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Abstract 
 
This paper aims to review methods for computing orthogonal projection of points onto curves and surfaces, which are given in implicit 

or parametric form or as point clouds. Special emphasis is place on orthogonal projection onto conics along with reviews on orthogonal 
projection of points onto curves and surfaces in implicit and parametric form. Except for conics, computation methods are classified into 
two groups based on the core approaches: iterative and subdivision based. An extension of orthogonal projection of points to orthogonal 
projection of curves onto surfaces is briefly explored. Next, the discussion continues toward orthogonal projection of points onto point 
clouds, which spawns a different branch of algorithms in the context of orthogonal projection. The paper concludes with comments on 
guidance for an appropriate choice of methods for various applications. 
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1. Introduction 

Orthogonal projection of a point is the process of finding a 
point on a curve or a surface such that the vector connecting 
the point in space and the point on the curve or the surface 
becomes perpendicular to the curve or the surface. It is one of 
the most critical operations in computer aided geometric de-
sign and applications, and efficient and robust computation of 
orthogonal projection is essential for various operations such 
as computation of closest point (foot-point) on a curve or a 
surface, parameter estimation of a point in space, intersection 
computation, and similarity.  

Orthogonal projection is valid for pairs of a point and a 
curve, and a point and a surface. It is also extended to cover 
orthogonal projection of a curve onto a surface. Table 1 
shows pairs of entities for which orthogonal projection can be 
considered. In this work, orthogonal projection of a point onto 
a curve or a surface is a primary operation.  

Computation of a point on a curve or a surface that yields 
the minimum distance to a given point is an important appli-
cation of orthogonal projection (Here, the case that orthogo-
nal projection cannot be computed is excluded.) When a point 
is relatively close to a curve or a surface, the point on the 
curve or the surface that is the closest to the given point 

would be the orthogonal projection of the point onto the curve 
or the surface. 

A typical example that requires such computation is locali-
zation. Localization, also denoted as registration, is the pro-
cess of matching two objects as closely as possible. Consider 
a set of points and a surface in 3D space. Correspondence 
between the points and the surface are established by compu-
ting the points on the surface that yield the minimum distanc-
es between them. Such points are called the foot-points on the 
surface. Besl and McKay [1] proposed a registration algo-
rithm, called the ICP algorithm, which is based on the compu-
tation of closest points for correspondence. The variants of 
the method have been presented in [2] -[5], to name a few. 

They usually use additional information to improve con-
vergence of iteration or to reduce the dependency of initial 

Table 1. Classification for orthogonal projection depend-
ing on the geometric entities. Here, ‘x’ indicates that or-
thogonal projection is not defined. ‘t’ indicates that or-
thogonal projection can be defined, but may not be used in 
practice. ‘o’ means the case that orthogonal projection is 
valid. 

 Point Curve Surface 

Point x o o 

Curve x t o 

Surface x x t 
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positions of the points and the surface for convergence. 
Parameter estimation is the process to estimate parametric 

values of given points for curve or surface approximation. 
This is an important step in reverse engineering or object 
reconstruction when a shape is defined by a set of points. 
Parametrization is a huge topic in CAD/CAM, Computer 
Graphics, etc. The complete coverage of this problem is be-
yond the scope of this paper. However, some of them are 
introduced here. Ma and Kruth [6] introduced the concept of 
base surface for parameter estimation of 3D points. A base 
surface is created using the 3D points, which is a crude ap-
proximation to the points. Next, the points are orthogonally 
projected onto the base surface, and the parameters of the 
projected points on the base surface are given as those of the 
3D points. A similar approach was revisited by Piegl and 
Tiller [7]. They proposed a method of computing orthogonal 
projection efficiently.  

Orthogonal projection can be used to compute the intersec-
tion of curves and surfaces. Limaien and Trochu [8] used the 
property of orthogonal projection that when two objects 
(curve or surface) intersect, successive orthogonal projection 
points from an initial point would converge to the intersection.  

