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Abstract.  The paper is devoted to the study of thermomechanical interactions in a homogeneous nonlocal 
magneto-thermoelastic rotating medium under the effect of hall current and two temperature with memory dependent 
derivatives. A two-dimensional model has been assumed. Laplace and Fourier transforms have been used to find the 
solution to the problem in transformed domain. The analytical expressions of components of displacement, stress and 
current density and conductive temperature are obtained in the transformed domain. Numerical inversion technique 
has been applied to obtain the results in the physical domain and the results are depicted graphically to show the 
effect of nonlocal parameter on the components of displacements, stresses, current density and conductive 
temperature. The effect of nonlocal parameter and hall current parameter has been represented graphically by taking 
different values. 
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1. Introduction 
 

Hall current is produced due to the combined effect of electric and magnetic field in a 

conductor. Such conductors which exhibit this phenomenon are termed as Magneto-thermoelastic 

materials. These materials are very important due to their wide range of applications in the fields 

of geophysics, nuclear fields, seismology, inspecting materials, magnetometers and various other 

related fields. Nonlocal theory of thermoelasticity and two temperature theory of thermoelasticity 

are very important theories  

The concept of two temperature was formulated by Chen and Gurtin (1968). They gave the 

concept of two temperature i.e., conductive temperature and thermodynamical temperature. Edelen 

and Laws (1971) and Edelen et al. (1971) gave the theory of nonlocal continuum mechanics which 

considers that the state of stress at a point of a body is a function of state of strains of all the points 

of the body. Marin (1996) discussed generalized solutions in elasticity of micropolar bodies with 

voids. Eringen (2002) gave and explored the Nonlocal Continuum Theories. Youssef (2006) 
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proposed a theory of two-temperature-generalized thermoelasticity and obtained the uniqueness 

theorem. Youssef and Al-Lehaibi (2007) estimated the effects of two temperature parameter in 

generalized thermoelasticity. Abbas et al. (2011) discussed generalized magneto-thermoelasticity 

in a fiber-reinforced anisotropic half-space. Othman and Abbas (2011) studied the effects of 

rotation on plane waves. Othman and Abbas (2012) proposed a generalized thermoelasticity of 

thermal-shock problem. Atwa and Jahangir (2014) investigated two temperature effects on a 

thermo-microstretch elastic solid. A model based upon two temperature generalized thermoelastic 

theory was proposed by Abbas (2014). Marin et al. (2015) discussed the considerations on double 

porosity structure for micropolar bodies. Sharma et al. (2016) investigated the thermomechanical 

interactions in transversely isotropic magneto-thermoelastic medium with two temperature. 

Alzahrani and Abbas (2016) studied the effect of magnetic field on a thermoelastic material under 

GN-III theory.  

Ezzat and El-Barrry (2017a, 2017b) studied magneto-thermoelastic materials with phase-lag 

and memory dependent derivatives. Bellifa et al. (2017) derived a nonlocal shear deformation 

theory while Karami et al. (2018) derived nonlocal strain gradient theory. Mokhtar et al. (2018) 

proposed a novel shear deformation theory based on nonlocal elasticity theory. Abouelregal (2019) 

presented a new nonlocal model based on Eringen’s nonlocal elasticity and generalized 

thermoelasticity and studied magneto-thermoelastic waves. Abualnour et al. (2019) anlayzed 

composite plates using a refined plate theory. Balubaid et al. (2019) studied free vibration of FG 

nanoscale plate. Belmahi et al. (2019) studied effects on the vibration of a nano beam using 

nonlocal elasticity theory. Benahmed et al. (2019) investigated nanoscale beam using nonlocal 

shear deformation theory. Soleimani et al. (2019) and Hussain et al. (2019) discussed nonlocal 

effect in their studies. Lata and Singh (2019) investigated the nonlocal effects under the effect of 

an inclined load on a thermoelastic solid. Khan et al. (2019) investigated magnetohydrodynamic 

fluid with variable thermal conductivity and chemical reaction over an exponentially stretching 

surface. Asghar et al. (2020) also studied the nonlocal effects in their studies and derived some 

important results and conclusions from their study. Saeed et al. (2020) gave a GL model on 

thermo-elastic interaction in a poroelastic material. Lata and Singh (2020a) studied the effects of 

hall current on a nonlocal magneto-thermoelastic solid due to a normal force and depicted the 

results graphically. Lata and Singh (2020b, 2020c) investigated thermomechanical interactions in 

nonlocal thermoelastic solid with two temperatures and with memory dependent derivatives 

respectively. Tahir et al. (2021) studied the dispersion relations of wave propagation in a FGM 

plate. Mudhaffar et al. (2021) discussed the bending behavior of a FGM plate subjected to a 

hygro-thermo-mechanical load. Tahir et al. (2021) and Bakoura et al. (2021) studied the wave 

propagation and buckling analysis respectively in fuctionally graded plates. Refrafi (2020) used a 

novel shear deformation theory in their study of functionally graded sandwich plates. Lata and 

Singh (2020d) discussed ramp type effects on a nonlocal thermoelastic solid. Lata and Singh 

(2020e, 2021) studied the wave propagation in nonlocal magneto-thermoelastic solids with Hall 

current and discussed the various effects on wave characteristics. Zhang et al. (2020) discussed 

Entropy impacts on the blood flow through anisotropically tapered arteries filled with magnetic 

zinc-oxide (ZnO) nanoparticles Lata and Singh (2020) discussed time harmonic interactions in 

nonlocal thermoelastic solid. Zenkour (2020) proposed a refined multi-dual-phase-lag model.  

In this research paper, an attempt has been made to study the thermomechanical interactions in 

a homogeneous nonlocal magneto-thermoelastic rotating medium under the combined effect of 

hall current and two temperature parameter with the help of memory dependent derivatives. The 

effect of nonlocal parameter and hall current parameter has been represented graphically by taking 
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different values. The results might be useful for the scientists and researchers working for the 

development of nonlocal thermoelasticitc and magneto-thermoelastic theories and related fields. 

