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Abstract.  This work presents a modified Fourier-Ritz approach for first time is used to study dynamic transverse 
response of laminated plates with different boundary conditions based on classical plate’s theory. The transverse 
displacement component of the plate is represented by Fourier series which is modified by adding auxiliary functions 
to cosine series so as to accelerate the convergence of the series and the solution, proposed by (W.L. Li, Journal of 
Sound and Vibration, 273, 619–635, 2004) is corrected in present work. Different boundary conditions, types of 
lamination cross and angle ply, material types, range of force frequency and thickness schemes, are investigated flexibly 
and the results are in good agreement with those obtained by other solution techniques. 
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1. Introduction 
 

Composite laminated plates are important structural element and are widely used in many 

engineering applications, as a result they may work under severe conditions such as dynamic loading 

and or with different support conditions; therefore, it is of great significance for design, to    

investigate the response of laminated plates with general support conditions in practical structure 

designs. 

Analytical, semi-analytical,  numerical methods and experimental techniques were developed to 

investigate dynamic behavior of plates such as Naviers solution, Rayleigh-Ritz method and finite 

element technique (FEM). Superposition method used for free vibration problem  has been modified 

by  Gorman and Singhal (2009) to handle dynamic response of cantilever plates of two different 

geometries to a harmonically excited base with range of  frequencies, while Henry Khov et al. 

(2009), extended Li et al. investigation on isotropic beams and plates,  to study   static and vibration 

free analyses of orthotropic plates with general elastic boundary supports. Rahbar Ranji and Rostami 

Hoseyn Abadi (2010) presented Kantorovich method to obtain the response of orthotropic plates 

subjected to harmonic load with different combinations of boundary conditions. Trigonometric Ritz 

method (TRM) is used by Dozio (2011) to investigate vibration problem of rectangular orthotropic 

Kirchhoff plates with different load and edges conditions, natural frequencies of the plate are 
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obtained using functions, originally developed by Beslin and Nicolas (Journal of Sound and 

Vibration 1997, 202, 633-655). Hu et al. (2011) analyzed free vibration and harmonic forced 

vibration of orthotropic plate with different boundary conditions using a unified method by which 

only the fundamental equations are used, therefore the trial function is not selected anymore and 

gave a more flexible method compared with traditional semi-inverse method. Ritz method is used 

by Hashemi and Fazeli (2012) to obtain natural frequencies of a fiber reinforced Mindlin plate. 

Seyyed et al. (2013) employed method of eigenfunction expansion in elliptic coordinates based on 

CLP to obtain an exact response in time-domain of a thin elastically supported elliptical plate. Gupta 

et al. (2014) obtained response of non-homogeneous rectangular plate of variable thickness which 

varied linearly, to uniform distributed harmonic lateral load using CLP and for boundary condition 

SFSF, Mishra (2015), involved extensive experimental works to investigate the free vibration of 

industry driven woven fiber glass/epoxy composite plates with different boundary conditions 

including free–free cases.  Maithry and Chanra Mohan Rao (2016), carried out dynamic response of 

the laminated composite plates with holes subjected to excitations, varying arbitrarily with time. 

Static, Modal and Transient dynamic analysis of laminated composite plates, simply supported at 

all the edges has been obtained.  

Landge and Prajapati (2017), investigated mode shapes, their frequencies and harmonically 

excited displacement of simply supported laminated plates using F.E.M program ANSYS15. Zhang 

(2017) performed the mechanical behavior of laminated CNT-reinforced quadrilateral composite 

due to a sudden transverse dynamic load is carried out using the IMLS-Ritz method based on first-

order shear deformation theory. Adhikari1 and Singh (2017), proposed finite element technique 

based on a new simple Quasi 3-D displacement field to obtain response of laminated plate under 

deferent time dependent loads. 