Escobar et al. [9] used orthogonal projection as one critical 
operation for aligning a surface triangulation with curves. 
Given a curve, the boundary edges of triangle meshes are 
aligned with the curve trajectory.  

Flory and Hofer [10] used the orthogonal projection as one 
operation for designing a curve on a surface. They addressed 
the problem of fitting points on the surface with a curve, 
which is constrained to lie on the surface. Given a point cloud 
and an initial position of the fitting curve, the position of the 
curve is updated by minimizing a fitting error that is comput-
ed using the distance norm in the tangent space. The foot-
points of the given points on the curve are computed through 
orthogonal projection, and the distances from the points to the 
foot-points are computed for use in the evaluation of the fit-
ting error.   

Orthogonal projection in a general situation was discussed 
by Zheng and Chen [11]. They addressed the problem of 
computing the shortest path between a point and a curve on a 
regular surface. Here, the shortest path from the given point to 
the curve becomes the geodesics between them. Moreover, it 
was found that the point on the curve giving the shortest path 
is the orthogonal projection point. The improvement of the 
proposed method over the existing one was realized by im-
posing the ‘orthogonality’ condition.  

Orthogonal projection is used as a component for the fitting 
of geometric features to 2D or 3D point clouds. The fitting 
error is usually measured using the orthogonal distances from 
the given points to the geometric features. Minimizing such 
errors involves satisfaction of the ‘orthogonality’ condition, 
and the corresponding point on the geometric entity becomes 
the foot-point for the orthogonal projection. Although the 
orthogonal projection points may not be computed explicitly, 

this approach provides the basis for least squares fitting of 
points with various geometric entities. Ahn et al. [12] ad-
dressed the problem of fitting of circle, sphere, ellipse, hyper-
bola and parabola to given points in the least squares sense. 
An objective function, called the performance index, is de-
rived, which provides the sum of squares of orthogonal dis-
tances. The optimum solution for this objective function is 
obtained using the Gauss-Newton-type iteration. This idea is 
also applied to implicit curves and surfaces in [13] and [14]. 
Further discussions on least squares fitting were made by 
numerous researchers such as [15] and [16], to name a few. 

Mathematically, orthogonal point projection is not neces-
sarily the same as the minimum distance computation [17]. 
There could be more than one orthogonal projection points, or 
no such points exist. On the other hand, the minimum dis-
tance can always be computed. The case that the orthogonal 
point projection in 3D space yields the foot-point for the min-
imum distance is when the point is closer to the interior of the 
curve or the surface than any other edge, boundary and corner 
points and when the curve or the surface is regular. When a 
set of points is given, the minimum distances from most of 
the points can be computed through the orthogonal point pro-
jection.  

A lot of literature has been devoted to developing efficient 
and robust solution methods for computing orthogonal pro-
jection of a point onto a curve or a surface. In particular New-
ton-Raphson method, a local scheme to iteratively find or-
thogonal projection, has been frequently selected as a solution 
method. Although the method is fully analyzed mathematical-
ly and the advantages and disadvantages are recognized, no 
single method can satisfy robustness, efficiency and accuracy 
conditions simultaneously. In this paper, the problems of 
orthogonal projection are addressed for curves and surfaces. 
Mathematical definitions of orthogonal projection of points 
and curves are presented to provide a firm ground for thor-
ough understanding of the problem. Next, various calculation 
methods are reviewed, which have been introduced so far in 
various disciplines. The methods are classified into two types: 
iteration based and subdivision based methods. The former 
computes orthogonal projection by iteratively searching for 
the solution algebraically and geometrically. The latter subdi-
vides a curve or a surface into smaller ones and then selects 
those that contain the solution. For an accurate solution, an 
iteration-based method such as Newton-Raphson method can 
be employed. The discussion is extended to cover orthogonal 
projection of points onto point clouds. The paper concludes 
with comments on guidance for an appropriate choice of 
methods for various applications. 

