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Abstract.  This paper presents a parametric study on the free vibration analysis of a functionally graded material 
(FGM) circular plate with non-uniform thickness resting on a variable Pasternak elastic foundation. The mechanical 
properties of the material vary in the transverse direction through the thickness of the plate according to the power-
law distribution to represent the constituent components. The equation of motion of the circular plate has been carried 
out based on the classical plate theory (CPT), and the differential quadrature method (DQM) is employed to solve the 
governing equations as a semi-analytical method. The grid points are chosen based on Chebyshev-Gauss-Lobatto 
distribution to achieve acceptable convergence and better accuracy. The influence of geometric parameters, variable 
elastic foundation, and functionally graded variation for clamped and simply supported boundary conditions on the 
first three natural frequencies are investigated. Comparisons of results with similar studies in the literature have been 
presented and two-dimensional mode shapes for particular plates have been plotted to illustrate the effect of variable 
thickness profile. 
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1. Introduction 
 

In modern industries, circular plates resting on an elastic foundation are among the most widely 

utilized engineering applications and have been extensively employed for building footings, raft 

foundation of water tanks, bridge decks, aerospace industries such as air crafts, and other 

engineering fields, which reflects the importance of circular plates. Furthermore, reducing material 

consumption is increasingly essential for product development and fabrication. Using 3D printing 

technology makes it possible to design and produce high-strength lightweight structures. For most 

components, extra material with regular production methods can be removed at the design stage. 

During production, material is only used where it is functionally necessary which appears clearly 
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in aerospace industry. Recently, researchers have shown a growing interest in a new class of 

advanced composite material called functionally graded materials (FGMs). This composite 

material with high mechanical performance can be achieved by continuous variation of the volume 

fraction of constituent materials (Shen 2016). FGMs were firstly introduced by (Yamanouchi et al. 

1990). Since then, numerous studies have been conducted to employ and develop high-resistant 

materials using FGMs.  

The dynamic and static analysis of FGM circular plates was investigated by some researchers 

adopting analytical and numerical solutions (Reddy et al. 1999, Ma and Wang 2004, Prakash and 

Ganapathi 2006, Civalek and Ersoy 2009, Zheng and Zhong 2009). (Ma and Wang 2004) 

investigated the axisymmetric bending and buckling of FGM circular plates using the theory of 

third-order shear deformation by studying the effects of gradual change in mechanical properties 

of the material through the direction of the plate thickness. (Reddy et al. 1999) studied the 

axisymmetric bending analysis of FGM circular and annular plates based on Mindlin-first-order 

shear deformation theory. The study reveals a relationship between the classical plate theory and 

the first-order plate theory. (Zheng and Zhong 2009) evaluated the effect of the FGM properties on 

the axisymmetric bending of circular plates under two types of boundary conditions: elastically 

supported edge and rigid slipping edge. The exact solution obtained by expanding the transverse 

displacement function as the Fourier-Bessel series shows a great influence of the FGM properties 

on the mechanical behavior of the circular plate. (Prakash and Ganapathi 2006) studied the free 

vibration analysis of FGM circular plates in a thermostatic environment using a finite element 

approach. A detailed investigation was carried out to study the influences of considered gradient 

index and temperature on the critical buckling load. (Civalek and Ersoy 2009) employed a discrete 

singular convolution approach to study the dynamic and bending analysis of circular plates based 

on Mindlin plate theory. The obtained numerical results of the frequency parameter and deflection 

of the plate show the accuracy and the efficiency of the adopted approach. 

A considerable amount of research has so far explored on the influence of elastic foundation on 

circular plates. The simplest model employed by the researcher to idealize the behavior of plate-

foundation interaction is the well-known Winkler model. In this model, the plate is supported by 

linear elastic springs, where its reaction is proportional to the transversal displacement of the plate 

by a proportionality coefficient (kw) called Winkler’s modulus (Birman 2011). (Farhatnia et al. 

2018) investigated the influence of the Winkler foundation on the thermal-mechanical bending of 

thick FGMs circular plate under the effect of various mechanical and thermal loading. Gupta et al. 

(Gupta et al. 2006) studied the buckling and vibrational behavior of circular plates with variable 

thickness rested on the Winkler foundation based on classical plate theory. However, other 

researchers considered Winkler’s modulus to be variable, not constant. For example, (Rad and 

Shariyat 2013) studied the coupling effect of the variation in the distribution of elastic foundation 

on the bending analysis of FGM annular under the action of normal and in-plane shear tractions. 

