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Abstract.  This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to 
lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three 
different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric 
matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing 
nonlinear dynamic equation is derived with using of Hamilton’s principle. The Galerkin’s decomposition technique is 
utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation 
and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration 
response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the 
length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are 
investigated. 
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1. Introduction 
 

Carbon nanotubes (CNTs) are a type of reinforcements which have high strength, Young’s 
Modulus, strength-to-weight, high performance and low density. CNTs have used many 

engineering applications, such as structures, reactor vessels, space vehicles biomedical devices, 
automotive, electronic devices, civil, machine, marine engineering applications. CNTs are 
discovered by Sumio Iijima (1991) and using CNTs in engineering applicants has increasing day 
by day.  

Because of its higher strength and flexible properties, Carbon nanotubes experience large 
displacements and rotations which means nonlinear behavior. Thus, the nonlinear analysis of 
Carbon nanotubes and its structural behavior are very important for understanding for design and 

using in the engineering applications. In the open literature, many investigations have been 
presented about dynamic, stability and static behavior of CNTs in last years. Some studies of them 
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dfor CNTs reinforced beams are summarized as: Shen (2009) investigated nonlinear static analysis 

of functionally graded nanocomposite plates reinforced by SWCNTs under thermal effect. Ke et 

al. (2010) investigated nonlinear vibration functionally graded nanobeams reinforced by CNTs by 

using Timoshenko beam theory and von Kármán geometric nonlinearity. Yas and Samadi (2012) 

investigated vibration and stability of CNT nanocomposite beams resting on elastic foundation by 

using differential quadrature method. Wattanasakulpong and Ungbhakorn (2013) analyzed 

buckling, static and dynamics of CNT reinforced beams resting on elastic foundation by Navier 

solution. Rafiee et al. (2014) studied non-linear dynamic stability of piezoelectric CNT reinforced 

composite plates. Fernandes et al. (2016) presented nonlinear dynamic responses of microbeams 

by using finite strain and velocity gradient theories. Shi et al. (2017) presented free vibration of 

functionally graded CNTs beams with different boundary conditions. Tornabene et al. (2017) 

investigated vibration analysis of CNT/polymer/fiber laminated nanocomposite structures by using 

generalized differential quadrature method. Tagrara et al. (2015) solved static, free vibration and 

buckling analysis of CNTs composite beams embedded in elastic foundation by using high order 

beam theory. Thang et al. (2017) studied nonlinear buckling of functionally graded CNTs plates by 

analytically. Heidari and Arvin (2019) analyzed nonlinear free vibrations of functionally graded 

rotating beams reinforced by CNT by using Timoshenko beam theory and Von-Karman 

nonlinearity. Fernandes et al. (2016) presented nonlinear dynamic responses of microbeams by 

using finite strain and velocity gradient theories. Chu et al. (2020) presented a review study about 

nonlinear absorption properties of carbon nanotubes. Guo and Zhang (2016) investigated nonlinear 

vibration of a composite plate reinforced by CNTs subjected to combined forceds by using the 

Galerkin method.  Huang et al. (2021a, 2021b), Zerrouki et al. (2021), Heidari et al. (2021), 

Bendenia et al. (2020), Akbaş (2013, 2014, 2016, 2017, 2018a, 2018b, 2018c, 2018d, 2019a, 

2019b, 2019c, 2019d, 2019e, 2019f, 2019g, 2020a, 2020b, 2020c, 2020d, 2021a, 2021b, 2021c, 

2022), Arshid et al. (2021), Rouabhia et al. (2020), Asghar et al. (2020), Kumar et al. (2021), 

Kocatürk and Akbaş (2010, 2011, 2013), Al-Furjan et al. (2020a, 2020b, 2020c, 2020d, 2021a, 

2021b), Bourada et al. (2020), Kırlangıç and Akbaş (2020, 2021), Bousahla et al. (2020), Akbaş 

and Kocatürk (2012, 2013), Alimirzaei et al. (2019, Alimoradzadeh et al.( 2019, 2020, 2021) and 

Alimoradzadeh and Akbaş (2021, 2022a, 2022b) investigated stability and vibration analysis of 

macro and nano scaled composite structure with different mechanical cases. Wu et al. (2018) 

investigated nonlinear free vibration of multi walled CNTs resting on foundation. Babu Arumugam 

et al. (2019) obtained finite element solution of dynamic responses of Carbon nanotubes 

reinforced composite (CNTRC) beams. Ponnusami et al. (2020) examined nonlinear static nad 

stability of CNTs by using variational asymptotic method. Ton-That (2020) examined nonlinear 

free vibrations functionally graded CNTs plates by using Four-Node Quadrilateral Element. Van 

Do (2020) investigated free vibration and dynamic transient responses of CNT reinforced plates by 

using Bézier extraction based isogeometric analysis method coupled and higher-order shear 

deformation theory. Ghayesh (2019) investigated nonlinear dynamic responses of functionally 

graded composite beams with viscoelastic model. Alimoradzadeh and Akbaş (2022c) analyzed sub 

and super harmonic analysis of CNTRC beams by using of multiple time scale method.   