Gliszczynski et al. (2018), investigated effect of impact load with low velocity in thin-walled 

plates experimentally and compared with the theoretical model (one degree of freedom mass-spring 

system), for  Glass Fiber Reinforced Polymer (GFRP) laminate with a quasi-isotropic, quasi-

orthotropic and angle ply plate with different size and shape as a function of boundary conditions, 

layer arrangements and impact energy. Prasad and Sahu (2018), analyzed free vibration of fiber-

metal-laminated (FML) plates, a new aircraft material using finite element method and experimental 

program, effect of many parameters such as side-to-thickness ratio, ply orientation, and boundary 

conditions on the dynamic behavior investigated. Vescovini (2018) analyzed free vibration and 

buckling analysis of composite plates using Ritz method. Focus is given on the choice of the trial 

functions in relation to the degree and the kind of anisotropy exhibited by the plates. Qin et al. (2019) 

obtained free vibration behavior of laminated rectangular plate using Jacobi-Ritz method with 

arbitrary boundary conditions, based on first-order shear deformation theory (FSDT) 

Different plates theories are developed and used by researchers, Meksi et al. (2019) introduced, 

a new shear deformation plate theory is to illustrate the bending, buckling and free vibration 

responses of functionally graded material sandwich plates. A new displacement field containing 

integrals is proposed which involves only four variables also Hellal et al. (2019) proposed a new 

simple “four-variable shear deformation” plate model to demonstrate the hygro-thermal 

environment effects on dynamic and buckling of functionally graded material “sandwich plates” 

supported by “Winkler–Pasternak” elastic foundations. The proposed model uses only “four 

variables” and considers trigonometric variation of “transverse shear stress, and Sahla et al. (2019) 

developed, a simple four-variable trigonometric shear deformation model with undetermined 

integral terms to obtain the dynamic response of anti-symmetric laminated composite and soft core 

sandwich plates. Unlike the existing higher order theories, the current one contains only four 
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Effect of boundary conditions on harmonic response of laminated plates 

unknowns while Tounsi et al. (2020) proposed, a simple four-variable trigonometric integral shear 

deformation model for the static behavior of advanced functionally graded (AFG) ceramic-metal 

plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-

mechanical load but Chaabane et al. (2019), used a hyperbolic shear deformation theory (HySDT) 

to study the static and dynamic behaviors of simply supported resting on the elastic foundation 

(Winkler-Pasternak types)functionally graded beams (FGB).  

Bourada et al. (2019) studied free vibration of simply supported perfect and imperfect (porous) 

FG beams using a high order trigonometric deformation theory, unlike other theories, the number of 

unknown is only three. Khiloun et al. (2020) presented an efficient and original high-order shear 

and normal deformation theory for the static and free vibration analysis of functionally graded plates. 

Unlike any other theory, the number of unknown functions involved in displacement field is only 

four, as against five or more in the case of other shear and normal deformation theories. Kaddari et 

al. (2020) studied free vibration of functionally graded porous plates resting on elastic foundations 

based on  a new type of quasi-3D hyperbolic shear deformation theory and  Boutaleb et al. (2019) 

obtained the dynamic analysis of the functionally graded rectangular nanoplates using theory of 

nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT), in HSDT 

a cubic function is employed in terms of thickness coordinate to introduce the influence of transverse 

shear deformation and stretching thickness also Addou et al. (2019)  investigated the effect of 

Winkler/Pasternak/Kerr foundation and porosity on dynamic behavior of FG plates using a simple 

quasi-3D hyperbolic theory which considers only four-unknown variables to determine the four 

coupled vibration responses (axial-shear-flexion-stretching) while Boulefrakh et al. (2019) 

employed, a simple quasi 3D hyperbolic shear deformation model for bending and dynamic behavior 

of functionally graded (FG) plates resting on visco-Pasternak. Boukhlif et al. (2019) presented a 

dynamic investigation of functionally graded (FG) plates resting on elastic foundation using a simple 

quasi-3D higher shear deformation theory (quasi-3D HSDT) in which the stretching effect is 

considered , also the kinematic is defined with only 4 unknowns, which is even lower than the first 

order shear deformation theory (FSDT). The elastic foundation is included in the formulation using 

the Pasternak mathematical model. Zaoui et al. (2019), established a two dimensional (2D) and quasi 

three dimensional (quasi-3D) shear deformation theories, which can model the free vibration of FG 

plates resting on elastic foundations (Pasternak (two-parameters)) using a new shear strain shape 

function. The proposed theories have a novel displacement field which includes undetermined 

integral terms and contains fewer unknowns with taking into account the effects of both transverse 

shear and thickness stretching. 