 
2. Mathematical definition of orthogonal projection 

The term, orthogonal projection, has its origin in Euclidean 
geometry when one projects a point P onto (its foot-point Q) 
a plane TP in 3D space. As the term orthogonal indicates, the 
vector P-Q is making an angle of 90o - right angle - with eve-



118        K. Ko et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 116~127  
 
ry vector lying in TP. Since every vector lying in TP can be 
thought of as being tangent to TP, one can easily generalize 
this notion to an object that has tangent vectors, and thus to 
the field of differential geometry. 

 

Definition 1. Let S be a non-empty subset of Rn so that for 
each point a  S there is a tangent vector Ta of S at a. For a 
point P  Rn, the orthogonal projection of P onto S is the set 
of points Q  S so that the vector P-Q is perpendicular to TQ. 
□ 
 

In this work, we shall mostly deal with smooth (closed) 
curves and surfaces, unless otherwise stated. 

2.1 Projection of point onto curve or surface  

Let c be a (closed) parameterized curve in Rn; that is c: t  
[0,1] → Rn, which is smooth, except possibly at a finite num-
ber of points. For a point P  Rn, the set of orthogonal projec-
tion consists of all points on c so that  

 
൫۾ െ ሻ൯ݐሺ܋ ∙ ሻݐᇱሺ܋ ൌ 0.																																																								ሺ1ሻ 
 
In the case where the orthogonal projection point is not a 

continuously varying point, but there is a tangent vector T, we 
can still define a set of orthogonal projection by invoking 
Definition 1. The definition can be directly applied when S is 
given parametrically. 

Let now s be a (closed) smooth surface in Rn, given by s = 
{q | F(q) = 0, q  Rn}, where F: Rn → R is a smooth func-
tion. Then, the set of orthogonal projection of P  Rn onto s is 
equal to 

 
Γ௢௥௧௛ ൌ ሼۿ|ሺ۾ െ ,ሻۿሺ݂׏//ሻۿ ۾ ∈   ሺ2ሻ																										௡ሽ.܀
 

2.2 Projection of curve onto surface  

Let us now concentrate on the 3D case, and consider c = (c1, 
c2, c3) : [0,1] → R3 a parametric curve and s a smooth hyper-
surface in R3. Assume that s is given parametrically; that is, s 
is a regular function s: [0,1] × [0,1] → R3, s(u,v) = (s1, s2, s3). 
Then, su × sv is a nonzero vector perpendicular to s at s(u,v). 
Therefore, the orthogonal projection of c onto s should be the 
set of points on s so that (c(t) - s(u,v))·su = 0 and (c(t) - 
s(u,v))·sv =0. We may derive similar equations for the case 
where s is defined implicitly. 

2.3 Orthogonal projection vs. minimum distance  

Orthogonal projection is related to the notions of minimum 
distance between a point and a set and distance projection of a 
point onto a set. 

 
Definition 2. Let P  Rn and S a non-empty subset of Rn. 
Then, the distance d(P,S) from P to S is defined as  

 

		݀ሺ۾, ሻ܁ ൌ ݅݊ ,۾ሺ݀܁∋ۿ݂  ሺ3ሻ																																																				ሻ.ۿ
□ 
 

The distance projection of P onto S is defined as the set 
 
Γௗ௜௦௧ ൌ ሼۿ|ۿ ∈ ݈ܿሺ܁ሻ	ܽ݊݀	݀ሺ۾, ሻۿ ൌ ݀ሺ۾, ሺ4ሻ												ሻሽ.܁

     
Here, cl(S) is the closure of S, to be the intersection of all 

closed subsets of Rn that contain S. It is true that if C and S 
are smooth and the distance projection dist  Int(S), then dist 
 orth. Here, Int(S) is the interior of S defined by the union of 
all open sets contained in S. However, the converse is not true. 
Indeed, any critical point of the distance function d(P,Q), Q 
 S, is an orthogonal projection point, but not necessarily an 
infimum. 