 Nonlinear oscillation analysis of composite beams by reinforced carbon nanotubes has not 

been investigated broadly. Primary objective of this investigation is to analyze nonlinear 

oscillations of CNTRC under lateral harmonic load with damping effect based on the modified 

couple stress theory by using Galerkin’s decomposition technique with using of multiple time 

scale method. Effects of patterns of reinforcement, volume fraction, excitation force and the length 

scale parameter on the frequency-response curves and phase trajectory of the carbon nanotube  
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Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube… 

 

Fig. 1 A simply supported beam made of CNTRC under to lateral distributed harmonic excitation 

load with three different patterns of CNTs 

 

 

reinforced composite beam are investigated. 

 

 

2. Problem formulation 
 

Fig. 1 shows a simply supported beam reinforced CNTs with length L, thickness h and width b, 

in x, y and z direction is considered as shown in Fig. 1. It is assumed that the simply supported 

beam is subjected to supersonic air flow. In this study, three different patterns of CNTs 

reinforcement over the beam are considered as uniform distribution (UD), and functionally 

distribution O and X as shown in Fig. 1. 

It is assumed that, the CNTs are embedded in an isotropic polymer matrix without abrupt 

interface through whole region of the beam. In order to represents the effective material properties 

of carbon nanotube-reinforced composite (CNTRC), the rule of mixture model can be used. Based 

on the rule of mixture model, modulus of Young’s modulus E, shear modulus G, Poisson’s ratio  𝜗  

and density 𝜌 of the CNTRC beams can be defined as below (Wattanasakulpong and Ungbhakorn 

2013, Shen 2009) 

              𝐸11 = 𝜂1𝑉𝐶𝑁𝑇𝐸11
𝐶𝑁𝑇 + 𝑉𝑝𝐸𝑝                                                         (1) 

                 
𝜂2

𝐸22
=

𝑉𝐶𝑁𝑇

𝐸22
𝐶𝑁𝑇 +

𝑉𝑝

𝐸𝑝                                                                (2) 

 
𝜂3

𝐺12
=

𝑉𝐶𝑁𝑇

𝐺12
𝐶𝑁𝑇 +

𝑉𝑝

𝐺𝑝                                               (3) 

                 𝑉𝐶𝑁𝑇 + 𝑉𝑝 = 1                                                               (4) 

                 𝑣 = 𝑉𝐶𝑁𝑇𝑣𝐶𝑁𝑇 + 𝑉𝑝𝑣𝑝                                                       (5) 

                 𝜌 = 𝑉𝐶𝑁𝑇𝜌𝐶𝑁𝑇 + 𝑉𝑝𝜌𝑝                                                       (6) 

where superscripts CNT and p respectively symbolize the related material properties of carbon 

nanotube and polymer matrix. 𝜂1, 𝜂2, 𝜂3 can be indicated the efficiency parameters of CNT. Also, 

VCNT and Vp define the volume fractions for CNT and polymer matrix, respectively.Volume 

fractions of CNTs as a function of thickness direction for different patterns of CNTs  
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Table 1 For different distributions of CNTs Volume fractions of CNTs dependent thickness direction 

(Wattanasakulpong and Ungbhakorn 2013) 

Patterns of CNTs 𝑉𝐶𝑁𝑇 

UD 𝑉𝐶𝑁𝑇
∗  

FG-O 2𝑉𝐶𝑁𝑇
∗ (1 − 2

|𝑧|

ℎ
) 

FG-X 4𝑉𝐶𝑁𝑇
∗

|𝑧|

ℎ
 

 

 

(Wattanasakulpong and Ungbhakorn 2013) are presented in Table 1. In this table,  𝑉𝐶𝑁𝑇
∗  is the 

given volume fraction of CNTs. In this study, the efficiency parameters of CNTs for three different 

values of 𝑉𝐶𝑁𝑇
∗  are considered as (Yas and Samadi 2012) 

𝜂1 = 1.2833, 𝜂2 = 𝜂3 = 1.055  for  𝑉𝐶𝑁𝑇
∗ = 0.12                                  (7a) 

 𝜂1 = 1.3414, 𝜂2 = 𝜂3 = 1.7101 for 𝑉𝐶𝑁𝑇
∗ = 0.17                                  (7b) 

  𝜂1 = 1.3238, 𝜂2 = 𝜂3 = 1.738 for  𝑉𝐶𝑁𝑇
∗ = 0.28                                   (7c) 

The normal stress and nonlinear strain-displacement component relationship can be defined by 

using of Von-Karman strain nonlinearity as follows 

                   σxx =
𝐸11(𝑧)

1−𝜗2(𝑧)
εxx                                                             (8a) 

         εxx =
∂u

∂x
− z

∂2w

∂x2 +
1

2
(

∂w

∂x
)

2
                                                   (8b) 

where u and w represent axial and lateral displacement of the midplane along x and z direction, 

respectively.  

