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Abstract.  This study is aimed to develop a damping model to accurately predict vibration amplitude reduction for 
any size of structure. It is developed in the framework of multi-scale analysis, where different sources of energy 
dissipation at captured at material-scales (e.g., scale of representative volume element). In particular, we illustrate details 
for concrete structures, where one needs different failure mechanisms like plasticity, damage and viscosity to represent 
different sources of dissipation are reproduce the typical hysteresis loops of concrete with both residual deformation 
and change of initial elastic response. The final step in proposed approach is to account for structure heterogeneities by 
allowing for variability of elasticity limit, which produces the same exponential (rather than linear decay) of vibration 
amplitudes, just as in the case of Rayleigh damping. However, contrary to Rayleigh damping calibration that can be 
done only on a single structure (and for a chosen frequency), the proposed approach can be adapted to any structure 
size and full interval of frequencies of interest. The price to pay is in terms of nonlinear analysis, which is here rendered 
very efficient by hybrid-stress formulation to uncouple different damage mechanisms and by using linear evolution 
equations for internal variables representing such mechanisms. The details illustrated for 1D and 3D concrete model 
can be easily adapted to other materials, such as steel, soils etc. 
 

Keywords:  Rayleigh damping replaced; material-scale mechanisms; probability, structure heterogeneities 

 
 
1. Introduction 
 

1.1 Preliminary remarks on what is wrong with the Rayleigh damping model for 
dynamics 
 

Currently dominant approach in engineering practice when studying dynamic vibration of 

engineering structures or systems relies upon well-known equations of motion (e.g., Clough and 

Penzien 2006, Chopra 1995). For forced vibrations of an undamped system, the equations of motion 

for can be written in the form 

M ü(t) + K u(t) = f(t)                           (1) 

 

Corresponding author, Professor, E-mail: adnan.ibrahimbegovic@utc.fr 



 

 

 

 

 

 

Adnan Ibrahimbegovic and Rosa Adela Mejia Nava 

where M and K are respectively structure stiffness and mass matrix, f(t) is applied dynamic force 

(e.g., earthquake, wind, explosions etc.) and u(t) is corresponding dynamic response. The main 

advantage of such an approach is in that allows for very efficient computations by appealing to the 

classical mode superposition approach (e.g., Clough and Penzien 2006, Chopra 1995, Geradin and 

Rixen 2015) where the equations of motion are uncoupled in terms of modal response (representing 

the motion of a complex structure in a particular mode of free vibrations) and solved easily, either 

analytically or numerically, (e.g., Ibrahimbegovic 2009) for each of these equations independently.  

In order to account for damped vibrations (which certainly corresponds to reality, since the 

vibrations eventually stop due to different energy dissipation mechanisms), one then uses the well-

known Rayleigh damping (e.g., Clough and Penzien 2006, Ibrahimbegovic and Ademovic 2019). 

The latter assumes that the damping phenomena are proportional to vibration velocities, with the 

coefficient of proportionality, so called damping matrix C, which can be constructed as linear 

combination of mass and stiffness matrix 

C = a0 M + a1 K (2) 

where two coefficients, or Rayleigh parameters a0 and a1, are obtained from chosen damping 

coefficient ζ that characterize a typical attenuation of vibration amplitudes with typical choices of 

5% for concrete and 2% for steel structures; see (Ibrahimbegovic and Ademovic 2019) on how to 

simply obtain the Rayleigh parameters according to:  

ξ = a0 / 2ωn   or  ξ = a1 ωn / 2 (3) 

where ωn is the chosen frequency that should be damped with precisely the chosen amount of 

damping. The best one can to further improve that, given two Rayleigh parameters, is to choose two 

different frequencies ωn and ωm and make sure that chosen damping coefficients would precisely 

apply to those two modes. However, one has to realize that all other frequencies would be damped 

in the way that is quite unrealistic, either somewhat less (inside the interval between chosen 

frequencies) or much more – see Fig. 1 for illustration (Ibrahimbegovic and Ademovic 2019). 