Belbachir et al. (2019) addressed a refined plate theory in order to obtain the response of anti-

symmetric cross-ply laminated plates subjected to a uniformly distributed nonlinear thermo-

mechanical loading. In this theory, the undetermined integral terms are used and the variables 

number is reduced to four instead of five or more in other higher-order theories also Balubaid et al. 

(2019) used nonlocal two variables integral refined plate theory to study free vibrational behavior 

of the simply supported FG nano-plate while Karami et al. (2019), analyzed the size-dependent wave 

propagation analysis of functionally graded (FG) anisotropic nanoplates based on a nonlocal strain 

gradient refined plate model.  

 Medani et al. (2019) investigated static and dynamic behavior of Functionally Graded Carbon 

Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate, based on the first order 

shear deformation theory (FSDT) and Bousahla et al. (2020) developed a novel integral first order 

shear deformation theory the to investigate buckling and vibrational behavior of the composite beam 

armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic 
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foundation are. The current theory contains three variables and uses the shear correction factors.  

Admissible functions play a critical role in the Rayleigh–Ritz method, from above literature 

many researches are investigated free and forced vibration of laminated plates using different 

displacement functions, in present work a modified Fourier-Ritz approach for first time is used to 

study dynamic transverse response of laminated plates with different boundary conditions proposed 

by W.L. Li (2004) and corrected in present work. 

 

 
2. Theoretical analysis 
 

Based on (CLPT) assumptions (neglecting extension-bending and twisting-bending stiffness 

coupling terms), equation of motion is written as follows, Reddy (2004) 

D11
∂4w

∂x4
+ (2D12 + 4D66)

∂4w

∂x2 ∂y2
+D22

∂4w

∂x4
= −Io

∂2w

∂t2
+ I2(

∂2w

∂x2
+
∂2w

∂y2
)                  (1) 

Where 𝐷𝑖𝑗 are bending stiffness elements and I0,2 are mass moment of inertia. 

 

 
3. Boundary conditions  

 
The twisting moments and bending, transversal shear forces can be written in terms of the 

displacement function as, Li (2004) 

𝑀𝑥 = −𝐷11
𝜕2𝑤

𝜕𝑥2
−𝐷12

𝜕2𝑤

𝜕𝑦2
 , 𝑀𝑦 = −𝐷22

𝜕2𝑤

𝜕𝑦2
−𝐷12

𝜕2𝑤

𝜕𝑥2
                               (1,2) 

𝑀𝑥𝑦 = −2𝐷66 
𝜕2𝑤

𝜕𝑥𝜕𝑦
  , 𝑄𝑥 = −𝐷11

𝜕3𝑤

𝜕𝑥3
− (𝐷12 + 4𝐷66)

𝜕3𝑤

𝜕𝑦2𝜕𝑥
                           (3,4) 

𝑄𝑥 = −𝐷22
𝜕3𝑤

𝜕𝑦3
− (𝐷12 + 4𝐷66)

𝜕3𝑤

𝜕𝑥2𝜕𝑦
                                                   (5) 

For a flexibly restricted rectangular plate shown in Fig. 1, the boundary conditions are 

𝑘𝑥0𝑤 = 𝑄𝑥   , 𝐾𝑥0
𝜕𝑤

𝜕𝑥
= −𝑀𝑥  at x=0                                                 (7-8) 

𝑘𝑥1𝑤 = −𝑄𝑥  , 𝐾𝑥1
𝜕𝑤

𝜕𝑥
= −𝑀𝑥  at x=a                                              (9-10) 

𝑘𝑦0𝑤 = 𝑄𝑦 ,  𝐾𝑦0
𝜕𝑤

𝜕𝑦
= −𝑀𝑦 at y=0                                             (11-12) 

