in terms of the max 

displacement over the various load velocity in the different nonlinear stiffness of foundation. 

Clearly, the effects of foundation mass are remarkable on the dynamic response of the plate 

against the load velocity. When the coefficient of foundation mass increases, the peak area of the 

curve locates at the lower range of load velocity and the width of the peak is noticeably sharp, it is 

also explained above. In contrast, when the nonlinear stiffness of the foundation increases, the 

peak of the curve occurs at the higher range of load velocity and the width of the peak area is 

sharper due to the increasing frequency of vibration. With a similar nonlinear foundation’s 

stiffness, the max value is almost equal, but the corresponding velocity is different. 

𝑐𝑓 = 0 𝑐𝑓 = 104 

𝐾2 = 1 𝐾2 = 5 
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The plate on the nonlinear dynamic foundation under moving load 

3.4 The effects of the linear stiffness, shear stiffness, and damping of foundation  
 

We now examine the effects of the mass and nonlinear stiffness in two different cases of the 

linear stiffness, shear stiffness, and viscous damping, the variations of max vertical displacement 

of the plate are shown in Figs. 14, 15, and 16, respectively.  

In this examination, the load velocity is kept constant at 𝑉 = 60 m/s. It can be seen that the 

max displacement of plate may increase or decrease the dynamic response of plate when the 

foundation mass increases, that is depended on the value of nonlinear stiffness, linear stiffness, 

shear stiffness, and viscous damping. When the nonlinear stiffness, linear stiffness, shear stiffness 

and viscous damping increase significantly, the foundation mass will amplify the dynamic 

response of the plates, causing adverse effects. 

 

 

4. Conclusions  
 

According to the numerical investigation of the Mindlin plate on nonlinear dynamic foundation 

under moving load for various parameters such as the nonlinear stiffness, coefficient of foundation 

mass, load velocity, and other parameters, it is possible to conclude as follows 

- The foundation mass considerably affects the dynamic response of the plate subjected to 

moving load, the foundation mass may increase or decrease the max displacement of the plate 

that depends upon the parameters of the nonlinear stiffness, linear stiffness, shear stiffness, 

viscous damping of foundation, and the load velocity. 

- When the nonlinear stiffness of foundation is small, it shows a minor effect on the dynamic 

response of the plate, however. When it is sufficient, it will reduce the plate deflection. 

- The load velocity affects the dynamic response of the plate. In case the foundation mass is 

excluded from the model, the influence of the velocity to the max displacement of the plate 

occurs at higher range than the model considering the foundation mass because the natural 

frequency of the structure is decreased by the foundation mass. In addition, the displacement of 

the plate is the same in similar foundation with different parameters of the foundation mass, but 

the corresponding velocity is different. 
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