 
3. Computation methods of orthogonal projection 

Orthogonal projection of a point onto a curve or a surface 
can be obtained by solving Eq. (1). Here, the curve and the 
surface are mathematically defined. The equation is, however, 
a nonlinear equation that cannot be easily solved analytically 
except for several special cases. Therefore, various numerical 
methods have been considered to find orthogonal projection 
based on Eq. (1). 

Orthogonal projection is computed for general curves and 
surfaces. However, a group of researchers focused on conics 
and tried to develop methods for efficient computation of 
orthogonal projection onto conics.  

3.1 Orthogonal projection onto conics 

When conics (ellipses, hyperbolas, parabolas) are consid-
ered, the problem of orthogonal projection can be handled in 
a more mathematically rigorous manner. In general, this prob-
lem is addressed in the context of least squares fitting of 
quadratic geometric entities, and orthogonal projection is a 
critical operation in the fitting process. Chernov and Wijew-
ickrema [18] addressed the problem of point projection onto 
quadratic curves. Their emphasis is placed on the robustness 
and practical aspects of the solution algorithms with good 
accuracy and simplicity. Although several approaches were 
discussed, which are relatively fast such as [12], [13] and [14], 
only a few methods are theoretically proven to be robust [16], 
[19] and [20]. These methods were analyzed, and a modified 
algorithm of [19] was presented in [18]. 

The problem of orthogonal projection of a point onto a 
conic is formulated as follows. A conic is defined by 

 
ܷሺݔ, ሻݕ ൌ ଶݔܣ ൅ ݕݔܤ2 ൅ ଶݕܥ ൅ ݔܦ2 ൅ ݕܧ2 ൅ ܨ ൌ 0.	  

              ሺ5ሻ	
 
Consider a point (xp, yp). Then orthogonal projection of the 

point onto the conic should satisfy the orthogonality condi-
tions  
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௣ݔ െ ݔ ൌ ݔܣ௣ሺݐ ൅ ݕܤ ൅   																							,ሻܦ
௣ݕ െ ݕ ൌ ݔܤ௣ሺݐ ൅ ݕܥ ൅     ሺ6ሻ																																														ሻ,ܧ

           
for some tp. Geometrically, these conditions are derived from 
the orthogonality property that the vector (xp-x, yp-y) is paral-
lel to U. Solving the equation system for x and y produces 
two expressions as functions of tp, which are then substituted 
into the conic equation yielding 

 
ܿସݐ௣ସ ൅ ܿଷݐ௣ଷ ൅ ܿଶݐ௣ଶ ൅ ܿଵݐ௣ ൅ ܿ଴ ൌ 0.																																ሺ7ሻ 
  

 Here, the coefficients ck are represented in terms of A, B, C, 
D, E and F. The solutions to the equation are the orthogonal 
projection points on the conic. However, finding out the solu-
tions is not a simple task. Although there exists an analytical 
formula for the solution to the equation, it cannot be readily 
used in practice due to its complexity. Various numerical 
methods including local and global schemes can be employed 
to find the roots of the Eqs. [21]-[25]. However, in terms of 
performance and stability, they cannot be readily used in 
practice. In [16], an algorithm for orthogonal projection of a 
point onto a conic was proposed. With tp eliminated, Eq. (6) 
can be rewritten as 

 

ܴሺݔ, ሻݕ ൌ ൫ݔ௣ െ ݔܤ൯ሺݔ ൅ ݕܥ ൅  																																			ሻܧ

																				െ൫ݕ௣ െ ݔܣ൯ሺݕ ൅ ݕܤ ൅ ሻܦ ൌ 0.																			ሺ8ሻ
 	  
 At the orthogonal projection point, Eqs. (5) and (8) are sat-
isfied. Using the matrix notation, we are able to rewrite Eqs. 
(5) and (8) as follows. 