An extension to the Winkler foundation model is extended to include the collaboration between the 

springs by implementing the Pasternak foundation model, which is a two-parameter model taking 

into consideration the shear rigidity of the foundation. (Hosseini-Hashemi et al. 2010) analyzed 

buckling and free vibration of FGM circular and annular plates subjected to in-plane compressive 

forces resting on the Pasternak foundation.(Abdelbaki et al. 2021) studied the bending behavior of 

an FGM circular plate partially resting on a variable Pasternak foundation. The radial stress and 

deflection were investigated when the plate is not fully resting on elastic foundation besides 

illustrating the effects of contact area ratio between the plate and the elastic foundation. (Zhou et 

al. 2006) studied the three-dimensional dynamic behavior of circular plates resting on the 
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Pasternak foundation. The frequency parameter was derived using the Ritz method by considering 

the effect of the strain energy of the elastic foundation.  

A semi-analytical method called the differential quadrature method (DQM) has recently 

grabbed the attention of many researchers in several engineering domains. Remarkable 

achievements have been accomplished by many researchers in vibration and bending analysis of 

plates, shells, and beams. For instance, (Liew et al. 1997) presented the vibrational characteristic 

of uniform thick circular plate based on the linear shear-deformation Mindlin theory using DQM. 

(Gupta et al. 2006) employed DQM for a free vibration analysis of FGM circular plate with 

variable thickness. In this study, the effect of non-homogeneity and geometric parameters were 

studied on the natural frequency of the circular plate. (Hamzehkolaei et al. 2011) investigated the 

thermal effect on the flexural analysis of the FGM circular and annular plates. The initial thermal 

stresses of the circular plate were obtained by DQM and a comparison was performed to confirm 

the accuracy of the adopted method. (Nie and Zhong 2007) studied the axisymmetric bending of 

two-functionally graded circular and annular plates using DQM. Numerical results of the 

deflection of the plate and radial stresses show the accuracy and the computational efficiency of 

the DQM. (Arshid and Khorshidvand 2018) provided the vibration characteristic of a thin circular 

plate made up of a porous filled by fluid and merged with piezoelectric actuator patches. Hamilton 

principle and the classical plate theory were used to obtain the equation of motion of the plate. The 

DQM was employed to obtain the natural frequency in addition to the radial and circumferential 

stresses.  

In the presented article, a semi-analytical solution for free vibration analysis of FGM circular 

plate with variable thickness resting on a variable Pasternak foundation is carried out using DQM. 

The present work attempts to incorporate the effects of the variation in the thickness profile of the 

plate, FGM power index, and elastic foundation modulus on the natural frequencies and the mode 

shapes of the circular plate for clamped and simply supported edges. Furthermore, lack of a semi-

analytical solution to the problem of circular plates resting on an elastic foundation with a 

variable-modulus subgrade has existed. Therefore, a more general approach must be investigated 

to deal with the problem. The numerical results are verified upon comparison with the cited 

literature to demonstrate the accuracy and computational efficiency of the adopted method. It is 

worth mentioning that no detailed investigation has been adopted until now to analyze the free 

vibration of non-uniform functionally graded circular plate supported on two-parameter elastic 

foundation by the Differential Quadrature method (DQM).  

 
 
2. Mathematical formulation  

 
2.1 Geometric and foundation parameters 
 

Consider an FGM circular plate with variable thickness resting on a two-parameter elastic 

foundation. The first parameter is the variable Winkler foundation coefficient (kw (r)) which varies 

in the radial direction and is represented by a set of linear elastic springs. In addition, the constant 

Pasternak shear coefficient (kp) in the transverse direction is represented by a shear layer under the 

plate. The plate configuration is represented using cylindrical polar coordinates system (r, θ, z) as 

shown in Fig. 1: where R is the radius of the plate, h0 is the initial thickness at the center of the 

plate, h(r) is the thickness at any distance r, and z=0 at the middle of the plate plane. The top and 

the bottom surfaces are at z=h(r)/2 and z=-h(r)/2, respectively. 
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Fig. 1 An FGM circular plate with variable thickness resting on a Pasternak foundation 

 
 
2.2 Material properties, thickness profile, and foundation parameters 
 

The material properties of the plate gradually change based on the power-law distribution 

through the thickness direction from ceramic to metal. It is assumed that the material properties 