𝑘𝑦1𝑤 = −𝑄𝑦, 𝐾𝑦1
𝜕𝑤

𝜕𝑦
= −𝑀𝑦  at y=b                                             (13-14) 

Where 𝑘𝑦0, 𝑘𝑦1 and 𝑘𝑥0, 𝑘𝑥1 are the transitional stiffness of spring,𝐾𝑦0, 𝐾𝑦1and 𝐾𝑥0, 𝐾𝑥1 are the 

rotations stiffness of spring at plate adages. Eqs. (7)-(14) define different supporting conditions by 

simply putting the stiffness of spring equalize to a very small or large number. From Eqs. (7-14), 

can be finally written as 

𝑘𝑥0𝑤 = −𝐷11
𝜕3𝑤

𝜕𝑥3
− (𝐷12 + 4𝐷66)

𝜕3𝑤

𝜕𝑦2𝜕𝑥
  , 𝑘𝑥1𝑤 = 𝐷11

𝜕3𝑤

𝜕𝑥3
+ (𝐷12 + 4𝐷66)

𝜕3𝑤

𝜕𝑦2𝜕𝑥
    (15,16) 

𝐾𝑥0
𝜕𝑤

𝜕𝑥
= 𝐷11

𝜕2𝑤

𝜕𝑥2
+𝐷12

𝜕2𝑤

𝜕𝑦2
  , 𝐾𝑥1

𝜕𝑤

𝜕𝑥
= 𝐷11

𝜕2𝑤

𝜕𝑥2
+ 𝐷12

𝜕2𝑤

𝜕𝑦2
                      (17,18) 
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Fig. 1 Elastic support of rectangular plate along edges Li (2004) 

 

 

And similarly found other four equations in the y direction. 

 

 

4. Total mechanical energy 

 

Response of laminated plate to harmonic sinusoidal distributed load is investigated in present 

work using Ritz method, so energy expression based on CLP theory is, Reddy (2004) 

𝐸 = 𝑈 +𝐾 +𝑊                                                             (19) 

Where: 𝑈=Total potential energy of a plate, E=Total mechanical energy of a plate, K=Total 

kinetic energy of a plate, W=Total work done by harmonic force, which are defined as 

𝑈 =
1

2
∫ ∫ [𝐷11 (

𝜕2𝑤

𝜕2𝑥
)
2

+ 𝐷22 (
𝜕2𝑤

𝜕2𝑦
)
2

+ 4𝐷66 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)
2

+ 2𝐷12
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2
]

𝑎

0

𝑏

0
  

𝑑𝑥 𝑑𝑦 +
1

2
∫ [𝑘𝑥0𝑤

2+𝐾𝑥0 (
𝜕𝑤

𝜕𝑥
)
2
]

𝑏

0
𝑥=0

𝑑𝑦 +
1

2
∫ [𝑘𝑥1𝑤

2 + 𝐾𝑥1 (
𝜕𝑤

𝜕𝑥
)
2
]

𝑏

0
𝑥=𝑎

𝑑𝑦  

 +
1

2
∫ [𝑘𝑦0𝑤

2 + 𝐾𝑦0 (
𝜕𝑤

𝜕𝑦
)
2
]

𝑎

0
𝑦=0

𝑑𝑥 +
1

2
∫ [𝑘𝑦1𝑤

2 + 𝐾𝑦1 (
𝜕𝑤

𝜕𝑦
)
2
]

𝑎

0
𝑦=𝑏

𝑑𝑥                 (20) 

W=
1

2
∫ ∫ 𝑞𝑜𝑤 𝑑𝑥 𝑑𝑦

𝑎

0

𝑏

0
                                                           (21) 

And 

𝐾 = 
1

2
Ω2∬𝐼𝑜𝑤

2 𝑑𝑥 𝑑𝑦                                                         (22) 

Where: qo the amplitude of the load, for harmonic excitation, we assume a harmonic response 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑦)𝑒𝑖Ω𝑡                                                      (23) 

Where: 𝑤(𝑥, 𝑦, 𝑡) is the dynamic displacement, Ω is the frequency of applied force.  