 

1.2 What we propose as more material-scale-base damping model for dynamics 
capable of representing different phases of dynamic response 
 

 

 

Fig. 1 Relationship between damping ratio and frequency (for Rayleigh damping) (Ibrahimbegovic 

and Ademovic 2019) 
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Fig. 2 Three typical phases of earthquake induced vibrations: i) small vibration amplitudes at start, 

ii) strong shaking with large vibration amplitudes for the dominant phase, and iii) free vibrations of 

damaged structure after earthquake excitation stops 

 
 

What we seek to construct and develop in this paper is very new concept damping obtained from 

material scales, which can provide much better correlation with dynamics response of real life 

structures, under complex loading such as earthquake. More precisely, a very typical response to 

earthquake (see Fig. 2) passes through three different phases: i) small vibration amplitudes for mild 

earthquake, ii) strong shaking with large vibration amplitudes for the dominant phase of earthquake 

excitation, and iii) free vibrations of damaged structure produced once the earthquake excitation 

stops.  

It is clear that the Rayleigh damping cannot come even close to representing these three different 

phases of vibration amplitudes under earthquake motion, since the damping ratio in (1) or the fit in 

Fig. 3 can only capture one particular frequency interval. In this paper, we present a completely 

different approach, where different sources of energy dissipation are presented on physically-based 

ground at material scales. In this manner we can indeed capture different phenomena that are 

triggered as we go along the earthquake excitation from mild to strong shaking to finally free 

vibrations of a damaged structure. This is explained for concrete structures by combining plasticity, 

damage and viscosity models to capture typical hysteresis loops of concrete material. The 

development relies upon and extends our previous works on modeling concrete structure damage 

mechanisms at material-scales (Ibrahimbegovic et al. 2008, Jehel et al. 2010, Karavelic et al. 2019). 

The details corresponding to development are given in Section 2. 

There is yet another deficiency of the Rayleigh damping that we address and correct in this work 

by judicious combination of material-scale modeling and structure heterogeneities probability 

description (Ibrahimbegovic et al. 2011, Ibrahimbegovic et al. 2014, Ibrahimbegovic et al. 2021). 

Namely, the identification fit we can use with the Rayleigh damping is valid only at the structural 

level. More precisely, once we have recorded the structure response, we ought to identify the 

corresponding damping leading to particular time variation of displacement (such in Fig. 2). How is 

this handled with Rayleigh damping? The typical dynamic response given for Rayleigh damping 

pertains to exponential decay of amplitudes, until final time of vibrations, with a bigger amplitude 

decay for larger values of damping ratio (see Fig. 3). 
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Fig. 3 Typical exponential amplitude decay for Rayleigh damping for three different values of 

damping ratio 

 

 

The damping characteristics here are sought for a typical structural system where we express the 

damping of such real system in terms of equivalent viscous damping ratio that shows similar decay 

rates under free vibration conditions. More precisely, it is easy to obtain with the exponential 

amplitude decay that by considering any two successive positive peaks, such as vn and vn+1, the 

natural logarithm of the ratio of these two successive values is given by the so-called logarithmic 

decrement of damping δ (Clough and Penzien 2006) 

 
(4) 

which is often further simplified to δ=2 π ξ for small damping values. Hence, the experimental 

damping identification with Rayleigh damping is carried out for a particular structure, by measuring 

the logarithmic decrement of damping and thus deducing the corresponding value of damping 

coefficient for such structure. Needless to say, such measurement is valid only for a particular 

structure, and thus the standard procedure for damping identification just described is influenced by 

the structure size, and cannot be considered intrinsic value that can apply to any size of the structure.  

We will show in Section 3 that the amplitude decay for homogeneous structure is typical of 

plasticity and damage sources of dissipation, which are comparable to dry friction. Namely, it was 

shown by Inman (2001) that the dry friction type of damping leads to linear amplitude decay. 