(Young’s modulus of elasticity and mass density) at any arbitrary point of the thickness located at 

any distance z from the mid-plane of the plate and any radial distance r, may be calculated based 

on the following equations 

( )
1

( )
2

g

c m m

z
E z E E E

h

 
= − + + 

 
 (1) 

( )
1

( )
2

g

c m m

z
z

h
   

 
= − + + 

 
 (2) 

where 𝐸𝑐 , 𝜌𝑐 and 𝐸𝑚, 𝜌𝑚 are Young’s modulus of elasticity and mass density per unit of ceramic 

and metal, respectively, and g is the volume fraction exponent which varies from (0 to ∞), 

representing a plate with material varying from a fully ceramic plate to a fully metal plate, 

respectively. Fig. 1 illustrates the variation in modulus of elasticity of the plate through the 

thickness direction from the lower face to the upper face according to the volume fraction index 

(g). h is the plate thickness varying parabolically along the radial direction according to the 

relation taken as follows (Farhatnia, Saadat et al. 2019) 

2

0( ) 1 ( )
r

h r h
R

 = 
 

+


=  (3) 

where h0 denotes the reference thickness at the center of the plate, 𝛾 is a geometrical parameter 

controlling the thickness concavity, as the curvature goes upward in case of 𝛾 > 0, goes downward 

when 𝛾 < 0, and a uniform thickness when 𝛾 = 0.  

By substituting the value of the h which is a function of the radial coordinate in Eqs. (1) and 

(2), the following equations for 𝐸(𝑧) and 𝜌(𝑧) yield 
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Fig. 2 Variation of material properties through thickness direction. 
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z
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h

R


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

=

 
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= − + + 
   
+       

 (4b) 

Assume the plate is resting on a two-parameter elastic foundation, where the elastic modulus in 

the normal direction is varying parabolically following the adopted relation by (Abdelbaki and 

Ahmed 2022) that describes the variation in the soil subgrade, and the plate maintains in 

continuous contact with the foundation. Hence, the 𝑘𝑤(𝑟) modulus can be expressed as 

2

0( ) 1 ( )w

r
k r k

R



= +


 
 

 (5) 

where, is a foundation parameter that manipulates the variation in Winkler foundation modulus.  

 
2.3 Governing equations of free vibration  
 

The differential equation of free vibration of the circular plate resting on the two-parameter 

elastic foundation can be obtained from the classical plate theory (Leissa 1969) by assuming no 

external forces and no in-plane stresses, and by adding the terms of Pasternak foundation 
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(Hosseini-Hashemi et al. 2010). So, the equation of motion of the transverse displacement w of an 

axisymmetric circular plate can be written as (Gupta et al. 2006) 

( )
4 3 2 2

2

4 3 2 2 2

2 2
2 2

3 2 2

2 1
2

1
( )w p

d w dD d w dD d D d w
D D r D r r

r r drdr dr r dr dr

dD d D dw d w
D r r k r w k w I

dr drr dr dt





  
+ + + − + + + +  

   

 
− + + −  = − 

 

 (6) 

where, 𝛻2 is the Laplacian operator that can be expressed as follows for axisymmetric problems 

2
2

2

1d d

r drdr

 
 = + 

 

 (7) 

D is the elastic flexural rigidity at any radial distance r; w is the deflection of the plate; I is the 

mass inertia, and is Poisson’s ratio assumed to be constant (Shen 2016). 

The flexural rigidity and mass inertia of the FGM plate can be determined as 

/2

2

2

/2

1
( ) ( )

1

h

h

D r E z z dz


−

=
−   (8) 

/2

/2

( ) ( )

h

h

I r z dz
−

=   (9) 

Substituting the value of ( )z from Eq. (4a) into Eq. (9), we get the following relation 

/2 /2

0

/2 /2

1
( ) ( ) ( ) ( )

2

gh h

c m m c

h h
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I r z dz dz h A B
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   (10) 

where 

( )

2

( ) 1 ,
1

c m

c

gr
A B

R g


 

 


=   + 
= + =        +    

 (11) 

The harmonic solution of Eq. (6) can be expressed in the form 

( ) i tw w r e =  (12) 

where, 𝜔 is the radian frequency of the plate. Therefore, Eq. (6) can be written as 