 

 

5. Admissible functions  
 

In Ritz method the allowable functions play an important part. If the beam function is expanded 

in y-direction also, then plate function can be expressed as the product of beam functions in x and y 

direction and the result is Li (2004) 
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𝑤(𝑥, 𝑦) = ∑ 𝐴𝑚𝑛𝑋𝑚(𝑥) 𝑌𝑛(𝑦)𝑚,𝑛=1                                               (24) 

Where 𝑋𝑚(𝑥) and  𝑌𝑛(𝑦) are the displacement functions for beams. A developed Fourier series 

function for beam with general support, is written as Li (2000) 

 𝑤(𝑥) = ∑ 𝑎𝑚 cos 𝜆𝑎𝑚𝑥 + 𝑝(𝑥)   
∞
𝑚=0  , (𝜆𝑎𝑚 =

𝑚𝜋

𝑎
),        0≤ 𝑥 ≤ 𝑎.                  (25) 

Where p (x) in Eq. (25), is constantly selected to satisfy the boundary equations as following 

 𝑃′′′(0) = 𝑊 ′′′(0) = 𝛼0,               
,     𝑃′′′(𝑎) = 𝑊 ′′′(𝑎) = 𝛼1,                        (26-27) 

 𝑃′(0) = 𝑊 ′(0) = 𝛽0,     𝑎𝑛𝑑      𝑃′(𝑎) = 𝑊 ′(𝑎) = 𝛽1,                                  (28-29)  

To compensate the discontinuities of the displacement function and its derivative in adage points, 

p (x) is added. Thus, it can be chosen in several required forms such as a polynomial function Li 

(2004) 

 𝑃(𝑥) = ∑ 𝐶𝑛 𝑃𝑛 (
𝑥

𝑎
) ,4

𝑛=0                               (30) 

It is clear that the function p (x) must be at least a 4th polynomial to satisfy Eqs. (26)-(29), it is 

written in matrix form as 

 P(x) =𝜁𝑎(𝑥)
𝑇𝜶̅   , where:         𝜶̅ = {𝛼0, 𝛼1, 𝛽0, 𝛽1}

𝑇                  (31,32) 

And  

 𝜁𝑎(𝑥)
𝑇 =

{
 
 

 
 −(15𝑥

4 − 60𝑎𝑥3 + 60𝑎2𝑥2 − 8𝑎4)/360𝑎

(15𝑥4 − 30𝑎2𝑥2 + 7𝑎4)/360𝑎 

(6𝑎𝑥 − 2𝑎2 − 3𝑥2)/6𝑎

(3𝑥2 − 𝑎2)/6𝑎 }
 
 

 
 

 (33) 

The results in Eqs. (31)-(33) are already derived from a simpler approach Li (2000). So as to 

obtain the support constants, 𝛼0, 𝛼1, 𝛽0, and 𝛽1, substitution of Eqs. (25) and (31) into the supporting 

conditions Eqs. (15)-(18) results in:  

 𝜶̅ = ∑ 𝐻𝑎
−1𝑄𝑎𝑚𝑎𝑚

∞
𝑚=0                              (34) 

Where:  

 𝐻𝑎 =

[
 
 
 
 
 
 
 1 +

8𝑘𝑥0𝑎
3

360𝐷11
            

7𝑘𝑥0𝑎
3

360𝐷11
           

−𝑘𝑥0𝑎

3𝐷11
            

−𝑘𝑥0𝑎

6

7𝑘𝑥1𝑎
3

360𝐷11
              1 +

8𝑘𝑥1𝑎
3

360𝐷11
         

−𝑘𝑥1𝑎

3𝐷11
          

−𝑘𝑥1𝑎

6
  

        

         
𝑎

3
                               

𝑎

6
            

𝐾𝑥0

𝐷11
+
1

𝑎
                  

−1

𝑎
  

  

                  
𝑎

6
                               

𝑎

3
                

−1

𝑎
                 

𝐾𝑥1

𝐷11
+
1

𝑎
           ]

 
 
 
 
 
 
 

  (35) 