However, the key novel idea we illustrate here is the fact that by accounting for structure 

heterogeneities – which implies the variation of limit of elasticity at different points of the structure 

– we indeed recover the exponential decay typical of experimental results. Hence, we do obtain the 

same result as the one with the Rayleigh damping, but not by ‘forcing’ the type or response for a 

typical structure, but rather by using the intrinsic procedure from material scale and probability 

based extrapolation to structure scale. In this manner, we can deal with damping interpretation for 

structure of any size. 

 

 
2. Multi-scale model of concrete in cyclic loading 
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Fig. 4 Typical sources of energy dissipation under earthquake induced vibrations for concrete and 

reinforced-concrete structures 

 
 

2.1 Material-scales basis for representing sources of energy dissipation through internal 
variables 
 

Obviously the structure-level identification procedure typical of the Rayleigh damping cannot be 

fully representative of different sources of energy dissipation, such as illustrated in Fig. 4 for typical 

concrete and reinforced-concrete structure.  

Given large diversity of the sources illustrated in Fig. 4, we will further focus upon the energy 

dissipation sources in concrete, during typical hysteresis loops in cyclic loading (see Fig. 5(a)). In 

order to be able to capture the energy dissipation in each hysteresis loop, we ought to use combined 

plasticity, damage and viscosity model (Ibrahimbegovic et al. 2008) to represent real response of 

concrete material for typical cyclic loading. In fact, we do simplify this representation somewhat, 

by choosing the linear evolution equations (e.g., linear hardening) so as to be able to carry out 

computations more efficiently. As the consequence, the hysteresis loops produced by our model (see 

Fig. 5(b)) will not have ‘rounded’ hysteresis loops typical of experimental results, but rather rhombic 

type of shape. However, in the identification phase (described in the next section), we will make 

sure that the dissipated energy in a typical cycle remains the same between experiment and the 

model prediction, even though the shape is not entirely the same – the area enclosed by each  
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(a)                                        (b) 

Fig. 5 Hysteresis loops for concrete specimen in compression under cyclic loading: a) left – experimental 

results (Ramtani 1990) b) modeling with coupled plasticity-damage-viscosity model with linear evolution 

equations for internal variables 

 
Table 1 Set of internal variables α, corresponding conjugate variables A and corresponding moduli jointly 

denoted as PC (parameters constants) 

 t/c Compression Tension 

α 𝜖̅𝜐 𝜖̅𝑝 𝜉̅𝑝 𝜆�̅� �̅� 𝜉̅𝑑 �̿�𝑑 𝜉̿𝑝 �̿� 𝜉̿𝑑 

A 𝜎𝜐 𝜎 �̅�𝑝 �̅�𝑝 
𝜎2

2
 �̅�𝑑 t �̿�𝑝 

𝑡2

2
  �̿�𝑑 

PC E, η �̅� 𝐾𝑝 𝐻𝑝 �̅�−1 𝐾𝑑 �̿� 𝐾𝑝 �̿�−1 σ∞, α 

 

 

hysteresis loop indeed is.  

More, precisely, for describing the cyclic response of concrete in compression we would need 

the whole list of internal variables: 𝜀̅𝑣 and 𝜀̅𝑝 as the viscous and plastic deformations, 𝜉̅𝑝 and �̅�𝑝 

as strain-like variables that represent isotropic and kinematic plastic hardening, �̅� as the damage 

compliance quantifying the reduction in elastic modulus and 𝜉̅𝑑  as the strain-like isotropic 

hardening for damage. Furthermore, in the final failure stage with softening response where the 

stress decreases for increasing strain, we need additional internal variables: up as localized plastic 

deformation, 𝜉̅̅𝑝 as measure of plastic strain softening in compression, as well as �̿� as the damage 

softening compliance and 𝜉̅̅𝑑 as measure of damage strain softening in tension. In order to place 

these developments in the sound thermodynamics framework (Ibrahimbegovic 2009), each of these 

strain-like internal variables has associated stress-like thermodynamically conjugate variables and 

corresponding moduli connecting two sets of conjugate variable with constant values, which chosen 

for computational efficiency. Table 1, given below, summarizes the full set of internal variables, 

their conjugate variables in the sense of thermodynamics (Ibrahimbegovic 2009), and corresponding 

moduli. 