 

 
2. Basic equations 

 

Following Eringen (2002) and Abouelregal (2019), the invariant form of nonlocal equation of 

motion can be written as follows 

t𝑖𝑗,𝑗 + (1 − 𝜖
2∇2)�⃗�𝑖 = 𝜌(1 − 𝜖

2∇2)[�⃗⃗̈� + Ω⃗⃗⃗ × (Ω⃗⃗⃗ × u⃗⃗) + 2Ω⃗⃗⃗ × �̇�]⃗⃗ ⃗⃗ 𝑖.                (1) 

It is assumed that the homogeneous nonlocal isotropic magneto-thermoelastic solid is rotating 

with a uniform angular velocity Ω⃗⃗⃗ =  Ω�̂�, where �̂� is a unit vector demonstrating the direction of 

the rotation axis and �⃗�𝑖 = 𝜇0(𝐽 × 𝐻0⃗⃗ ⃗⃗ ⃗)𝑖  denotes the Lorentz force, 𝐻0⃗⃗ ⃗⃗ ⃗  is the external applied 

magnetic field intensity vector, 𝐽 is the current density vector, �⃗⃗� is the displacement vector, 𝜇0 and 

𝜀0 are the magnetic and electric permeabilities respectively. The terms Ω⃗⃗⃗ × (Ω⃗⃗⃗ × u⃗⃗) and 2Ω⃗⃗⃗ × u⃗⃗̇ 

denote centripetal acceleration due to the time-varying motion and Coriolis acceleration 

respectively. 

The above equations are supplemented by generalized Ohm’s law for media with finite 

conductivity and including the hall current effect (from Kumar et al. (2017)) 

𝐽 =
𝜎0

1+𝑚2 (E⃗⃗⃗ + 𝜇0 (u⃗⃗̇ × �⃗⃗⃗� −
1

𝑒𝑛𝑒
J⃗ × 𝐻0⃗⃗ ⃗⃗ ⃗))                                     (2) 

where, 𝜎0  is the electrical conductivity, 𝑚(= 𝜔𝑒𝑡𝑒) is the Hall parameter, 𝜔𝑒  is the electronic 

frequency, 𝑡𝑒  is the electron collision time, e is the charge of an electron, 𝑛𝑒  is the number of 

density of electrons. 

Following Sarkar et al. (2018), the heat conduction equation with memory dependent 

derivatives and constitutive relations in a homogeneous nonlocal thermoelastic solid with two 

temperatures are given by 

𝐾∗∇2𝜑 =  𝜌 𝐶∗
𝜕𝜃

𝜕𝑡
+  𝛽𝜃0

𝜕

𝜕𝑡
(∇. 𝑢) + ∫ 𝐾(𝑡 − 𝜉)

𝑡

𝑡−𝜏
(𝜌 𝐶∗

𝜕2𝜃

𝜕𝜉2
+  𝛽𝜃0

𝜕2

𝜕𝜉2
(∇. 𝑢))𝑑𝜉,         (3) 

where, 𝜃 = (1 − 𝑎∇2) 𝜑,    

(1 − 𝜖2∇2)𝑡𝑖𝑗 = 𝜆𝑢𝑘,𝑘𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) −  𝛽𝑇𝛿𝑖𝑗.                               (4) 

where 𝜆, 𝜇 are Lame’s constants,𝜖is the nonlocal parameter, 𝜌 is the mass density, �⃗⃗� = (𝑢, 𝑣, 𝑤) is 

the displacement vector, 𝜑  is the conductive temperature, 𝑎  is two temperature parameter,  𝜃 is 

absolute temperature and 𝜃0  is reference temperature, 𝐾∗denotes the coefficient of the thermal 

conductivity, 𝐶∗ the specific heat at constant strain, 𝛽 is the thermal tensor and 𝛽 = (3λ + 2μ)𝛼 

where α is coefficient of linear thermal expansion,  𝑒𝑖𝑗 are components of strain tensor,𝑒𝑘𝑘 is the 

dilatation, 𝛿𝑖𝑗 is the Kronecker delta, 𝑡𝑖𝑗 are the components of stress tensor. 

 

 
3. Formulation of the problem 

 

We consider a perfectly conducting homogeneous nonlocal isotropic magneto-thermoelastic 
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medium rotating uniformly with an angular velocity Ω⃗⃗⃗ initially at uniform temperature 𝑇0. The 

rectangular Cartesian coordinate system (x,y,z) is introduced, having origin on the surface (z=0) 

with z-axis pointing normally downwards into the half space. For two-dimensional problem in xz-

plane, we consider 

�⃗⃗�= (𝑢, 0, 𝑤).                                                               (5) 

We also assume that �⃗⃗� = (𝐸1, 0, 𝐸3), Ω⃗⃗⃗ = (0, Ω, 0).                               (6) 

Now, using Eq. (5) 

𝐽𝑦 =  0                                                                    (7) 

The current density components 𝐽𝑥 and 𝐽𝑧 using Eq. (2) are given as 

𝐽𝑥 = 
𝜎0𝜇0𝐻0

1+𝑚2 (𝑚
𝜕𝑢

𝜕𝑡
−
𝜕𝑤

𝜕𝑡
),                                                     (8) 

𝐽𝑧 = 
𝜎0𝜇0𝐻0

1+𝑚2 (
𝜕𝑢

𝜕𝑡
+𝑚

𝜕𝑤

𝜕𝑡
).                                                     (9) 

Using Eq. (5) in Eq. (1) and Eq. (3), yields 

(𝜆 + 2𝜇)
𝜕2𝑢

𝜕𝑥2
+ (𝜆 + 𝜇)

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝜇 

𝜕2𝑢

𝜕𝑧2
− 𝛽

𝜕𝑇

𝜕𝑥
− (1 − 𝜖2∇2)𝜇0𝐽𝑧𝐻0 

= 𝜌(1 − 𝜖2∇2) {
𝜕2𝑢

𝜕𝑡2
− Ω2u + 2Ω

𝜕𝑤

𝜕𝑡
},                                     (10) 

(𝜆 + 2𝜇)
𝜕2𝑤

𝜕𝑧2
+ (𝜆 + 𝜇)