And  

 𝑄𝑎𝑚 = {(−1)
𝑘𝑥0

𝐷11
     (−1)𝑚

𝑘𝑥1

𝐷11
     − 𝜆𝑎𝑚

2     (−1)𝑚𝜆𝑎𝑚
2  } 𝑇                       (36) 
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It must be reminded that for a totally free beam, matrix Ha will become singular, this can be 

solved by artificially setting stiffness of springs with smallest value at boundary of a beam Li (2000), 

however, the characteristic functions are very suitable and can be easily used as the allowable 

functions in Ritz technique. Finally Eq. (25) became as 

 𝑤(𝑥) = ∑ 𝑎𝑚𝜑𝑚
𝑎 (𝑥)∞

𝑚=0  , where: 𝜑𝑚
𝑎 (𝑥) = cos 𝜆𝑎𝑚𝑥 + 𝜁𝑎(𝑥)𝐻𝑎

−1𝑄𝑎𝑚  (37,38) 

As mentioned above, Eq. (24) can be consequently rewritten as 

 𝑤(𝑥, 𝑦) = ∑ 𝐴𝑚𝜑𝑚
𝑎 (𝑥)𝜑𝑛

𝑏(𝑦)∞
𝑚,𝑛=0   , where: 𝜑𝑛

𝑏(𝑦) = cos𝜆𝑏𝑛𝑦 + 𝜁𝑏(𝑦)𝐻𝑏
−1𝑄𝑏𝑛     (39,40) 

Eq. (39) is derived in present work and present the corrected form of modified Fourier function 

that proposed by Li (2004), the terms for 𝜁𝑏(𝑦),𝐻𝑏𝑎𝑛𝑑 𝑄𝑏𝑛  can be, correspondingly, obtained from 

Eq. (38) by just changing the x-concerning parameters by the y- concerning. 

 

 
6. Response of plate to harmonic force 
 

To calculate the response of plate under harmonic excitation force, the derived Fourier function 

in above article is substituted in Eqs. (20), (21) and Eq. (22), differentiations and integrations are 

required and then by using Ritz method (minimizing energy), the following equations are obtained 

 
𝜕𝐸

𝜕𝐴𝑚𝑛
= 0                            (41) 

 Eq. (41) will give a set of linear homogenous  equations, from which stiffness and mass matrices 

are obtained, and then get the response from following equation. 

 (𝐾 −Ω2𝑀)𝐴𝑚𝑛 = 𝑄             (42) 

Where 𝑀,𝐾 𝑎𝑛𝑑 𝑄 Are the generalized mass matrix, stiffness matrix and forcing matrix, 𝐴𝑚𝑛 

the amplitude to be determined, by solving Eq. (41), the amplitudes 𝐴𝑚𝑛 can be determined. Then 

from Eq. (39), the response of the rectangular plate can be finally obtained. While equating Eq. (42) 

to zero will lead to an Eigen-value problem as flowing 

 [

𝑎1,1 ⋯ 𝑎1,(𝑚∗𝑛)
⋮ ⋱ ⋮

𝑎(𝑚∗𝑛),1 ⋯ 𝑎(𝑚∗𝑛),(𝑚∗𝑛)
] {
𝐴11
⋮

𝐴𝑚𝑛

} = 0  (43) 

Where 𝑎𝑖𝑗 are the coefficients of the nonzero unknowns 𝐴𝑚𝑛. Finding the determinant of Eq. 

(43) will lead to get the natural frequency 𝜔.   
 

 

7. Results and discussion 
 

Cross and angle-ply (symmetric and anti-symmetric) rectangular plate under various edge 

conditions are analyzed and their mode shapes, natural frequencies and response to harmonic 

excitation are evaluated using Ritz method. In present study MATLAB R2015a is used to solve the 

response of harmonic force. Validity of the derived equations is examined for free and forced 

vibrations response of laminated plates by comparing present results with those obtained using 

program ANSYS (R15), they show good agreement. 
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Table 1 Dimensionless natural frequency, for square plates 

[30 -30 30] plates of different boundary conditions, (𝐸1 𝐸2 = 2.45,⁄ 𝐺12 = 0.48𝐸2,𝜈12 = 0.23. 