The set of internal variables in Table 1 above, along with the total strain ε can be used to define 

the total energy of the system, by assuming additive split of total deformation along with 

corresponding additive split of different mechanisms contributions 
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(5) 

where the top row summarized the energy in tension, as combination of elastic energy and damage 

softening in tension, whereas the second row presents the energy in compression as combination of 

elastic energy with viscosity, the plastic hardening potentials, both isotropic and kinematic, the 

damage hardening potential, and finally the plastic softening potentials. 

The total energy dissipation that takes into account all different sources of energy dissipation can 

then be explicitly written as combination of viscous, plastic and damage dissipations, including both 

hardening and softening response phase 

 

(6) 

The activation of each particular internal variable is monitored through corresponding yield or 

damage function. In particular, for internal variables in compression with σ<0 we use, in order, 

viscosity activation criterion, plasticity criterion, damage criterion and softening plasticity criterion 

 

(7) 

Similarly, for internal variables in tension with σ>0 we use viscosity activation criterion and 

damage softening criterion 

 

(8) 

The evolution equations of internal variables can then be obtained by appealing to the principle 

of maximum plastic dissipation which should be applied for inelastic criteria in (7) and (8) above 

that take zero value; we thus obtain the evolution equations for viscous strain, plastic strain and 

damage compliance, along with corresponding hardening and softening variables in compression 

and in tension. More precisely, the complete list of evolution equations can be presented as follows:  

Viscosity   

𝜖̅̇v =  
�̅�v

𝜂

𝜕�̅�v

𝜕𝜎
,
�̅�v

𝜂
= �̇�v 𝛾 ≥ 0, 𝜙v ≤ 0, �̇�v̇ 𝜙v = 0 
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Continuous plasticity Continuous damage 

(9) 

𝜖̇p = �̇�p
𝜕𝜙p

𝜕𝜎
 

�̇�p = �̇�p
𝜕𝜙p

𝜕𝑞p
 

�̇�p = �̇�p
𝜕𝜙p

𝜕𝑘p
 

�̇�p ≥ 0, 𝜙p ≤ 0, �̇�p𝜙p = 0 

�̇�𝜎 = �̇�d
𝜕𝜙d

𝜕𝜎
 

�̇�d = �̇�d
𝜕𝜙d

𝜕𝑞d
 

 
�̇�p ≥ 0, 𝜙p ≤ 0, �̇�p𝜙p = 0 

Discrete plasticity Discrete damage 

�̇̿�i
p

= �̇̿�i
𝑃 𝜕�̿�𝑖

𝑃

𝜕𝑡i̿
𝑃  

𝜉̿̇
i
p

= �̇̿�i
𝑃 𝜕�̿�𝑖

𝑃

𝜕�̿�i
𝑃  

�̇̿�i
𝑃 ≥ 0, 𝜙𝑖

𝑃 ≤ 0, �̇̿�i
𝑃�̿�𝑖

𝑃 = 0 

�̇̿�iti = �̇̿�i
d 𝜕�̿�i

d

𝜕ti
 

𝜉̿̇
i
d = �̇̿�i

d 𝜕�̿�𝑖
d

𝜕�̿�i
d

 

�̇̿�i
d ≥ 0, �̿�i

d ≤ 0, �̇̿�i
d �̿�i

d = 0              

In a very similarmanner one can provide the corresponding set of internal variables and 

corresponding evolution equations for many other sources of energy dissipation, such as with soils 

(Hadzalic et al. 2018a, b, c, Hadzalic et al. 2019, Hadzalic et al. 2020, Saksala 2015, Saksala 2016, 

Saksala 2020), massive concrete structures (Karavelic et al. 2019, Rukavina et al. 2019, Hautefeuille 

et al. 2009), reinforced concrete structures (Ibrahimbegovic et al. 2010), steel structures (Imamovic 

et al. 2015, Imamovic et al. 2018, Nguyen et al. 2021), or structures controlled by frictional device 

(Mejia Nava et al. 2020).  