Based on the modified couple stress theory, the strain energy of the beam is given as follows 

(Yang et al. 2002) 

   𝑈 =
1

2
∫ (σijεij + mij𝜒ij)d𝑉  i , j, k ∈   [𝑥, 𝑦, 𝑧]

v
                                        (9) 

where, εij  and 𝜒ij denote the components of the strain tensor and the symmetric part of the 

curvature tensor, respectively. Also in Eq. (1) σij  and  mij  denotes the stress tensor and the 

deviatoric part of couple stress tensor respectively and can be define as below (Yang et al. 2002) 

                                 σij = λεkkδij + 2μεij                                                       (10a) 

                    mij = 2μl2xij                                                        (10b) 

                   χij =
1

2
(

𝜕𝜃𝑖

𝜕𝑥𝑗
+

𝜕𝜃𝑗

𝜕𝑥𝑖
)                                                        (10c) 

where, l is the material length scale parameter δij  is the Kronecker delta, and 𝜃  is the rotation 

vector, 𝜆 and 𝜇 are lame’s constants that can be expressed as below  

                  𝜆(𝑧) =
𝐸(𝑧)𝜗(𝑧)

(1+𝜗(𝑧))(1−2𝜗(𝑧))
                                                   (11b) 
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Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube… 

                   μ(𝑧) = 𝐺12(𝑧)                                                  (11c) 

                𝜃𝑥 = 𝜃𝑧 = 0 , 𝜃𝑦 = −
𝜕𝑤

𝜕𝑥
                                                     (11d) 

Using of Eqs. (10)-(11) leads to the non-zero components of the symmetric curvature tensor 

and the couple stress tensor as follows (Yang et al. 2002) 

               𝜒𝑥𝑦 = 𝜒𝑦𝑥 = −
1

2

∂2w

∂x2                                                          (12a) 

               mxy = myx = −𝐺12l2 ∂2w

∂x2                                                       (12b) 

Substituting Eqs. (8,10,11,12), into Eq. (9) leads to 

𝑈𝑠 =
1

2
∫ [A11 (

∂u

∂x
+

1

2
(

∂w

∂x
)

2
)

2

− 2B11
∂2w

∂x2 (
∂u

∂x
+

1

2
(

∂w

∂x
)

2
) + (D11 + Γ) (

∂2w

∂x2 )
2

]
𝐿

0
𝑑𝑥        (13) 

where  

        A11, B11, D11 = ∫
E11(z)

1−ϑ2(z)
(1, z, z2)dA

A
                                          (14a) 

                  ∫ 𝐺12(𝑧)𝑙2𝑑𝐴 = Γ
𝐴

                                                        (14b) 

The CNT reinforced composite beam is subjected to external forces includes lateral harmonic 

force 𝑭𝒘 and damping force 𝑭𝑫 due to medium. The virtual work done by external forces and the 

kinetic energy of the beam can be defined as follows (Ramezani 2012) 

             W𝐸𝑋𝑇 = ∫ [(𝐹𝐷 + 𝐹𝑤)𝑤(𝑥, 𝑡)]𝑑𝑥
𝐿

0
                                               (15) 

where  

                       𝐹𝐷 = −𝐶𝑑
𝜕𝑤

𝜕𝑡
                                                                (16a) 

                     𝐹𝑤 = 𝐹(𝑥) cos(Ω𝑡)                                                          (16b) 

In above equations 𝐹(𝑥) and Ω represents transverse external load and the frequency of the 

excitation force respectively. Also, 𝑪𝒅 is the coefficient of the viscous damping due to viscous 

medium. 

The kinetic energy (K) of the beam can be expressed as below                                                                    

        𝐾 =
1

2
∫ {𝐼0 [(

∂u

∂t
)

2
+ (

∂w

∂t
)

2
] + 𝐼2

𝐿

0
(

∂2w

∂x ∂t
) −2𝐼1 (

∂u

∂t

∂2w

∂x ∂t
)} 𝑑𝑥2                      (17) 

where 

        𝐼0, 𝐼1, 𝐼2 = ∫ 𝜌(𝑧)(1, 𝑧, 𝑧2)𝑑𝐴
𝐴

                                               (18) 

where 𝜌  indicates the mass density. The nonlinear partial differential equation governing the 

motion can be derived by using of Hamilton’s principle which is expressed as below 