References SSSS CCCC SCSC 

Present work 7.311 13.02 9.949 

Ansys 7.237 13.04 9.913 

[45 − 45]4 plates (𝐸1 𝐸𝟐⁄ = 10, 𝐺12 = 0.5𝐸2, 𝜈12 = 0.25. 

References SSSS CCCC SCSC 

Present work 13.409 21.632 17.914 

Ansys 13.111 21.165 17.533 

[0 90 90 0]  plates (𝐸1 𝐸𝟐⁄ = 40, 𝐺12 = 0.5𝐸2, 𝜈12 = 0.25). 

References SSSS CCCC SCSC 

Present work 18.817 41.216 38.668 

Ansys 18.703 40.662 38.099 

 

Table 2 Dimensionless natural frequency (𝜔̅ = 𝜔𝑜𝑎
2√𝜌𝑐 𝐸2⁄ ℎ⁄ ), for (SSSS) [0 90]2s  

plates with effect of aspect and modulus ratios, (𝐺12 = 0.5𝐸2, 𝜈12 = 0.25) 

References a/b 𝐸1 𝐸2⁄ =10 25 40 

Present work 
0.5 

8.875 13.652 17.147 

Ansys 8.875 13.62 17.064 

Present work 
1 

10.502 15.237 18.817 

Ansys 10.48 15.176 18.702 

Present work 
1.5 

14.364 19.748 23.954 

Ansys 14.367 19.747 23.948 

 

Table 3 Dimensionless natural frequency (𝜔̅ = 𝜔𝑜𝑎
2√𝜌𝑐 𝐸2⁄ ℎ⁄ ), for [45 -45 45 -45] square 

plate with effect of  modulus ratios, (𝐺12 = 𝐺13 = 0.6𝐸2, 𝐺23 = 0.5𝐸2, 𝜈12 = 0.25)  

Refs. E1/E2 SSSS SSSC SSCC 

Reddy 2004 
2 

7.02 8.39 10.24 

Present work 7.09 8.47 9.67 

Reddy 2004 
10 

12.54 14.43 16.90 

Present work 13.40 15.41 17.22 

Reddy 2004 
20 

17.02 19.43 22.53 

Present work 18.49 21.09 23.47 

Reddy 2004 
30 

20.53 23.37 27.00 

Present work 22.46 25.54 28.37 

Reddy 2004 
40 

23.53 26.73 30.83 

Present work 25.82 29.33 32.55 

  

 

Dimensionless natural fundamental  frequency (𝜔̅ = 𝜔𝑜𝑎
2√𝜌𝑐 𝐸2⁄ ℎ⁄ ), for different laminated 

plates schemes (cross and angle ply) with different material and boundary conditions are presented 

in Tables 1, 2 and 3, they show good agreement with those obtained by ANSYS and Reddy (2004) 
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Effect of boundary conditions on harmonic response of laminated plates 

while verification for central displacement of plate under harmonic excitation are shown in Table 4, 

also fist fourth mode shapes for (SSSS) [30 -30 30] laminated square plate are shown in Fig. 2, 

which show that fundamental natural frequency for CCCC plates is larger than other boundary 

conditions and when orthotropy ratio increases (E1/E2) the frequency increases since they have larger 

stiffness.  

 

 
Table 4 Comparison of displacement amplitudes for square isotropic plate under different harmonic excitation 

force W(x1,y1)/po a4 /D 

Simply supported plate 

ω/ω1 Present work 
LAURA (1975) 

Galerkin Exact 

0.3 0.0045332 0.0045 0.004473 

0.5 0.0055003 0.0055 0.005448 

0.8 0.0114591 0.0115 0.01145 

Clamped plate 

0.3 0.00132919 0.00139 - 

0.5 0.00177003 0.00170 - 

0.8 0.003681969 0.00362 - 

 

  
(a) (b) 

  
(c) (d) 

Fig. 2 Mode shape for free vibration of (SSSS) for [30 -30 30] laminated square plate (a) first (b) second 

(c) third (d) fourth modes 
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(a) (b) 

 
(c) 

Fig. 3 Frequency - central deflection variation, for [0 90 90 0] plate with CCCC 

 