This completely defines the computations at material-scales that allows providing the intrinsic 

description of sources of energy dissipation.   

 

2.2 Structure-scales hybrid-stress variational formulation granting computational 
efficiency 
 

In this section we complete development that pertain to structure-scales. To that end, we choose 

the multi-fiber 3D beam model of Euler-Bernoulli type, which is very suitable for modeling many 

frame structures (see Fig. 6).   

Each fiber structural-level response is considered fully described by usual Euler-Bernoulli beam 

kinematics featuring the displacement at the neutral axis along the beam axis and derivative of 

transverse displacement that is in agreement with the hypothesis that the beam cross-sections remain 

plane after deformation and also remain perpendicular to the deformed neutral axis of the beam. If 

in addition we include the possible failure within the fiber, with uf as the failure mode, we can write 

the fiber kinematics according to 

 
 

 

Fig. 6 Multi-scale 3D beam structural model with fiber-type of micro-structure 
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(10) 

where zf is the distance of a particular fiber to neutral axis, HΓ is the Heaviside function (e.g., Clough 

and Penzien 2006) introducing crack-like opening in beam kinematics, and φf is the attenuation 

function that removes the influence of crack from distant displacement filed (e.g., see 

Ibrahimbegovic 2009). 

We next set the weak form of equations of motions by using the hybrid-stress variational 

formulation (Ibrahimbegovic 2009) at the beam structural level, and split the integrals over the beam 

cross and beam length. The former can then be simplified to summing up over total number of fibers 

within the beam cross-section, leading to the final expression 

 

(11) 

We note that the hybrid-stress formulation considers the stress as independent field, so that we 

have to provide not only usual finite element interpolations for displacement field (e.g., 

Ibrahimbegovic 2009), but also for stress. The former is selected by using the standard Hermite 

polynomials (Clough and Penzien 2006) in agreement with the chosen Euler-Bernoulli beam 

kinematics 

 
(12) 

Such choice of discrete approximation implies continuity of displacement field and its derivatives 

(for transverse component) from one element to another. By replacing these interpolations into the 

weak form in (11) above, we recover the semi-discrete format of equations of motion, with time 

dependent terms regrouping the inertia forces, internal and external force.  

 

(13) 

The internal force has to be computed from the stress within each fiber as indicated in (11)2. Now, 

the hybrid-stress formulation comes to rescue, for it provides the stress interpolation chosen 

independently in each element fiber, since no stress field continuity is required in the hybrid-stress 

weak form; thus, we can write 

 
(14) 
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which allows to obtain the internal force very easily by summing up stresses in each particular fiber.  

Needless to say, the set of semi-discrete equations of motion in (13) above is highly non-linear. 

Thus, we have to perform incremental-iterative procedure in order to advance the solution in time 

(e.g., see Ibrahimbegovic 2009). The hybrid-stress variational formulation again comes to a rescue, 

in that it allows not to compute the tangent stiffness matrix, but rather its inverse. The main 

advantage of such approach is in the fact that all contributions form different energy dissipation 

mechanisms remain fully uncoupled and we can account for all their contributions in a simple 

additive manner. More precisely, by linearizing (11)2 we can obtain the inverse of the tangent 

compliance matrix, which can be inverted to obtain the corresponding tangent stiffness matrix. This 

can be written as follows 

 

(15) 

which fully explains the structure-scale computations. 

We note in passing that two key ingredients that grant very high computational efficiency of the 

proposed approach are: i) hybrid-stress formulation that allows to reduce the problem to computing 

the elasto-visco-plastic-damage compliance, where different mechanisms remain additively coupled 

so that the contribution of each one can be computed independently; ii) the linear 

hardening/softening laws that allow to avoid the local iterative procedure at the level of internal 

variable evolution, resulting in approximate representation of hysteresis loop shape but correct 

representation of the enclosed area. 