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝜇 

𝜕2𝑤

𝜕𝑧2
− 𝛽

𝜕𝑇

𝜕𝑧
− (1 − 𝜖2∇2)𝜇0𝐽𝑥𝐻0 

= 𝜌(1 − 𝜖2∇2) {
𝜕2𝑤

𝜕𝑡2
− Ω2w− 2Ω

𝜕𝑤

𝜕𝑡
},                                   (11) 

𝐾∗∇2𝜑 =  𝜌 𝐶∗
𝜕𝜃

𝜕𝑡
+  𝛽𝜃0

𝜕

𝜕𝑡
(∇. 𝑢) + ∫ 𝐾(𝑡 − 𝜉)

𝑡

𝑡−𝜏
(𝜌 𝐶∗

𝜕2𝜃

𝜕𝜉2
+  𝛽𝜃0

𝜕2

𝜕𝜉2
(∇. 𝑢))𝑑𝜉.    (12) 

Following Sarkar et al. (2018), the kernel function form is chosen as 

K(𝑡 − 𝜉) = 1 −
2𝑏

𝜔
(𝑡 − 𝜉) +

𝑎2

𝜔2
(𝑡 − 𝜉)2    =  

{
 
 

 
 
1                           𝑖𝑓 𝑎 = 0, 𝑏 = 0

1 −
(𝑡−𝜉)

𝜔
            𝑖𝑓 𝑎 = 0, 𝑏 =

1

2

1 − (𝑡 − 𝜉)         𝑖𝑓 𝑎 = 0, 𝑏 =
𝜔

2

(1 −
𝑡−𝜉

𝜔
)
2
    𝑖𝑓 𝑎 = 𝑏 = 1

              (13) 

we define the following dimensionless quantities            

(𝑥′, 𝑧′, 𝑢′, 𝑤′) =
𝜔1
𝑐1
(𝑥, 𝑧, 𝑢, 𝑤), 𝑡𝑖𝑗

′ =
𝑡𝑖𝑗

𝛽𝜃0
,     𝑡′ = 𝜔1𝑡,    𝑎

′ =
𝜔1
2

𝑐1
2 𝑎, 

  𝑇′ =
𝑇

𝑇0
, Ω′ =

Ω

𝜔1
, 𝜏𝑣
′ = 𝜔1𝜏𝑣, 𝜏0

′ = 𝜔1𝜏0, 𝜏𝑞
′ = 𝜔1𝜏𝑞.                            (14) 

where, 𝑐1
2 =

𝜇

𝜌
 and𝜔1 = 

𝜌 𝐶∗𝑐1
2

𝐾∗
.  

The relations between non-dimensional displacement components 𝑢, 𝑤 and the dimensionless 

potential functions 𝑞, 𝜓 can be expressed as 
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𝑢 =
𝜕𝑞

𝜕𝑥
−
𝜕𝜓

𝜕𝑧
,  𝑤 =

𝜕𝑞

𝜕𝑧
+
𝜕𝜓

𝜕𝑥
                                                   (15)  

Upon introducing the quantities defined by Eq. (14) and (15) in Eqs. (10)-(12), and suppressing 

the primes, yields 

{(1 + 𝑎1)𝛻
2 − (1 − 𝜖2𝛻2) [

𝑀

1+𝑚2

𝜕

𝜕𝑡
+

𝜕2

𝜕𝑡2
− 𝑎3Ω

2]} 𝑞 − 𝑎2(1 − 𝑎𝛻
2)𝜑 = 0,     (16) 

{𝛻2 − (1 − 𝜖2𝛻2) (
𝜕2

𝜕𝑡2
− 𝑎3Ω

2)}𝜓 = 0,                                   (17) 

∇2𝜑 = (1 + 𝜔𝐷𝜔)[𝑎3(1 − 𝑎∇
2)

𝜕𝜑

𝜕𝑡
𝐶∗

𝜕𝜃

𝜕𝑡
+ 𝑎4

𝜕𝑒

𝜕𝑡
,                          (18) 

where,  𝑎1 =
𝜆+𝜇

𝜇
, 𝑎2 =

𝛽𝜃0

𝜇
, 𝑎3 =

𝜔1
2

𝑐1
2 , 𝑎4 =

𝜌𝐶∗𝑐1
2

K∗𝜔1
,𝑎5 =

𝛽𝑐1
2

K∗𝜔1
 and 𝑀 =

𝜎0𝜇0
2𝐻0

2

𝜌
. 

The initial and regularity conditions are given by 

𝑢1(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 
𝑤(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0), 

𝜑(𝑥, 𝑧, 0) = 0 = �̇�(𝑥, 𝑧, 0) for 𝑧 ≥ 0,−∞ < 𝑥 < ∞, 

𝑢(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑧, 𝑡) = 𝜑(𝑥, 𝑧, 𝑡) = 0 𝑓𝑜𝑟 𝑡 > 0 𝑤ℎ𝑒𝑛 𝑧 → ∞. 

Applying Laplace and Fourier Transform defined by  

𝑓(̅x, z, s) = ∫ 𝑓(𝑥, 𝑧, 𝑡)
∞

0
𝑒−𝑠𝑡𝑑𝑡,                                             (19) 

𝑓(ξ, 𝑧, 𝑠) = ∫ 𝑓(̅𝑥, 𝑧, 𝑠)
∞

−∞
𝑒𝑖ξ𝑥𝑑𝑥.                                            (20) 

on Eqs. (16)-(18), we obtain a system of equations 

[(𝛿6 + 𝜖
2𝛿1)𝐷

2 − (𝛿6ξ
2 + 𝛿1𝛿3)]�̃� − [𝑎2(𝛿5 − 𝑎𝐷

2)]�̃� = 0,                      (21) 

[(1 + 𝜖2𝛿2)𝐷
2 − 𝜉2 + 𝛿2𝛿3]�̃� = 0,                                      (22) 

[𝑎5𝛿4(𝐷
2 − 𝜉2)]�̃� + [𝑎4𝛿4𝛿5 + 𝜉

2 − (𝑎𝑎4𝛿4 + 1)𝐷
2]�̃� = 0.                    (23) 

where, 𝛿1 =
𝑀

1+𝑚2 𝑠 + 𝑠
2 − 𝑎3Ω

2 , 𝛿2 = 𝑠
2 − 𝑎3Ω

2 , 𝛿3 = 1 + 𝜖
2ξ2 ,𝛿4 = 𝑠(1 + 𝐺), 𝛿5 = 1 + 𝑎ξ

2 , 

𝛿6 = 1 + 𝑎1. 