             𝛿 ∫ [𝐾 − 𝑈𝑠 + W𝐸𝑋𝑇]𝑑𝑡 = 0
𝑡2

𝑡1
                                               (19) 

where 𝛿 denotes the variational symbol. Substituting Eqs. (13), (15), (16) and (17) into Eq. (19) 

leads to nonlinear governing equation of the CNT composite beams of the CNT composite beams 

as follows 
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∂

∂x
[A11 (

∂u

∂x
+

1

2
(

∂w

∂x
)

2
) − B11

∂2w

∂x2 ] = I0
∂2u

∂t2 − I1
∂3w

∂x ∂t2                            (20) 

I0
∂2w

∂t2 +
∂

∂x
[I1

∂2u

∂t2 − I2
∂3w

∂x ∂t2] + 𝐶𝑑
𝜕𝑤

𝜕𝑡
+ +

∂2

∂x2 [(D11 + Γ)
∂2w

∂x2 −B11 (
∂u

∂x
+

1

2
(

∂w

∂x
)

2
)] −  

∂

∂x
[A11 (

∂u

∂x
+

1

2
(

∂w

∂x
)

2
) − B11

∂2w

∂x2 ]
∂w

∂x
− [A11 (

∂u

∂x
+

1

2
(

∂w

∂x
)

2
) −B11

∂2w

∂x2 ]
∂2w

∂x2 = 𝐹0 cos(Ω𝑡)  (21) 

In the case of Euler-Bernoulli beam theory, the axial inertia and the rotational inertia of the 

beam cross section can be neglected. By ignoring the axial inertia, the rotational inertia and the 

external force due free oscillation analysis the Eqs. (20) and (21) takes the following form 

 
∂

∂x
[A11 (

∂u

∂x
+

1

2
(

∂w

∂x
)

2
) − B11

∂2w

∂x2 ] = 0                                         (22) 

Eq. (22) can be reformulated as below 

 
∂2𝑢

∂x2 =
∂

∂x
[−

1

2
(

∂w

∂x
)

2
+

B11

A11

∂2w

∂x2
]                                              (23) 

Integrating Eq. (23) along x-axis yields 

   
∂u

∂x
= −

1

2
(

∂w

∂x
)

2
+

B11

A11

∂2w

∂x2 −
𝑁0(𝑡)

A11
                                           (24) 

The integration of Eq. (24) leads to 

𝑢 = ∫ −
1

2
(

∂w

∂x
)

2
𝑑𝑥 +

B11

A11

∂w

∂x

𝑥

0
−

𝑁0𝑥

A11
+ 𝑁1(𝑡)                               (25) 

It is assumed that the beam has immovable support. Hence, the following boundary condition 

can be considered 

 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0                                                  (26) 

Substituting Eq. (26) into Eq. (25) yields 

 𝑁0 = −
A11

2𝐿
∫ (

∂w

∂x
)

2
𝑑𝑥 +

B11

L
[

∂w(L,t)

∂x
−

∂w(0,t)

∂x
]

𝐿

0
                                 (27) 

 𝑁1(𝑡) = −
B11

A11

∂w(0,t)

∂x
                                                 (28) 

Finally, by substituting Eqs. (22) and (24) into Eq. (21), one can obtain the following nonlinear 

partial differential equation governing the forced vibration of the CNT composite beam 

I0
∂2w

∂t2 + 𝐶𝑑
𝜕𝑤

𝜕𝑡
+ [(D11 −

B11
2

A11
) + Γ]

∂4w

∂x4 + 𝑁0
∂2w

∂x2 = 𝐹(𝑥) cos(Ω𝑡)                    (29) 

where 𝑁0(𝑡)  is expressed in Eq. (27). In order to derive the governing ordinary differential 

equation of motion from the partial one mentioned in Eq. (29), the Galerkin’s method, is utilized. 

Based on the Galerkin’s method, the solution of the governing equation can be defined as below 

(x, t) = ∑ ψn(x) . qn(t)∞
n=1                                             (30) 

where ψn(x)and qn(t) are the n-th mode shape functions (admissible function) and n-th is the 

modal coefficient respectively. Since the dominant mode in the beam is the first mode, the solution 

of eq. (29) can be express as follows 

w(x, t) = ψ(x). q(t)                                                         (31) 
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For the simply supported beam boundary conditions without axial movement at both ends, the 

mode shape function can be express as follows (Şimşek 2014) 

ψ(x) = sin (
πx

L
)                                                              (32) 

where satisfies the following kinematic boundary conditions for simply supported beam (Ansari et 

al. (2010) 

w(0, t) =
∂2w(0,t)

∂x2 = 0                                                          (33) 

w(L, t) =
∂2w(L,t)

∂x2 = 0                                                         (34) 