 
 

3. Results of numerical simulations in cyclic loading 
 

3.1 Material-scales identification procedure with judicious choice of loading program 
 

The main advantage of the proposed approach for damping mechanism identification is in 

intrinsic value, with parameters that can be identified at the material scale. In particular, in this 

example we provide an illustrative procedure for such identification related to cyclic response of 

concrete in compression. The experimental results of (Ramtani 1990) show the great complexity of 

such response, as illustrated in Fig. 7(a), with degradation of elastic response from cycle to cycle 

due to damage, with permanent plastic deformation and sort of rounded shape of hysteresis loops. 

The proposed model with linear hardening/softening evolution equations can capture the salient 

features, but not such a rounded shape of each hysteresis loop. Rather, the hysteresis loops produced 

by proposed model are of sharp contours, which does not allow to match the real rounded shape of  
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Fig. 7 Hysteresis loops for concrete specimen in compression under dynamic cyclic loading: i) left – 

experimental results ii) modeling with coupled plasticity-damage-viscosity model with linear evolution 

equations for internal variables 

 

  
(a) (c) 

  
(b) (d) 

Fig. 8 Full identification process for different model parameters with coupled viscosity-plasticity-damage 

with hardening and softening along with dedicated loading program to split identification into separate 

stages 

 

 

experimentally obtained hysteresis loops. Yet, what we seek to match is not the shape, but rather the 

area enclosed by each hysteresis loop, which corresponds to total dissipation in each loop. Hence, 
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the basis of material scales identification is indeed dissipation base, which is already proved to be 

the most judicious choice (e.g., Ibrahimbegovic et al. 2021). 

The parameter identification of coupled viscosity – plasticity – damage model with hardening/ 

softening, is further illustrated in Fig. 8. Namely, the key idea is to choose the most appropriate 

loading program, which will favor the dominant contribution of a particular model component. Thus, 

it becomes easier to isolate the main contribution and identify the corresponding value of the model 

parameter. In particular, in Fig. 8(a), we can start by identifying the yield stress value. Then, by 

using loading-unloading program, we can further identify the damage stress, as shown in Fig. 8(b). 

Furthermore, we can push the response towards ultimate stress to identify the highest possible value 

of stress, as illustrated in Fig. 8(c). Finally, we can carry on with a loading-unloading cycle in 

softening in order to identify the corresponding amount of dissipation in softening, as shown in Fig. 

8(d), (c). 

 

3.2 Typical earthquake vibration response and amplitude decay 
 
The parameter identification procedure, discussed in previous example, is carried out for simple 

proportional loading. In reality, the model performance should finally be evaluated with respect to 

real-life loading applications, such as typical earthquake vibration response. In Fig. 9 we illustrate a 

typical earthquake ground acceleration record, which when multiplied with so-called directional 

mass (e.g., see Clough and Penzien 2006) amounts to equivalent external force.    

Several typical response records for such an earthquake loading are further illustrated in Fig. 10. 

In particular, we consider the response in displacement, total force and stress records at particular 

location, with both the one that enters and the other that does not reach the softening phase. We can 

see that with the typical resolution of such records, we are much less concerned with rounded or not 

rounded shape of typical hysteresis loop. What is more important is the total area of each hysteresis 

loop with corresponding amount of dissipation. For that, the proposed model can ensure sufficiently 

good performance. 

 

3.3 Structure heterogeneities influence on vibration amplitude decay 
 

In this last example, we connect the material-scale and structural-scale behavior. In particular, 

we consider the vibrations of a cantilever beam, which implements the proposed coupled visco-  

 

 

 
Fig. 9 Typical earthquake ground acceleration time history 
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Fig. 10 Typical hystersis loops under earthquake ground acceleration time history 

 

  
(a) (b) 

Fig. 11 Typical amplitude decay with coupled plasticity-damage-viscosity model with: i) linear amplitude 

decay for fricton-like dissipation (Inman 2001) for homogeneous structure versus exponential amplitude 

decay for heterogeneous structure (with τ quantifying standard deviation in yield stress 𝜙(𝜎, 𝜅) =
|𝜎 + 𝜅| − 𝑓0(𝑥)𝜎𝑦 

 

 

plastic-damage model. The key novelty is to allow for structural-scale heterogeneities, which implies 

that the material parameters are not constant, but vary along the beam. In particular, such variation 

is modeled by using the chosen probability distribution of the yield stress of the plastic component 

of our model, where the simple Gaussian distribution is chosen. Hence, the large contribution of 

structure heterogeneities is characterized by large standard deviation of the yield stress; see Fig. 
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11(a), whereas a small value of the standard deviation implies that the structure is considered 

homogeneous.     