 
ܢۻ்ܢ ൌ 0, ܢۼ்ܢ ൌ 0,																																																								ሺ9ሻ

    
where 
 

ۻ			 ൌ ൥
ܣ ܤ ܦ
ܤ ܥ ܧ
ܦ ܧ ܨ

൩																																																																 

 
ۼ			 ൌ 

			቎
െ2ܤ ܣ െ ܥ ܤ௣ݔ െ ܣ௣ݕ െ ܧ
ܣ െ ܥ ܤ2 ܥ௣ݔ െ ܤ௣ݕ ൅ ܦ

ܤ௣ݔ െ ܣ௣ݕ െ ܧ ܥ௣ݔ െ ܤ௣ݕ ൅ ܦ 2ሺݔ௣ܧ െ ሻܦ௣ݕ
቏   

 
and z = [x y 1]T. 

When the given conic is a circle, orthogonal projection can 
be analytically computed by elementary geometry. Except for 
such a case, orthogonal projection points are the intersections 
of the two conics in Eq. (9). Intersection computation of Eq. 
(9) is obtained by considering a family of conics given by 

 
ۻߙሺ்ܢ ൅ ܢሻۼߚ ൌ 0,																																																										ሺ10ሻ  
 

where  and  are real numbers. With det(M) = 0 and  = 0, 
the given conic Eq. (5) is reduced to a single or a pair of lines. 
Then, orthogonal projection can be easily performed. When 
det M  0 and  = 1, then we have 
 
ܢ۳்ܢ ൌ 0, ۳ ൌ ൅ۻߙ 	ሺ11ሻ                       .ۼ

	
Here,  satisfies the equation det(E) = 0. This means that 

the conic of Eq. (11) is degenerate and consists of two lines or 
a single line. Then, the foot-points of orthogonal projection of 
the given point are reduced to the intersection of the conic (5) 
with the lines. The point loser to the given point is chosen as 
the final orthogonal projection point.  

Eberly’s projection method focuses on finding the correct 
initial point so that Newton’s iteration method can converge 
to correct solutions all the time [19]. The method was devel-
oped for orthogonal projection onto an ellipse, and later was 
extended to other conics and 3D quadratic surfaces [15]. The 
choice of such points starts with translating and rotating the 
coordinate system of the ellipse as given in Eq. (12) to obtain 
a representation in canonical coordinates. 

 

ଶݔ

ܽଶ
൅
ଶݕ

ܾଶ
െ 1 ൌ 0, ܽ ൒ ܾ ൐ 0.																																			ሺ12ሻ 

 
Next, the orthogonality conditions are obtained similarly to 

Eq. (6), which are substituted in Eq. (12) to produce an equa-
tion of variable tp.  

 

ܲ൫ݐ௣൯ ൌ
ܽଶݔ௣ଶ

൫ݐ௣ ൅ ܽଶ൯
ଶ ൅

ܾଶݕ௣ଶ

൫ݐ௣ ൅ ܾଶ൯
ଶ െ 1 ൌ 0.																	ሺ13ሻ 

 
 Then, the roots of Eq. (13) correspond to the orthogonal 

projection points. In order to solve Eq. (13), a starting point is 
chosen as  

 
௣௜ݐ ൌ ௣ݔ൛ܽݔܽ݉ െ ܽଶ, ௣ݕܾ െ ܾଶൟ,																																				ሺ14ሻ 

 
from which Newton’s method can be employed to obtain the 
accurate root. An improved version of Eberly’s method was 
proposed by [18]. They followed the similar process to Eber-
ly’s with modified coordinate transformation and proposed a 
process that can be applied to all conic types. 

Orthogonal projection onto general curves and surfaces is 
more involved than orthogonal projection onto conics be-
cause their shapes are defined in a more complicated way. 
Therefore, analytical computation of orthogonal projection 
onto such curves and surfaces may not be possible in most 
cases. Instead, various numerical methods have been intro-
duced. The methods can be classified into two types in terms 
of algorithmic approaches: iteration and subdivision. The 
former is to compute orthogonal projection by solving a gov-
erning equation such as Eq. (1) in an iterative manner. This 
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method requires a starting value that is supposed to be a good 
approximation to the orthogonal projection point. Next, it 
iteratively finds the accurate solution. The latter is to find the 
root of the equation by subdividing the domain of interest into 
smaller ones. The subdivided regions that are assumed to 
contain roots are further subdivided. This recursive subdivi-
sion continues until the sizes of intervals in each axis of the 
subdivided region are less than the user-defined tolerance, or 
until the flatness of the subdivided region is satisfied. 