Also 

 𝐺(𝑠) = (1 − 𝑒−𝑠𝜔) (1 −
2𝑏

𝑠𝜔
+

2𝑎2

𝑠2𝜔2
) − 𝑒−𝑠𝜔 (𝑎2 − 2𝑏 +

2𝑎2

𝑠𝜔
)                    (24) 

where, a, b are constants such that  

L(𝜔𝐷𝜔𝑓(𝑡) =

{
 
 

 
 
1 − 𝑒−𝑠𝜔                                                          𝑖𝑓 𝑎 = 0, 𝑏 = 0

1 −
(1−𝑒−𝑠𝜔)

𝑠𝜔
                                                    𝑖𝑓 𝑎 = 0, 𝑏 =

1

2

(1 − 𝑒−𝑠𝜔) −
1

𝑠
(1 − 𝑒−𝑠𝜔) + 𝜔𝑒−𝑠𝜔         𝑖𝑓 𝑎 = 0, 𝑏 =

𝜔

2

(1 −
2

𝑠𝜔
) +

2(1−𝑒−𝑠𝜔)

𝑠2𝜔2
                                    𝑖𝑓 𝑎 = 𝑏 = 1

                 (25) 

From Eq. (21)-(23), we obtain a set of homogeneous equations which will have a nontrivial 

solution if determinant of coefficient [�̃�, �̃�, �̃�]𝑇 vanishes so as to give a characteristic equation as 

[𝐷6 + Q𝐷4 + 𝑅𝐷2 + 𝑆](�̃�, �̃�, �̃�) = 0.                                          (26) 
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where,  

𝑄 =
1

𝑃
{[𝛿8𝛿10𝛿11 + 𝛿7(𝛿10𝛿12 + 𝛿9𝛿11 + 𝜉

2𝛿11)] + 𝑎2𝑎5𝛿4(𝛿5𝛿11 + 𝑎
2𝛿12 + 𝑎𝜉

2𝛿11)}, 

𝑅 =
−1

𝑃
{[𝛿7𝛿12(𝛿9 + 𝜉

2) + 𝛿8(𝛿10𝛿12 + 𝛿9𝛿11 + 𝜉
2𝛿11)] + 𝑎2𝑎5𝛿4(𝛿5𝛿12 + 𝜉

2𝛿5𝛿11 +

𝑎𝜉2𝛿12)}, 

𝑆 =
1

𝑃
{𝛿8𝛿12(𝛿9 + 𝜉

2) + 𝑎2𝑎5𝛿4𝛿5𝛿12𝜉
2}, 

𝑃 = 𝛿11(𝛿7𝛿10 + 𝑎𝑎2𝑎5𝛿4), 

𝐷 =
𝑑

𝑑𝑧
. 

The roots of Eq. (26) are ±𝜆𝑖(𝑖 = 1,2,3) satisfying the radiation condition that  �̃�, �̃�, �̃� → 0 as 

𝑧 → ∞,  the solutions of equation can be written as 

�̃� = 𝐴1𝑒
−𝜆1𝑧 + 𝐴2𝑒

−𝜆2𝑧 + 𝐴3𝑒
−𝜆3𝑧,                                          (27) 

�̃� = 𝑑1𝐴1𝑒
−𝜆1𝑧 + 𝑑2𝐴2𝑒

−𝜆2𝑧 + 𝑑3𝐴3𝑒
−𝜆3𝑧,                                    (28) 

�̃� = 𝑙1𝐴1𝑒
−𝜆1𝑧 + 𝑙2𝐴2𝑒

−𝜆2𝑧 + 𝑙3𝐴3𝑒
−𝜆3𝑧.                                   (29) 

where, 

𝑑𝑖 =
𝑃∗∗𝜆𝑖

4+𝑄∗∗𝜆𝑖
2+𝑅∗∗

𝑃∗𝜆𝑖
4+𝑄∗𝜆𝑖

2+𝑅∗
  𝑖 = 1,2,3.                                         (30) 

𝑙𝑖 =
𝑆∗∗𝜆𝑖

4+𝑇∗∗𝜆𝑖
2+𝑈∗∗

𝑃∗𝜆𝑖
4+𝑄∗𝜆𝑖

2+𝑅∗
  𝑖 = 1,2,3.                                         (31) 

𝑃∗ = −𝛿10𝛿11, 𝑄∗ = 𝛿10𝛿12 + (𝛿9 + 𝜉
2)𝛿11, 𝑅∗ = −𝛿12(𝛿9 + 𝜉

2), 
𝑃∗∗ = 𝛿7𝛿11, 𝑄∗∗ = −𝛿7𝛿12 + 𝛿8𝛿11, 𝑅 = 𝛿8𝛿12, 

𝑆∗∗ = −(𝛿7𝛿10 + 𝑎𝑎2𝛿5),𝑇
∗∗ = (𝛿9 + 𝜉

2)𝛿7 + 𝛿8𝛿10 + 𝑎2𝑎5(𝛿5 + 𝜉
2)𝛿4, 𝑈∗∗ = −(𝛿9 +

𝜉2)𝛿8 + 𝑎2𝑎5𝛿4𝛿5𝜉
2. 

 
 

4. Applications 
 

On the half-space (𝑧 = 0 ) normal point force and thermal point source are applied. The 

boundary conditions are 

(1)𝑡𝑧𝑧(𝑥, 𝑧, 𝑡) = −𝐹1𝜓1(𝑥)𝛿(𝑡),                                         (32) 

(2) 𝑡𝑧𝑥(𝑥, 𝑧, 𝑡) = 0,                                                  (33) 

(3) 
𝜕

𝜕𝑧
𝜑(𝑥, 𝑧, 𝑡) = 𝐹2𝜓2(𝑥)𝛿(𝑡) at 𝑧 = 0.                                 (34) 

where, 𝐹1 is the magnitude of the force applied,  𝐹2  is constant force applied on the boundary,  

𝜓1(𝑥)  specify the source distribution function along 𝑥  axis and 𝜓2(𝑥)  specify the source 

distribution function along 𝑧 axis. 