Substituting Eq. (32) in to Eq. (29) leads to 

q̈[I0ψ] + 𝐶𝑑ψ𝑞̇ + a1q + a2q2 + a3q3 = 𝐹0 cos(Ω𝑡)                                  (35)  

where, 𝒒̇ and 𝒒̈ is the first and the second derivative of q(t) with respect to time, respectively. Also, 

the coefficientsa0, a1 , a2 and a3 are 

a1 = 𝜓𝑥𝑥𝑥𝑥 [(D11 −
B11

2

A11
) + Γ], 

a2 =
B11

L
𝜓𝑥𝑥[𝜓𝑥(𝐿) − 𝜓𝑥(0)],   a3 = 𝜓𝑥𝑥 [−

A11

2𝐿
∫ 𝜓𝑥

2𝑑𝑥
𝐿

0
]                             (36) 

where 𝜓𝑥, 𝜓𝑥𝑥and 𝜓𝑥𝑥𝑥𝑥 are the first, the second, and the fourth derivative of ψ(x) with respect to 

x , respectively.  

Considering the transverse external load as F(x) = 𝑓0. ψ(x),multiplying both side of Eq.(35) 

with a mode shape function ψ(x)and integrating the result equation over domain (0,L) leads to the 

nonlinear ordinary differential equation governing the motion of the microscale CNTR composite 

beam as follows 

      q̈ + 2𝜇̂q̇ + ω0
2q + 𝜂̂2q2 + 𝜂̂3q3 = f cos(Ω𝑡)                                  (37) 

where 

                   𝜇 =
1

2
(

∫ C𝑑ψ2dx
L

0

∫ I0ψ2(x)dx
L

0

),                                                    (38a)  

                   ω0
2 =

∫ a1ψ(x)dx
L

0

∫ I0ψ2(x)dx
L

0

 ,                                                     (38b) 

                    𝜂̂2 =
∫ a2ψ(x)dx

L
0

∫ I0ψ2(x)dx
L

0

 ,                                                     (38c) 

                      𝜂̂3 =
∫ a3ψ(x)dx

L

0

∫ I0ψ2(x)dx
L

0

                                                      (38d) 

                      f =
∫ 𝑓0.ψ2(𝑥)dx

L
0

∫ I0ψ2(x)dx
L

0

                                                         (38e) 

where, 𝑓0 is the amplitude of the lateral external load. The nonlinear ordinary differential equation 

is solved by using the method of multiple scales. In order to obtain solution assumption, following 

assumption is used. 
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                     𝜇̂ = 𝜖𝜇                                                                 (39a) 

                     𝜂̂2 = 𝜖𝜂2                                                               (39b) 

                    𝜂̂3 = 𝜖𝜂3                                                               (39c) 

                     𝑓 = 𝜖2𝑓                                                                (39d) 

𝜖 indicates bookkeeping parameter. Inserting Eq. (39) to Eq. (37) yields 

 q̈ + 2𝜖2𝜇q̇ + ω0
2q + 𝜖𝜂2q2 + 𝜖2𝜂3q3 = 𝜖2𝑓 cos(Ω𝑡)                              (40) 

In method of multiple scales, time variable is defined as following  

      Tn = ϵnt , n = 0, 1,2,3, ..                                                   (41) 

With processing chain rule for Eq. (39), the following form is obtained 

   
d

dt
= D0 + ϵD1 + ϵ2D2 + ϵ3D3 + ⋯                                      (42a) 

d2

dt2 = D0
2 + 2ϵD0D1 + ϵ2(D1

2 + 2D0D2) + 2ϵ3(D1D2) + ⋯                      (42b) 

where  

          Di =
∂

∂Ti
,     i = 0,1,2,3                                                    (43) 

In the solution of Eq. (40), the method of multiple scales obtained as follows (Nayfeh et al. 

1980, Shafiei and Setoodeh 2017) 

 𝑞 = 𝑞0(𝑇0, 𝑇1, 𝑇2) + 𝜖𝑞1(𝑇0, 𝑇1, 𝑇2) + 𝜖2𝑞2(𝑇0, 𝑇1, 𝑇2)+…                      (44) 

Substituting Eq. (44) into Eq. (40) together with using Eqs. (42) and then equating coefficient 

of similar power of 𝛜 to zero yields 

    (D0
2 + ω0

2)q0 = 0                                                      (45) 

   (D0
2 + ω0

2)q1 = −2D0D1q0 − η2𝑞0
2                                          (46) 

(D0
2 + ω0

2)q2 = −2D0D1q1 − (D1
2 + 2D0D2)q0 − 2𝜇D0q0 − 2𝜂2𝑞0𝑞1 − 𝜂3q0

3 + 𝑓cos (Ω𝑡)  (47) 