( )
4 3 2 2

2

4 3 2 2 2

2 2
2 2

3 2 2

2 1
2

1 1
p p w

d w dD d w dD d D d w
D D r D r r

r r drdr dr r dr dr

dD d D dw d w dw
D r r k k k w h w

dr dr r drr dr dr



  
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   

 
− + − − + = 

 

 (13) 

By introducing the following non-dimensional parameters to simplify the equation of motion 

( ) ( )4 2

2 0

0 0 0

, , , ,
w p c

w p

k R k R hr w
W K K R

R h D D D


 = = = =  =  (14) 
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where, 𝐷0 = 𝐸0ℎ0/12(1 − 𝜈2) is the reference flexural rigidity, Eq. (13) may be re-written as 

( )
4 2 3 2 2

3 2

4 3 2 2

0 0 0

2 2
2 3 2 3 3 2

2 2

0

2
2

1
( )p p w

D d W dD d W dD d D d W
D D

D D D dd d d d

dD d D dW d W dW
D K K K W A BW

D d d dd d

 
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       
   

  
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   

 
− + − − + =  

 

 (15) 

 
2.4 Boundary and regularity conditions 
 

Two boundary conditions at the outer perimeter of the plate are defined in terms of non-

dimensional deflection W, as: 

- Clamped (C) 

1

(1) 0, 0
dW

W
d




=

= =  (16) 

- Simply-supported (S): 

2

21

1
(1) 0, 0

d W dW
W M D

dd
 


 =

  
= = − + =  

  

 (17) 

For the axisymmetric problems, the regularity condition must be implemented to ensure that the 

slope at the center of the plate is zero (Bert et al. 1987). Then, the regularity condition in terms of 

non-dimensional deflection W can be taken as 

0

0
dW

d



=

=  (18) 

 
 
3. Method of solution 

 
3.1 Differential Quadrature method  
 

The concept of the DQM is to approximate the derivative of a function at a grid point as a 

weighted linear combination of all the functional values at all given grid points in the domain. 

Therefore, by discretizing the plate into N number of grid points that are applicable in the 

computational range [0,1], the differential equation can be reduced to a set of algebraic equations. 

The number of equations depends on the selected number of sample points. 

( )

1

( )
( ), 1, 2,....,

n N
ni

ij jn
j

d W r
C W x i N

dr =

= =  (19) 

where 𝐶𝑖𝑗
(𝑛)

 denotes for the weighting coefficient, and n indicated the nth order partial derivative of 

the function 𝑊(𝑟). The determination of the weighting coefficients is the basic procedure in the 

DQ approximation. Eq. (19) takes the form of Vandermonde in the matrix, and in the case of a 

large number of grid points, the solution can be ill-conditioned. To overcome this obstacle, the 
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Lagrange interpolated polynomial was introduced in (Shu 2000) to obtain the weighting 

coefficients as follows 

(1)
2

( )
 

(
1, ,...( ) , for 

(
,

)
.

)j j

j N
M r

l r
M r x x

=
−

=  (20) 

where 

(1)

1 1,

( ) ( ), ( ) ( ), for , 1, 2,....,
N N

j i i j

j j i j

M r r r M r r r i j N
= = 

= − = − =   (21) 

Substituting Eq. (21) in Eq. (20), the weighting coefficients for the first and higher-order 

derivatives can be determined as follows 

( 1)(1)

(1) ( ) ( 1) (1)

(1)

( )
, ,

( ) ( )
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ijn ni

ij ij ii ij

i ji j j
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−

−
 

= = − 
 −−  

 

(22) 
( ) ( )

1,

where , , 1, 2,...., and 2,3,...., 1.
N

n n

ii ij

i j i

C C i j i j N n N
= 

= −  = = −  

 
3.2 Choice of sampling points 
 

The accuracy of the results of the DQM can highly be affected by the mesh distribution. 