Using the dimensionless quantities defined by Eq. (14) and using Eqs. (4), (5), (15), (19), (20) 

and substituting values of �̃�, �̃� and �̃� from Eqs. (27)-(29), in Eqs. (32)-(34) and solving, we obtain 

the components of displacement, stress and conductive temperature as 

�̃� =
𝐹1𝜓1̃(𝜉)

sΔ
{∑ 𝜂𝑖(𝜄𝜉 + 𝜆𝑖𝑙𝑖)𝑒

−𝜆𝑖𝑧3
𝑖=1 } +

𝐹2𝜓2̃(𝜉)

sΔ
{∑ 𝜂𝑖+3(𝜄𝜉 + 𝜆𝑖𝑙𝑖)𝑒

−𝜆𝑖𝑧3
𝑖=1 },              (35) 
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�̃� =
𝐹1𝜓1̃(𝜉)

sΔ
{∑ 𝜂𝑖(𝜄𝜉𝑙𝑖 − 𝜆𝑖)𝑒

−𝜆𝑖𝑧3
𝑖=1 } +

𝐹2𝜓2̃(𝜉)

sΔ
{∑ 𝜂𝑖+3(𝜄𝜉𝑙𝑖 − 𝜆𝑖)𝑒

−𝜆𝑖𝑧3
𝑖=1 },             (36) 

�̃� =
𝐹1𝜓1̃(𝜉)

sΔ
{∑ 𝜂𝑖𝑑𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 } +

𝐹2𝜓2̃(𝜉)

sΔ
{∑ 𝜂𝑖+3𝑑𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 },                         (37) 

𝑡𝑧�̃� =
−𝐹1𝜓1̃(𝜉)

sΔ
{∑ [(𝜆 + 2𝜇)(𝜄𝜉𝑙𝑖 − 𝜆𝑖)𝜆𝑖 + 𝛽𝑑𝑖(1 + 𝑎𝜉

2 − 𝑎𝜆𝑖
2)]𝜂𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 }  

−
𝐹2𝜓2̃(𝜉)

sΔ
{∑ [(𝜆 + 2𝜇)(𝜄𝜉𝑙𝑖 − 𝜆𝑖)𝜆𝑖 + 𝛽𝑑𝑖(1 + 𝑎𝜉

2 − 𝑎𝜆𝑖
2)]𝜂𝑖+3𝑒

−𝜆𝑖𝑧3
𝑖=1 },           (38) 

𝑡𝑧�̃� =
𝐹1𝜓1̃(𝜉)

sΔ
{∑ 𝜇[𝜄𝜉(𝜄𝜉𝑙𝑖 − 𝜆𝑖) − 𝜆𝑖(𝜄𝜉 + 𝜆𝑖𝑙𝑖)]𝜂𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 }  

+
𝐹2𝜓2̃(𝜉)

sΔ
{∑ 𝜇[𝜄𝜉(𝜄𝜉𝑙𝑖 − 𝜆𝑖) − 𝜆𝑖(𝜄𝜉 + 𝜆𝑖𝑙𝑖)]𝜂𝑖+3𝑒

−𝜆𝑖𝑧3
𝑖=1 },                         (39) 

𝑡𝑥�̃� =
𝐹1𝜓1̃(𝜉)

sΔ
{∑ [𝜄𝜉(𝜆 + 2𝜇)(𝜄𝜉 + 𝜆𝑖𝑙𝑖) + 𝛽𝑑𝑖(1 + 𝑎𝜉

2 − 𝑎𝜆𝑖
2)]𝜂𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 }  

+
𝐹2𝜓2̃(𝜉)

sΔ
{∑ [𝜄𝜉(𝜆 + 2𝜇)(𝜄𝜉 + 𝜆𝑖𝑙𝑖) + 𝛽𝑑𝑖(1 + 𝑎𝜉

2 − 𝑎𝜆𝑖
2)]𝜂𝑖+3𝑒

−𝜆𝑖𝑧3
𝑖=1 },            (40) 

𝐽�̃� =
𝐹1𝜓1̃(𝜉)

Δ
{∑ 𝐴[𝑚 − 𝑑𝑖]𝜂𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 } +

𝐹2𝜓2̃(𝜉)

Δ
{∑ 𝐴[𝑚 − 𝑑𝑖]𝜂𝑖+3𝑒

−𝜆𝑖𝑧3
𝑖=1 },          (41) 

𝐽�̃� =
𝐹1𝜓1̃(𝜉)

Δ
{∑ 𝐴[1 + 𝑚𝑑𝑖]𝜂𝑖𝑒

−𝜆𝑖𝑧3
𝑖=1 } +

𝐹2𝜓2̃(𝜉)

Δ
{∑ 𝐴[1 + 𝑚𝑑𝑖]𝜂𝑖+3𝑒

−𝜆𝑖𝑧3
𝑖=1 },       (42) 

∆=  𝜂1Δ11 − 𝜂2Δ12 + 𝜂3Δ13.                                       (43) 

where,  

η1 = Δ22Δ33 − Δ32Δ23, η2 = Δ21Δ33 − Δ31Δ23, η3 = Δ21Δ32 − Δ31Δ22, η4 = Δ22Δ11 − Δ12Δ21, 

η5 = Δ23Δ11 − Δ13Δ21, η6 = Δ23Δ12 − Δ13Δ22,  𝐴 =
𝜎0𝜇0𝐻0𝑠

1+𝑚2 , 

∆1𝑗= (𝜆 + 2𝜇)𝜆𝑗
2 − 𝜄𝜉𝜆𝑗𝑙𝑗 + 𝛽𝑑𝑗(𝑎𝜆𝑗

2 − 𝛿5),∆2𝑗= 2𝜄𝜉 − 𝑙𝑗𝜉
2 − 𝜆𝑗

2𝑙𝑗, ∆3𝑗= 𝜆𝑗𝑑𝑗; 𝑗 = 1,2,3. 