The results we thus obtain in Fig. 11(b) are truly remarkable. Namely, for small standard 

deviation of the yield stress and homogeneous structure, we indeed obtain linear decay in vibration 

amplitudes, typical of friction-like resistance as shown in (Inman 2001). This is not surprising given 

equivalence between phenomena of friction and plasticity (e.g., Ibrahimbegovic 2009).  

However, for heterogeneous structure for which large value of standard deviation of the yield 

stress is present, the decay of vibration amplitude becomes exponential, just as often observed in 

experiments. The result is indeed very valuable for it allows combining the intrinsic material-scales 

parameter identification of energy dissipation mechanisms with structure-scale heterogeneities in 

order to recover experimentally observed results.  

 

 

5. Conclusions 
 

The main challenge we successfully tackled in this paper is the development of a damping model 

to accurately predict vibration amplitude reduction for very different loading programs and any size 

of structure. The main idea to combine the material-scale for intrinsic interpretation of energy 

dissipation mechanism and structure-scale to account for heterogeneities, which is all consistently 

placed within the framework of multi-scale analysis. The proposed approach thus unifies the know-

how of material-science, where different sources of energy dissipation at captured at material-scales 

via so-called representative volume element; see accompany paper (Mejia et al. 2021), and structural 

–scale where the structure heterogeneities are playing the crucial role in providing the realistic 

bounds within the framework of stochastic analysis (Ibrahimbegovic et al. 2021).  

The proposed approach is definitely more costly than using the classical Rayleigh damping. 

Namely, we have illustrated details for concrete structures, where one needs different failure 

mechanisms like plasticity, damage and viscosity to represent different sources of dissipation are 

reproduce the typical hysteresis loops of concrete with both residual deformation and change of 

initial elastic response. However, the computational efficiency of such an approach was still possible 

to achieve thanks to two key ingredients: i) hybrid-stress variational formulation that allows to 

directly compute visco-plastic-damage compliance where the contributions of different energy 

dissipation mechanisms remains additive and can be computed independently, and ii) linear 

hardening/softening laws that allow to avoid local iterative procedure and can still well approximate 

the total area of each hysteresis loop and corresponding amount of energy dissipation.  

The most remarkable results of the proposed approach is in its ability to recover the exponential 

amplitude decay, by accounting for structure heterogeneities and by allowing for variability of 

elasticity limit. Such exponential amplitude decay is typical of many experimental results, which 

justified use of Rayleigh damping as the most appropriate damping model for structures. However, 

contrary to Rayleigh damping calibration that can be done only for a chosen frequency and on a 

single structure, the proposed approach can be adapted to any structure size and full interval of 

frequencies of interest. The price to pay is in terms of multi-scale nonlinear analysis, which as shown 

herein can still be rendered quite efficient.  

The details illustrated in this paper for cyclic concrete model can be easily adapted to other 

materials, such as soils (Hadzalic et al. 2018a, b, c, Hadzalic et al. 2019, Hadzalic et al. 2020, 

Saksala 2015, Saksala 2016, Saksala 2020), massive concrete structures (Karavelic et al. 2019, 

Rukavina et al. 2019, Hautefeuille et al. 2009), reinforced concrete structures (Ibrahimbegovic et 
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al. 2010), steel structures (Imamovic et al. 2015, Imamovic et al. 2018, Nguyen et al. 2021), or 

structures controlled by frictional device (Mejia Nava et al. 2020). 
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