Solution of Eq. (45) is obtained as follows 

q0 = 𝐴(T1, T2)exp(iω0T0) + Λ(T1, T2)exp(−iω0T0)                              (48) 

where  A(T1, T2)  is an unknown complex function and will be determined by eliminating the 

secular terms from q1, CC denotes the complex conjugated of the previous terms and Λ is the 

complex conjugate of A. Substituting Eq. (48) into Eq. (46) yields 

    (D0
2 + ω0

2)q1 = −2iω0D1𝐴 𝑒iω0T0−𝜂2[𝐴2𝑒2iω0T0 + AA̅] + 𝑐𝑐                      (49) 

where cc stands for the complex conjugate of the preceding terms. To eliminate the secular terms 

from q1 equating the coefficients of  exp(∓iω0T0) to zero as follows 

D1𝐴(T1, T2) = 0                                                          (50) 

Therefore, A only is a function of T2. With considering the Eq. (50), the particular solution of 

Eq. (49) can be define as below 

  𝑞1 =
𝜂2

3𝜔0
2 [𝐴2𝑒2iω0T0 + 𝐴̅2𝑒−2iω0T0 − 6AA̅]                                       (51) 
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In primary resonance, it is assumed that the excitation frequency Ω is near to linear frequency 

ω0 of the system (Ω ≈ ω0) as below 

   Ω = 𝜔0 + 𝜖2𝜎                                                            (52) 

where σ is the detuning parameter and used to illustrate the nearness of Ω to 𝜔0. Substituting Eqs. 

(48), (51) and (52) into Eq. (47) and recalling that 𝐷1𝐴 = 0,  yields 

(𝐷0
2 + 𝜔0

2)𝑞2 = −𝐴3 [
2𝜂2

2

3𝜔0
2 + 𝜂3] 𝑒3𝑖𝜔0𝑇0 + [−2𝑖𝜔0(𝐷2𝐴 + 𝜇𝐴) + 𝐴2𝐴̅ (

10𝜂2
2

3𝜔0
2 − 3𝜂3) +

𝑓

2
𝑒𝑖𝜎𝑇2] 𝑒𝑖𝜔0𝑇0+CC 

(53) 

To eliminate the secular terms from q2 equating the coefficients of  exp(∓iω0T0) in Eq. (53) to 

zero as follows 

−2𝑖𝜔0(𝐷2𝐴 + 𝜇𝐴) + 𝐴2𝐴̅ (
10𝜂2

2

3𝜔0
2 − 3𝜂3) +

𝑓

2
𝑒𝑖𝜎𝑇2 = 0                                (54) 

Considering A(T2) in the polar form as follows (Nayfeh et al. 1980) 

𝐴(𝑇2) =
1

2
𝑎 𝑒𝑥𝑝(𝑖𝛽)                                                           (55) 

where, 𝑎(𝑇2)  and 𝛽(𝑇2)  indicate real functions of T1 . Inserting Eq. (55) into Eq. (54) and 

separating the results in to its real and imaginary parts leads to 

                 á + μa =
f

2ω0
sin(θ̅)                                                 (56a) 

   a(σ − 𝜃̅/) −
9𝜔0

2𝜂3−10𝜂2
2

24𝜔0
3 a3 = −

f

2ω0
cos(θ̅)                                     (56b) 

where, ( )́  is the first derivative with respect to T2. Also, 𝜽̅ is defined as below 

                  θ̅ = σT2 − β                                                                 (57) 

In the case of steady state motion of the system the amplitude 𝒂 and the phase of the system 𝜽 

are not charge at a singular point (Nayfeh et al. 1980) 

                   𝑎́ = 𝜃̅/ = 0                                                                  (58)  

 Substituting Eq. (58) into Eqs. (52a) and (52b) leads to 

                   μ =
f

2aω0
sin(θ̅)                                                            (59a) 

        σ +
10𝜂2

2−9𝜔0
2𝜂3

24𝜔0
3 a2 = −

f

2aω0
cos(θ̅)                                             (59b) 

Squaring and adding Eqs. (59a) and (59b) leads to the frequency response equation as follows  

    σ =
9𝜔0

2𝜂3−10𝜂2
2

24𝜔0
3 a2 ± √

f2

4ω0
2a2 − μ2                                                (60) 

Substituting Eq. (60) into Eq. (52) yields 

      𝛺 = 𝜔0 + 𝜖2 [
9𝜔0

2𝜂3−10𝜂2
2

24𝜔0
3 a2 ± √

f2

4ω0
2a2 − μ2]                                      (61) 

Substituting Eqs. (48), (51) and (55) into Eq. (44) leads to  
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q = a cos 𝜃(𝑡) − 𝜖𝑎2 𝜂2

2𝜔0
2 [1 −

1

3
cos 2𝜃(𝑡)] + O(𝜖2)                                      (62) 

where 

                    𝜃 = 𝜔0𝑡 +  𝛽                                                               (63) 