 
 
5 Special cases 

 
a. Mechanical force on the half-space surface: 
Taking 𝐹2 = 0 in Eqs. (35)-(42), we obtain the components of displacement, stress and 

conductive temperature due to mechanical force. 

 
b. Thermal source on the half-spacesurface: 
Taking 𝐹1 = 0 in Eqs. (35)-(42), we obtain the components of displacement, stress and 

conductive temperature due to thermal force. 
 
5.1 Concentrated force 
 

The solution due to concentrated normal force and thermal point source on the half space is 

obtained by taking 

𝜓1(𝑥) = 𝛿(𝑥), 𝜓2(𝑥) = 𝛿(𝑥).                                                (44) 

Applying Laplace and Fourier transform as defined by Eqs. (19)-(20), we obtain 
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𝜓1̂(𝜉) = 1, 𝜓2̂(𝜉) = 1.                                                      (45) 

The expressions for displacement, stresses and conductive temperature can be obtained for 

concentrated normal force and thermal source by replacing 𝜓1̂(𝜉) and 𝜓2̂(𝜉) from Eq. (45) in Eqs. 

(35)-(42) respectively. 

 
5.2 Uniformly distributed force 
 

The solution due to uniformly distributed load applied on the half space is obtained by setting 

𝜓1(𝑥) = 𝜓2(𝑥) = {
1 𝑖𝑓  |𝑥| ≤ 𝑚

0 𝑖𝑓  |𝑥| > 𝑚
.                                              (46) 

The Laplace and Fourier transform of 𝜓1(𝑥) with respect to the pair (x, 𝜉) for the case of a 

uniform strip load of non-dimensional width 2 m applied at origin of co-ordinate system 𝑥 = 𝑧 =
0  in the dimensionless form after suppressing the primes becomes 

𝜓1̂(𝜉) = 𝜓2̂(𝜉) = [
2 sin (𝜉𝑚)

𝜉⁄ ] 𝜉 ≠ 0.                                    (47) 

The expressions for displacement, stresses and conductive temperature can be obtained for 

uniformly distributed normal force and thermal source by replacing 𝜓1̂(𝜉) and 𝜓2̂(𝜉) from Eq. 

(47) in Eqs. (35)-(42) respectively. 

 
 
6. Particular cases 
 

• If 𝑎 = 0, then from Eqs. (35)-(42), the corresponding expressions for displacements, stresses, 

current density and conductive temperature for nonlocal isotropic magneto-thermoelastic solid 

without two temperature are obtained. 

• If 𝜖 = 0, then from Eqs. (35)-(42), the corresponding expressions for displacements, stresses, 

current density and conductive temperature for local isotropic magneto-thermoelastic solid with 

two temperature are obtained. 

• If 𝜖 = 𝑎 = 0, then from Eqs. (35)-(42), the corresponding expressions for displacements, 

stresses, current density and conductive temperature for a local isotropic solid without two 

temperature are obtained. 

• If m = 𝜖 = 0, then from Eqs. (35)-(42), the corresponding expressions for displacements, 

stresses, current density and conductive temperature for a local isotropic solid without hall 

current are obtained. 

• If m = 0, then from Eqs. (35)-(42), the corresponding expressions for displacements, stresses, 

current density and conductive temperature for a nonlocal isotropic solid without hall current 

are obtained. 

 
 
7. Inversion of the transformation 

 

To obtain the solution of the problem in physical domain, we need to invert the transforms in 

Eqs. (35)-(42). As the components of displacement, stress and current density and conductive 

358



 

 

 

 

 

 

Effects due to two temperature and hall current in a nonlocal isotropic magneto-thermoelastic… 

temperature are functions of the form 𝑓(𝜉, 𝑧, 𝑠). To obtain the function 𝑓(𝑥, 𝑧, 𝑡) in the physical 

domain, we invert the Fourier transform as used by Sharma et al. (2008), using 

𝑓(𝑥, 𝑧, 𝑠) =
1

2𝜋
∫ 𝑒−𝑖𝜉𝑥
∞

−∞
𝑓(𝜉, 𝑧, 𝑠)𝑑𝜉 =

1

2𝜋
∫ |cos(𝜉𝑥) 𝑓𝑒 − 𝑖 sin(𝜉𝑥) 𝑓0|
∞

−∞
𝑑𝜉 .            (48) 

where, 𝑓𝑒and 𝑓0 are respectively the even and odd parts of 𝑓(𝜉, 𝑧, 𝑠). Thus the expression (48) 

gives the Laplace transform 𝑓(𝑥, 𝑧, 𝑠) of the function 𝑓(𝑥, 𝑧, 𝑡). Following Honig and Hirdes, the 

Laplace transform function 𝑓(𝑥, 𝑧, 𝑠) can be inverted to 𝑓(𝑥, 𝑧, 𝑡). 
The Last step is to calculate the integral in Eq. (48). The method used is as described by Press. 

It involves the use of Romberg’s integration with adaptive step size. 

 

 
8. Numerical results and discussion: 

 

Magnesium material is chosen for the purpose of numerical calculation and according to 

Dhaliwal and Singh (1980), physical data for which is given as 

𝜆 = 9.4 × 1010𝑁𝑚−2, 𝜇 = 3.278 × 1010𝑁𝑚−2, 𝐾∗ = 1.7 × 102𝑊𝑚−1𝐾−1, 𝜌 = 1.74 ×
 103𝐾𝑔𝑚−3, 𝜃0 = 298 𝐾, 𝐶

∗ = 10.4 × 102𝐽𝐾𝑔−1𝑑𝑒𝑔−1, 𝜔1 = 3.58, 𝑎 = 0.05. 

A comparison of values of displacement components 𝑢 and 𝑤, stress components 𝑡𝑧𝑧, 𝑡𝑥𝑥, 𝑡𝑧𝑥, 

current density components  𝐽𝑥 ,  𝐽𝑧 and conductive temperature 𝜑 for a nonlocal isotropic magneto-

thermoelastic solid with distance x has been made for the local parameter (𝜖 = 0) and nonlocal 

parameter (𝜖 = 1) and Hall parameter (𝑚 = 0 and 𝑚 = 1). 