Choosing a uniformly distributed grid can result in less accurate results. For this reason, a refined 

technique is adopted in the present work to achieve better results for vibration problems (Al Kaisy 

et al. 2007), this technique is Chebyshev-Gauss-Lobatto points given by 

1 1
1 cos , 1, 2,....,

2 1
i

i
r i N

N


 − 
= − =  

−  
 (23) 

 
3.3 Application of the DQM into governing equations and boundary conditions 
 

To solve the non-dimensional governing equation by applying the Differential Quadrature 

discretization, Eq. (22) is substituted in Eq. (15) as follows 

( )
2 2

3 (4) (3) 2

2
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   

 
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 

   

3 2

1( ) , 2,3,...., 2i iA n BW i N=  = −

 
(24) 

The governing equation has two boundary conditions at the same boundary point. As a result, 

some difficulties arise during applying DQM. To overcome these difficulties (Bert et al. 1988) 

employed an approach called δ-technique, in which the two boundary points are separated by a 

small distance δ from the boundaries. Then, one of the boundary conditions is written at the 

boundary point and the other one is implemented on the δ-point. The boundary and regularity 

conditions can be represented in the DQ discretized form as: 
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- Clamped (C) 

(1)

1

(1) 0, 0
N

ij j

j

W C W
=

= =  (25) 

- Simply-supported (S) 

(2) (1)

( 1) ( 1)1
1 1

1
(1) 0, 0

N N

i N j j N j j

j ji

W M D C W C W 



− −=

= =

  
= = − + =   

  
   (26) 

- Regularity condition 

(1)

1

1

0
N

j j

j

C W
=

=  (27) 

To obtain the natural frequency, the governing equation represented in the DQ approach in    

Eq. (24) can be represented in the following matrix form (Shu 2000) 

       2

db b dd d dA W A W W+ =  (28) 

where the domain and boundary points are denoted as d and b, respectively. 

Moreover, the boundary conditions can be represented in the following matrix form 

      {0}bb b bd dA W A W+ =  (29) 

The governing equation and the boundary and the regularity conditions should be solved 

simultaneously. In order to achieve that, the value of {𝑊𝑏} should be obtained as follows 

      
1

b bb bd dW A A W
−

= −  (30) 

By substituting Eq. (30) into Eq. (28), we obtain eigenvalue equation system as follows 

   1 2

db bb bd dd d dA A A A W W− − + =  
 (31) 

Solving Eq. (31) results in a set of equations. A MATLAB code was carried out and the natural 

frequencies were calculated. The results and the parametric study are introduced in the following 

section.  

 
 
4. Results and discussion  

 
4.1 Validation of results 
 

In the present work, the results of the first three non-dimensional natural frequencies for free 

vibration analysis of circular plate are given for two types of boundary conditions, i.e., the 

clamped and simply supported. The material properties of the plate used in this paper are taken 

from Ref. (Shariyat and Alipour 2011) as follows: 

To validate the results obtained in the present work, a comparative study is provided in Table 2 

for a homogeneous plate with uniform thickness as the simplest case. It was found that 20 grid 

points were sufficient to achieve the convergence and to provide satisfying accuracy for both 

clamped and simply supported cases with δ=0.00001. The first three natural frequencies were  
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Table 1 Material properties of the two-directional FGM circular plate 

Parameter Symbol Value Dimension 

Ceramic Young’s modulus 𝐸𝑐 380 Gpa 

Metal Young’s modulus 𝐸𝑚 70 Gpa 

Ceramic mass density 𝜌𝑐 3,800 kg/cm3 

Metal mass density 𝜌𝑚 2,702 kg/cm3 

Poisson’s ratio 𝜈 0.3 - 

 
Table 2 Comparison of natural frequency for homogenous circular plate (𝑔 = 0) and uniform thickness 

(𝛾, 𝐾𝑤 , 𝐾𝑝 = 0) 

Method 
Clamped Simply supported 

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 

Present (DQM) 10.2158 39.7711 89.1041 4.9351 29.72 74.156 

Ref. (Leissa 1969) (analytical) 10.2158 39.771 89.104 4.977 29.76 74.20 

Ref. (Wu et al. 2002) (DQM) 10.216 39.771 89.104 4.935 29.72 74.156 

Ref. (Shariyat and Alipour 2010) 

(DTM) 
10.2163 39.7732 89.1086 4.9351 29.72 74.1561 

Ref. (Senjanovic et al. 2014) (FEM) 10.201 39.685 88.784 4.931 29.678 73.953 

 
Table 3 Comparison of natural frequency for a homogenous (𝑔 = 0) circular plate of linear variation in the 

thickness (𝛽 = 1, 𝐾𝑤, 𝐾𝑝 = 0) 