Using of Eqs. (52), (57), (62) and (63) leads to the approximate solution as below 

q = a cos(Ω𝑡 − 𝜃) − 𝜖𝑎2 𝜂2

2𝜔0
2 [1 −

1

3
cos(2Ω𝑡 − 2𝜃))] + O(𝜖2)                          (64) 

 

 

3. Numerical results 
 

In numerical results, the material and geometry parameters are used as follows; 

(Wattanasakulpong and Ungbhakorn 2013, Yas and Samadi 2012): 𝐸11
𝐶𝑁𝑇 = 600 GPa , 𝐸22

𝐶𝑁𝑇 =
10 GPa , 𝐺12

𝐶𝑁𝑇 = 17.2 GPa , 𝑣𝐶𝑁𝑇 = 0.19 , 𝜌𝐶𝑁𝑇 = 1400 kg/m3 , 𝐸𝑝 = 2.5 GPa , 𝑣𝑝 = 0.30 , and 

𝜌𝑝 = 1190 kg/m3, L=300 𝜇m; h=2 𝜇m, b=h, length scale parameter(𝑙) = 0.5 𝜇m, amplitude of 

the load f0 = 0.012 N maximum amplitude (Λ)= 1.0 𝜇m, damping coefficient 𝐶𝑑 = 0.005 Pa. s 

In order to accuracy of present method, a comparison study is performed. For this purpose, the 

fundamental frequencies of a microscale simply supported beam made of pure polymer are 

calculated with different slenderness ratio and compared with those of Kong et al. (2008) 

corresponding to the Euler-Bernoulli beam theory in Table 2. In the obtaining of the vibration 

frequency from this study, the eigenvalue process is implemented in Eq. (38b). It is found from 

Table 2, the current results are in good harmony with the related results of Kong et al. (2008). It is 

worth noting that, Kong et al. (2008) neglected the contribution of the Poisson’s which leads to the 

small difference between the results presented in Table 2. 

Moreover, the results of Table 3 presents the linear oscillations at 𝑙 = 0 and 𝑉𝐶𝑁𝑇
∗ = 0.17. To 

validate the obtained results from the current work, this table compared the linear natural 

frequency of this research with the results presented by Shafiei and Setoodeh (2017). As can be 

seen in Table 3, the current results are in good harmony with the related results of Shafiei and 

Setoodeh (2017). 

Figs. 2 and 3 presents the frequency response curves and the phase trajectory of the system for 

the classical theory and the MCST for X beam, 𝑉𝐶𝑁𝑇
∗ = 012, 𝑓0 = 0.013 N, respectively. As can be  

 

 
Table 2 Comparative results for fundamental frequencies of a simply supported fully polymer microscale 

beam. 𝑙 = 0.5 𝜇m 

𝐿

ℎ
 

Natural Frequency (MHz) 

Kong et al (2008) Present 

30.0 2.604 2.702 

50.0 0.938 0.973 

60.0 0.651 0.676 

70.0 0.478 0.496 

90.0 0.289 0.300 

100.0 0.234 0.243 
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Table 3 Comparative results for fundamental frequencies (MHz) of a simply supported CNTR Composite 

beam for different patterns of CNTs for 𝑙 = 0 

 UD-Beam  

L/h Shafiei and Setoodeh (2017) Present 

30.0 17.56 17.56 

50.0 6.32 6.32 

60.0 4.39 4.39 

70.0 3.23 3.23 

90.0 1.95 1.95 

100.0 1.58 1.58 

 X-Beam  

L/h Shafiei and Setoodeh (2017) Present 

30.0 19.58 19.58 

50.0 7.05 7.05 

60.0 4.90 4.90 

70.0 3.60 3.60 

90.0 2.18 2.18 

100.0 1.76 1.76 

 O-Beam  

L/h Shafiei and Setoodeh (2017) Present 

30.0 15.34 15.34 

50.0 5.52 5.52 

60.0 3.84 3.84 

70.0 2.82 2.82 

90.0 1.70 1.70 

100.0 1.38 1.38 

 

 

Fig. 2 The effects of the Length scale parameter on the frequency response curves of the X 

Beam for 𝑉𝐶𝑁𝑇
∗ = 012, 𝑓0 = 0.013 N 
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Fig. 3 The effects of the Length scale parameter on the phase trajectory of the X Beam for 

𝑉𝐶𝑁𝑇
∗ = 012, 𝑓0 = 0.013 N 

 

 

seen in Figs. 2 and 3, the frequency response curves consist of two branch. The upper branch 

represents the stable solution and the lower branch represents stable and unstable solutions. The 

deviation of the curves illustrates the type of nonlinearity. As can be observed form these figures, 

the curve is deviated to the right which exhibits the hardening type behavior of the system. The 

MCST predicts weaker hardening behavior and lower resonance frequency. Moreover, whole 

response region become narrow and the height of the jump phenomena (sudden change in the 

amplitude and phase of the response with small change in the excitation frequency due to 

nonlinear nature of the system) decreases with increase in the material length scale parameter. The 

nonlinear vibration is stable with finite limit cycle and the classical theory predicts higher 

vibration velocity compare the MCST (see Fig. 3). 