1) The solid red colored line with center symbol square corresponds to local parameter 𝜖 = 0 

and 𝑚 = 0. 

2) The solid blue colored line with center symbol star corresponds to local parameter 𝜖 = 0 and 

𝑚 = 1. 

3) The solid green colored line with center symbol circle corresponds to nonlocal parameter 

𝜖 = 1 and 𝑚 = 0. 

4) The solid purple colored line with center symbol triangle corresponds to nonlocal parameter 

𝜖 = 1 and 𝑚 = 1. 

 
8.1 Concentrated force 

 
a) Mechanical force on the surface of half-space 
Fig. 1, shows the variations in values of displacement component 𝑢 under the effect of 

concentrated mechanical force. It is clear from the figure that the values of 𝑢 follow oscillatory 

pattern. For𝑥 ≤ 6, the varaiations for local parameter are less oscillatory as compared to nonlocal 

parameter but the difference in magnitude is less in the second half. Fig. 2 depicts the variation of 

values of displacement component 𝑤. The pattern is oscillatory with a visible difference between 

values for local and non-local parameters as well for Hall parameter. For 𝜖 = 1 and 𝑚 = 1, the 

oscillatory behavior is of less magnitude and magnitude follows a decreasing pattern as 

displacement increase. Fig. 3 and Fig. 4 describe the variations of stress components 𝑡𝑧𝑧 and 𝑡𝑥𝑥 

with respect to displacement. For both local and non-local parameters, the behavior is oscillatory 

but the magnitude is more in case of nonlocal parameter. Fig. 5 shows the variation of stress 

component 𝑡𝑧𝑥 . In this case the trend followed is oscillatory but with more variations when the 

Hall parameter is non-zero. Fig. 6 illustrates the variation of conductive temperature 𝜑. The  
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Fig. 1 Variation of displacement component 𝑢 with 

displacement x (mechanical concentrated force) 

Fig. 2 Variation of displacement component 𝑤 with 

displacement x (mechanical concentrated force) 

 

  

Fig. 3 Variation of stress component 𝑡𝑧𝑧  with 

displacement x (mechanical concentrated force) 

Fig. 4 Variation of stress component 𝑡𝑥𝑥  with 

displacement x (mechanical concentrated force) 

 

  

Fig. 5 Variation of stress component 𝑡𝑧𝑥  with 

displacement x (mechanical concentrated force) 

Fig. 6 Variation of conductive temperature 𝜑 with 

displacement x (mechanical concentrated force) 

 

 

behavior followed is oscillatory. Fig. 7 and Fig. 8 show the variations of current density 

components 𝐽𝑥 and 𝐽𝑧 respectively. It is clear that the behavior is oscillatory in both. While, in case 

of  𝐽𝑥, the variations are of maximum magnitude in case of nonlocal parameter with Hall parameter  
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Fig. 7 Variation of current density component 𝐽𝑥 

with displacement x (mechanical concentrated force) 

Fig. 8 Variation of current density component 𝐽𝑧 with 

displacement x (mechanical concentrated force) 

 

  

Fig. 9 Variation of displacement component 𝑢 with 

displacement x (thermal concentrated force) 

Fig. 10 Variation of displacement component  𝑤 

with displacement x (thermal concentrated force) 

 

  

Fig. 11 Variation of stress component 𝑡𝑧𝑧  with 

displacement x (thermal concentrated force) 

Fig. 12 Variation of stress component 𝑡𝑥𝑥  with 

displacement x (thermal concentrated force) 

 

 

as zero. In case of  𝐽𝑧, the variations are of minimum magnitude for local parameter with non-zero 

Hall parameter. 
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Fig. 13 Variation of stress component 𝑡𝑧𝑥  with 

displacement x (thermal concentrated force) 

Fig. 14 Variation of conductive temperature 𝜑 with 

displacement x (thermal concentrated force) 

 

  

Fig. 15 Variation of current density component 𝐽𝑥 

with displacement x (thermal concentrated force) 

Fig. 16 Variation of current density component 𝐽𝑧 
with displacement x (thermal concentrated force) 

 
 

b) Thermal source on the surface of half-space 
Fig. 9 and Fig. 10, shows the variations in values of displacement components  𝑢  and  𝑤 

respectively. The behavior followed is oscillatory for both. Non-locality and Hall effect are clearly 

causing the effects in variations. Fig. 11 depicts the variations of values of stress component 𝑡𝑧𝑧. 

The behavior followed is oscillatory and the effects of non-local parameter and Hall parameter can 

be clearly noticed. Also, the magnitude of oscillations is of higher magnitude for local parameter 

with zero Hall parameter. Fig. 12 and Fig. 13 describes the variations of stress component 𝑡𝑥𝑥 and 

stress component 𝑡𝑧𝑥 respectively. Hall current and nonlocality both are clearly causing enough 

differences in variations. Fig. 14 shows the variation of conductive temperature 𝜑. As per the 

trend, the variations are oscillatory with difference for local and non-local parameter values. Also, 

the variations decrease with nonlocal effect. Fig. 15 and Fig. 16 show the variations of current 

density components 𝐽𝑥  and 𝐽𝑧  respectively. The behavior is oscillatory in both the cases. The 

variations are there due to nonlocal parameter and Hall parameter. In case of  𝐽𝑧, the variations are 

of minimum magnitude for local parameter with Hall parameter. 
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Fig. 17 Variation of displacement component 𝑢 

with displacement x (mechanical uniformly 

distributed force) 

Fig. 18 Variation of displacement component  𝑤 

with displacement x (mechanical uniformly 

distributedforce) 

 

  

Fig. 19 Variation of stress component 𝑡𝑧𝑧  with 

displacement x (mechanical uniformly distributed 

force) 

Fig. 20 Variation of stress component 𝑡𝑥𝑥  with 

displacement x (mechanical uniformly 

distributedforce) 

 
 