𝛾 Method 
Clamped Simply supported 

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 

-0.5 
Present 6.1504 27.3002 63.0611 3.5498 21.2385 53.4404 

Ref. (Gupta et al. 2006) 6.1504 27.3002 63.0611 3.5498 21.2386 53.4404 

-0.3 
Present 7.7783 32.4610 73.9467 4.1158 24.7265 62.0704 

Ref. (Gupta et al. 2006) 7.7783 32.4610 73.9467 4.1158 24.7265 62.0704 

0.3 
Present 12.6630 46.7812 103.4123 5.7483 34.5624 85.6205 

Ref. (Gupta et al. 2006) 12.6631 46.7813 103.4123 5.7483 34.5625 85.6205 

0.5 
Present 14.3021 51.3480 112.6359 6.2927 37.7423 93.0342 

Ref. (Gupta et al. 2006) 14.3021 51.3480 112.6360 6.2927 37.7423 92.0342 

 

 

calculated using 20 grid points for the clamped and simply supported edges, respectively. The 

results of the DQM show excellent agreement with results obtained from (Leissa 1969) and (Wu et 

al. 2002). However, by comparing the present results with the results obtained from another 

numerical method called the Differential transformation method (DTM), it is observed that there 

are some differences in the results of the first three natural frequencies in case of clamped 

boundary conditions while the results are identically matched for a simply supported case when 

compared to the results from the analytical solution. This reveals that DQM converges faster for 

different boundary conditions in contrast to DTM. Another comparison was carried out with the 

results obtained from the finite element method (FEM) to confirm the accuracy and the efficiency 

of the adopted approach. The results of FEM are considered less accurate results in comparison 

with the rest of the mentioned numerical methods. For non-uniform thickness, the results of 

natural frequencies for linear variation in thickness can be compared to the results mentioned in  
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Table 4 Validation of the effect of elastic foundation parameters on the first three frequencies 

𝐾𝑤 𝐾𝑝 Method 
Clamped Simply supported 

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 

200 

0 
Present 17.4460 42.2107 90.2194 14.9785 32.9132 75.4925 

Ref. (Sharma et al. 2011) 17.4460 42.2107 90.2194 14.9785 32.9132 75.4925 

10 
Present 19.3082 45.9974 94.5297 16.8025 37.2563 80.2995 

Ref. (Sharma et al. 2011) 19.3082 45.9974 94.5297 16.8025 37.2563 80.2995 

25 
Present 21.7514 51.1398 100.6458 19.2145 42.9558 87.0135 

Ref. (Sharma et al. 2011) 21.7514 51.1398 100.6458 19.2145 42.9558 87.0135 

500 

0 
Present 24.5838 45.6261 91.8670 22.8988 37.1925 77.4540 

Ref. (Sharma et al. 2011) 24.5838 45.6261 91.8670 22.8988 37.1925 77.4540 

10 
Present 25.9385 49.1504 96.1034 24.1314 41.0857 82.1463 

Ref. (Sharma et al. 2011) 25.9385 49.1504 96.1034 24.1314 41.0857 82.1463 

25 
Present 27.8051 53.9933 102.1253 25.8688 46.3163 88.7207 

Ref. (Sharma et al. 2011) 27.8051 53.9933 102.1253 25.8689 46.3163 88.7207 

 

 

(Gupta et al. 2006) as illustrated in Table 3.  

The effect of elastic foundation parameters (Kw, Kp) on the first three natural frequencies were 

validated according to the results obtained from (Sharma, Srivastava et al. 2011) using DQM. The 

results in Table 4 show exact agreement using the same approach of the present work. 

 
4.2 Parametric study 
 

The purpose of the present work is to study the effect of various geometric and elastic 

foundation parameters on the natural frequency of the circular plate for both clamped and simply 

supported edges. Firstly, the numerical results presented in Table 5 show the effect of a Pasternak 

foundation on the first three natural frequencies of a circular plate with variable thickness. 

According to Table 5, the frequency parameter increases when the curvature direction of the plate 

changes from downward to upward. However, with the presence of a Pasternak foundation, the 

effect of the geometric parameter 𝛾 decreases significantly in both clamped and simply supported 

cases. Secondly, Table 6 explains the effect of a Pasternak foundation on a plate with different 

volume fraction index (g). It can be observed that the natural frequency decreases while the 

material changes from ceramic to metal.  Furthermore, whenever the foundation coefficients are 

increased the effect of (g) is reduced specially in the simply supported case.  