The frequency-response curves and the phase trajectory of the system for different pattern of 

reinforcement are presented in Figs. 4 and 5, respectively. The Results indicate that, as the pattern 

of reinforcement changes as the order X Beam, UD and O distributions, whole response region 

become wider and the frequency response curves bend to the left which means that the hardening 

behavior of the system become weaker. With changing the pattern of reinforcement as the order X 

Beam, UD and O distributions, the peak amplitude and the nonlinear resonant frequency and the 

height of the jump increase. In addition, the results demonstrated that, with changing the pattern of 

reinforcement as the order X Beam, UD and O distributions, the phase trajectory expand outward 

and the velocity of the nonlinear oscillation increase.  

Figs. 6 and 7 show the frequency response curves and the phase trajectory of the CNTR 

composite microscale beam with X pattern of reinforcement for different values of 𝑉𝐶𝑁𝑇
∗ , 

respectively. As can be seen, the frequency response curves bends to the right which illustrates 

increase in the hardening behavior of the system increase in 𝑉𝐶𝑁𝑇
∗ . The results illustrate that, whole 

response region become narrow and at the same time the peak amplitude of the nonlinear 

oscillation and the nonlinear resonance frequency decreases increase in 𝑉𝐶𝑁𝑇
∗ . Moreover, with 

increasing 𝑉𝐶𝑁𝑇
∗ , the height of the jump decreases, the phase trajectory shrink inward and velocity 

of the nonlinear oscillation decreases.  
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Fig. 4 The effects of the pattern of reinforcement on the frequency response curves for 𝑉𝐶𝑁𝑇
∗ =

017 

 

 

Fig. 5 The effects of the pattern of reinforcement on the phase trajectory for 𝑉𝐶𝑁𝑇
∗ = 017 

 

 

Figs. 8 and 9 demonstrates the frequency response curves and the phase trajectory of the 

microscale CNTR composite beam for X distribution for different values of forcing amplitude, 

respectively. The presented results from Figs. 8 and 9 indicate that with the whole response region 

become wider and the peak amplitude of the nonlinear oscillation and the nonlinear resonance 

frequency increases increasing the amplitude of the force. Also, as increase in the amplitude of the 

load increase the height of the jump, the phase trajectory expands out ward and the velocity of the 

nonlinear oscillation increases while the system remains in stable situation (finite limit cycle).  
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Fig. 6 The effects of 𝑉𝐶𝑁𝑇
∗  on the frequency response curves for X beam. 

 

 

Fig. 7 The effects of 𝑉𝐶𝑁𝑇
∗  on the phase trajectory for X beam. 

 

 

however, the hardening behavior of the system remain steady.  

 

 

4. Conclusions 
 

In this paper, nonlinear oscillation of a CNTRC microscale beam subjected to lateral harmonic 

load and damping force due to viscous medium are investigated based on modified couple stress 

theory the Euler-Bernoulli beam theory, von Kármán type of geometrical nonlinearity. The 

Galerkin’s decomposition technique is utilized to discretize the governing nonlinear partial 

differential equation to nonlinear ordinary differential equation and then is solved by using of  
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Fig. 8 The effects of the amplitude of the frequency response curves for X beam and 𝑉𝐶𝑁𝑇
∗ = 012 

 

 

Fig. 9 The effects of the amplitude of the Load on the phase trajectory for X beam and 𝑉𝐶𝑁𝑇
∗ = 012 

 

 

multiple time scale method. In numerical studies, effects of patterns of reinforcement, volume 

fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon 

nanotube reinforced composite beam are investigated. In the obtained results, the important 

consequences are presented as; 

• The MCST predicts weaker hardening behavior and lower resonance frequency. The classical 

theory predicts higher vibration velocity compare the MCST. 

• The distribution of CNTs play an important role on nonlinear dynamics of CNTRC beam. 

With changing the pattern of reinforcement in order; X, UD and O, the hardening behavior of 

the system become weaker. 

• Increase in volume fraction of CNTs, the hardening behavior of the system increase. 
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Nonlinear vibration responses of the CNTRC beam change considerably with volume fraction 

of CNTs. 

• With the increasing in the material length scale parameter, the hardening behavior of the 

system decreases and the nonlinear vibration responses of the CNTRC microscale beam change 

considerably.  

• With the increasing in the amplitude of the excitation force, hardening behavior of the system 

remains steady, the whole response region become wider and the peak amplitude of the 

nonlinear oscillation and the nonlinear resonance frequency increases. 
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