 
 The force frequency range is selected depending on natural frequencies of each plate. Maximum 

central displacements (w) for symmetric cross-ply [0 90 90 0] with different boundary condition as 

shown in Fig. 3 to Fig. 5, from which it’s obvious  that maximum displacement of this plate is when 

it is under CFCF and minimum displacement under CCCC since stiffness is larger for plate with 

these boundary. While, for anti-symmetric cross-ply[0 90]4 the maximum central displacement is 

under SSSS and minimum central displacement is under CCCC as obtained in Fig. 6 to Fig. 8. It can 

be noted that the amplitudes are smaller for anti-symmetric cross ply than that for symmetric cross 

ply laminates for example all edges are clamped, (0.0001895 m, 0.0015 m) respectively. For 

harmonically excited plates, the material properties for this study are, E1=180 Gpa, E2=1 Gpa, 

ν12=0.28, ν13=0.28, ν23=0.35, G12=7.3 Gpa, G13=6.1 Gpa, G12=6.1 Gpa, qo=2000 Mpa, ρ=1600 kg.m-3. 
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Effect of boundary conditions on harmonic response of laminated plates 

  

Fig. 4 Frequency - central deflection variation, for 

[0 90 90 0] plate with SSSS 

Fig. 5 Frequency - central deflection variation, for [0 

90 90 0] plate with CFCF 

 

  

Fig. 6 Frequency -central deflection variation, for 

([0 90]2, h=0.02) plate with CCCC 

Fig. 7 Frequency-central deflection variation, for [0 

90]4 plate with SSSS 

 

 

The discrepancy of results belongs to that, for ANSYS analysis based on plate first order shear 

deformation theory while for present work classical plate theory is used, also different presentation 

for boundary in present work, spring with stiffness that given appreciate value for each boundary 

type i.e., for clamped boundary all spring stiffness=1012 while for free it is not zero but very small 

value 10-12, maximum discrepancy for cross ply plate is for anti symmetric one with 18.37% and 

also for [30 -30]4 angle ply is 27.4%. 

Maximum central displacements (w) for anti-symmetric angle-ply [30 − 30]4and [−45 45]4 

with different boundary conditions as shown in Fig. 9 to Fig. 11 and Fig. 12 to Fig. 14 respectively,  
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Fig. 8 Frequency-central deflection variation, for 
[0 90]4 plate with CFCF 

Fig. 9 Frequency-central deflection variation, for 

([30 − 30]4 h=0.01) plate with CCCC 

 

  

Fig. 10 Frequency-central deflection variation, for 

([30 − 30]4 h=0.01) plate with SSSS 

Fig. 11 Frequency-central deflection variation, for 

([30 − 30]4 h=0.01) plate with CFCF 

 

 

from which it’s obvious that maximum displacement of these plates is under for [±θ=30o] simply 

supported condition and minimum displacement is under the clamped edge condition for [±θ=45o] 

since they have larger stiffness. 

 

 

8. Conclusions 
 

Natural frequency and response of laminated plate under harmonic load with different boundary  
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Effect of boundary conditions on harmonic response of laminated plates 

  

Fig. 12 Frequency-central deflection variation, for 

([−45 45]4, h=0.01) plate with CCCC 

Fig. 13 Frequency-central deflection variation, for 

([−45 45]4, h=0.01) plate with SSSS 

 

 

Fig. 14 Frequency-central deflection variation, for ([−45 45]4, h=0.01) plate with CFCF 

 

 

conditions, number of layers and symmetric and anti symmetric cross and angle ply response is 

obtained using Ritz approach. One displacement modified Fourier function is used to study dynamic 

transverse response of laminated plates for different boundary conditions.  

The results show that the present method enables rapid convergence and good accuracy. Present 

work can be used for different types of supporting conditions, such as all the classical cases and their 

combinations without changing solution procedure and function of transverse displacement with 

changing the support type.  

If compared with most existing methods, developed solution is more flexible and less 

complicated from other solution methods such as Levy or F.E.M to get response of laminated plate 

with different boundary conditions. 
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