8.2 Uniformly distributed force 
 
a) Mechanical force on the surface of half-space 
Fig. 17 and Fig. 18, shows the variations in values of displacement component 𝑢 and 𝑤 

respectively under the effect of concentrated mechanical force with respect to displacement. It is 

clear from the figures that the values follow an oscillatory pattern with a visible difference for both 

nonlocal and Hall parameter. In case of displacement component𝑤, the varaiations for nonlocal 

parameter with Hall effect are less oscillatory and follows almost a decreasing pattern during the 

mid-path as compared to other values. Fig. 19 depicts the variation of values of stress component 

𝑡𝑧𝑧 with respect to displacement. The pattern followed is oscillatory and the difference is there 

between values for local and non-local parameters as well for Hall parameter. For 𝜖 = 1 and 𝑚 =
1, the magnitude is maximum. Fig. 20 and Fig. 21 describe the variations of stress components 

𝑡𝑥𝑥  and 𝑡𝑧𝑥 with respect to displacement. For both local and non-local parameters, the behavior is 

oscillatory. The magnitude is more in case of nonlocal parameter for 𝑡𝑥𝑥, while the trend is  
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Fig. 21 Variation of stress component 𝑡𝑧𝑥  with 

displacement x (mechanical uniformly distributed 

force) 

Fig. 22 Variation of conductive temperature 𝜑 with 

displacement x (mechanical uniformly 

distributedforce) 

 

  

Fig. 23 Variation of current density component 𝐽𝑥 

with displacement x (mechanical uniformly 

distributed force) 

Fig. 24 Variation of current density component 𝐽𝑧 
with displacement x (mechanical uniformly 

distributed force) 

 

 

in the case of stress component 𝑡𝑧𝑥. Fig. 22 shows the variation of conductive temperature 𝜑. The 

behavior is oscillatory as per the trend. The variations in magnitude are more for local parameter 

as compares to nonlocal parameter. Fig. 23 and Fig. 24 illustrates the variations of current density 

components 𝐽𝑥 and 𝐽𝑧 respectively. It is clear that the behavior is oscillatory in both. In case of  𝐽𝑥, 

the variations are of maximum magnitude in case of nonlocal parameter with Hall parameter as 

zero. While for  𝐽𝑧, the variations increase with Hall parameter. 

 
b) Thermal source on the surface of half-space 
Fig. 25 illustrates the variations in values of displacement component 𝑢. The behavior followed 

is oscillatory and the effect of nonlocal parameter and Hall parameter are clearly causing the 

effects in variations. The magnitude of variations is maximum for local parameter as compared to 

nonlocal parameter. Fig. 26 shows the variations in values of displacement component 𝑤, being 

oscillatory in nature with the effects of nonlocal parameter and Hall parameter causing the effects 

in variation. Fig. 27 depicts the variations of values of stress component 𝑡𝑧𝑧 . The behavior 

followed is oscillatory and the effects of non-local parameter and Hall parameter are clearly  
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Fig. 25 Variation of displacement component 𝑢 with 

displacement x (thermal uniformly distributedforce) 

Fig. 26 Variation of displacement component 𝑤 with 

displacement x (thermal uniformly distributed force) 

 

  

Fig. 27 Variation of stress component 𝑡𝑧𝑧  with 

displacement x (thermal uniformly distributedforce) 

Fig. 28 Variation of stress component 𝑡𝑥𝑥  with 

displacement x (thermal uniformly distributedforce) 

 

  

Fig. 29 Variation of stress component 𝑡𝑧𝑥  with 

displacement x (thermal uniformly distributedforce) 

Fig. 30 Variation of conductive temperature 𝜑 with 

displacement x (thermal uniformly distributedforce) 

 

 

visible. Fig. 28 and Fig. 29 describes the variations of stress component 𝑡𝑥𝑥 and stress component 

𝑡𝑧𝑥 respectively. The behavior followed is oscillatory. For stress component 𝑡𝑥𝑥, the magnitude of  

365



 

 

 

 

 

 

Parveen Lata and Sukhveer Singh 

  

Fig. 31 Variation of current density component 𝐽𝑥 

with displacement x (thermal uniformly distributed 

force) 

Fig. 32 Variation of current density component 𝐽𝑧 
with displacement x (thermal uniformly distributed 

force) 

 

 

oscillations is comparatively more for nonlocal parameter without Hall effect while in case of 

stress component 𝑡𝑧𝑥, the variations are less for local as well as nonlocal parameter without Hall 

parameter. Fig. 30 shows the variation of conductive temperature  𝜑 . As per the trend, the 

variations are oscillatory. Also, the variations of magnitude are less for nonlocal parameter. Fig. 31 

and Fig. 32 show the variations of current density components 𝐽𝑥 and 𝐽𝑧 respectively. The behavior 

is oscillatory as per the trend and the variations are there due to Hall parameter and nonlocality. In 

case of  𝐽𝑧, the variations are of comparatively less in magnitude for local parameter with Hall 

parameter. 

 

 

8. Conclusions 
 

In the above discussion, the effects of Hall parameter and nonlocal parameter on the 

components of displacements, stresses, current density and conductive temperature have been 

examined and depicted graphically on a nonlocal thermo-elastic solid. It is clear that nonlocality 

and Hall effect are playing a significant effect on all the components. Results are illustrated in the 

forms of graphs using thermal and mechanical sources with two types of forces i.e., concentrated 

and uniformly distributed force. From graphs, it is observed that rotation and nonlocal parameter 

play a key role in the variations on various components. The results inspire us to study magneto-

thermoelastic materials as an innovative domain of nonlocal isotropic thermoelastic solids. The 

shape of curves shows the impact of nonlocal and Hall parameter on the body. The outcomes of 

this research are extremely helpful in the 2-D problem with dynamic response of isotropic 

magneto-thermoelastic medium with rotation and nonlocality which can be beneficial in the fields 

of geophysics, geomagnetism, power plants, composite engineering, high-energy particle 

accelerators etc. It can also be helpful to the researchers working in the field of material 

engineering, marine engineering for the theoretical considerations of seismic sources and in the 

development of the theory of nonlocal magneto-thermoelasticity. 
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