Fig. 3 shows the effects of the Pasternak foundation on the first two natural frequencies. It is 

noticeable that the fundamental frequency goes up with increasing the foundation parameters. This 

increase is more evident in case of simply supported edges and negligibly small on the second 

natural frequency in both cases.  

The plots presented in Fig. 4 illustrate the normalized deflection of the circular plate for the 

first three mode shapes of vibration of a non-uniform circular plate with clamped and simply 

supported edges 𝐾𝑤 = 50, 𝐾𝑝 = 10, 𝛼 = 0.3 and 𝑔 = 1. This case aims to study the effect of the 

geometrical parameter 𝛾 on the mode shapes of an FGM circular plate resting on a Pasternak 

foundation. It was found that the size of nodal circles decreases for thickness profile with 

geometrical parameter 𝛾 with positive value (concavity goes upward), for all mode shapes for both  
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Table 5 Effects of Pasternak foundation on the first three natural frequencies of the circular plate with a 

parabolic variation in the thickness (𝑔 = 1, 𝛽 = 2, 𝛼 = 0) 

(𝐾𝑤 , 𝐾𝑝) 𝛾 
Clamped Simply supported 

Ω1 Ω2 Ω3 Ω1 Ω2 Ω3 

(0,0) 

-0.5 5.5173 24.9704 58.1201 3.3603 19.8721 49.8765 

-0.3 6.7186 28.4193 64.9932 3.6633 21.9432 54.9396 

0 8.4988 33.0865 74.1277 4.1057 24.7247 61.6921 

0.3 10.2590 37.3734 82.3746 4.5579 27.2757 67.8079 

0.5 11.4231 40.0848 87.5293 4.8698 28.8918 71.6385 

(25,5) 

-0.5 9.7786 29.5048 62.9523 8.6708 25.4768 55.6406 

-0.3 10.4879 32.2377 68.9548 8.6615 26.6133 59.5320 

0 11.7174 36.2624 77.3649 8.7027 28.5381 65.3344 

0.3 13.0736 40.1477 85.1848 8.8031 30.5539 70.9096 

0.5 14.0241 42.6630 90.1378 8.9001 31.9110 74.4916 

(50,10) 

-0.5 12.6693 33.4156 67.4196 11.7703 29.9766 60.7999 

-0.3 13.2063 35.6461 72.6979 11.6803 30.5631 63.7855 

0 14.2015 39.1768 80.4709 11.6014 31.8989 68.7842 

0.3 15.3535 42.7345 87.9028 11.5850 33.5104 73.8796 

0.5 16.1836 45.0849 92.6698 11.6058 34.6628 77.2363 

 

  

  
(a) Clamped edge (b) Simply supported edge 

Fig. 3 Effects of the Pasternak foundation on the first two natural frequencies, (𝛼 = 0.3, 𝛽 = 2, 𝛾 =
0.5, 𝑔 = 1) 
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(a) Clamped edge (b) Simply supported edge 

Fig. 4 Effects of geometric parameter 𝛾 on the first three normalized mode shapes, for (𝐾𝑤 = 50, 𝐾𝑝 =

10, 𝛼 = 0.3, 𝛽 = 2, 𝑔 = 1) 

 

 

clamped and simply supported edges except for the fundamental mode in case of simply supported 

edges, where there is no remarkable change in the size of the nodal circles.  

 
 
5. Conclusions 

 

The present work discusses the effect of various geometric and foundation parameters on the 

natural frequency of a circular plate, such as using an FGM for the circular plate changing from 

ceramic to metal, different functions of variation in the plate thickness, and the presence of 

variable Winkler parameter with a Pasternak foundation. The Differential Quadrature method is 

employed to obtain the solution. The next observations can be made: 

• The geometry configuration of the plate including the material and thickness profile affects 

the frequency parameter and the vibrational behavior of the plate.  

• A significant reduction in the size of the nodal circles of the mode shapes of the circular plate 

takes place when the plate becomes thicker at the edge.  

• The effects of the Pasternak foundation were included, and it was found that the frequency 

parameter goes up by increasing the foundation parameters 𝐾𝑤 and 𝐾𝑝. 

• The frequency parameter can change linearly when the foundation parameter varies linearly. 

As a result, the behavior of the plate can be predicted according to the type of the soil.  

• The results of the adopted approach were compared with the results obtained using different 

numerical methods from well-known references for special cases to ensure the accuracy of the 

presented approach. 
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