3.2 Iteration-based 

3.2.1 Algebraic root finding 

Computing the orthogonal projection of a point is equiva-
lent to finding the solution of Eq. (1). The solution can be 
obtained using algebraic or geometric methods, which essen-
tially search for the orthogonal projection point in an iterative 
manner.  

Newton-Raphson method is a typical choice for computing 
the root of Eq. (1). Because the derivatives of the equation are 
analytically computed, the method can find the roots of the 
equation without further geometric information. In the con-
text of computing the minimum distance, Mortenson [26] 
presented equations for surface distance measures, which can 
be solved using Newton’s iteration method. Hartmann [27] 
used the normalform of a curve for the computation of the 
foot-point on the curve of a point. Consider a smooth implicit 
curve c(x) in R2 and x  Rn. If there exists a continuously 
differentiable function h with |h|=1 on and in the vicinity of 
the curve, the equation h = 0 is called the normalform of c(x). 
The value of the normalform is equivalent to the suitably 
oriented distance between a test point and its foot-point, and 
the gradient of h is the unit normal at the foot-point. The foot-
point corresponds to the orthogonal projection point with the 
gradient of h, the unit normal vector. The computation algo-
rithm is based on combining the foot-point on the tangent of 
the curve and the approximate foot-point on the tangent pa-
rabola. The accurate foot-point on the curve is computed iter-
atively based on those foot-points at each iteration step. Es-
sentially, this approach is similar to the Newton type iteration 

method. 
A good initial value is required to find a solution iteratively 

using a Newton’s iteration method. This requirement is criti-
cal in this scheme because the success of finding a correct 
root heavily depends on the initial value. However, providing 
such an initial value is not an easy problem because of the 
complexity of the equation caused by the complicated shapes 
of a curve or a surface [28].  

3.2.2 Geometric iteration 

The orthogonal projection point can be obtained by itera-
tively searching for a point on a curve or a surface satisfying 
the orthogonality condition. Searching is performed based on 
geometric properties such as tangent vectors or planes and 
curvature. At each point, the governing equation of orthogo-
nal projection such as Eq. (1) is tested to check if the point is 
close to the true orthogonal projection point. 

Limaien and Trochu [8] proposed a method of computing 
the orthogonal projection of a point onto a parametric curve 
or a parametric surface. They used the concept of ‘dual 
kriging’ that had been formulated by Matheron [29]. With the 
dual kriging, the equations of smooth parametric curves from 
a set of points can be automatically constructed [29]. 

Kriging is a method of interpolation based on Gaussian 
process regression. It is considered as an estimator giving a 
local estimation value using a linear combination of data 
points. Values for interpolation are modeled by a Gaussian 
process with prior covariances, which leads to the best linear 
unbiased prediction. An alternative formulation to kriging is 
called dual kriging, which provides an estimated value using 
a linear combination of covariance functions. Smooth para-
metric curves and surfaces can be represented using dual 
kriging from a set of points [8]. For example, a kriged curve 
can be defined in parametric form consisting of a linear part 
for the average shape of the curve and the correction part to 
the average shape as follows.  

  

ܿሺݐሻ ൌ ܽ଴ ൅ ܽଵݐ ൅ ∑ ௝ܾหݐ െ ௝หݐ
ଷே

௝ୀଵ 																														ሺ15ሻ  

 
where t is the arc-length of the curve c(t) from t = t0, and a0 
and a1 determine the average shape of the curve, and the 
summation with bj adjusts the average shape. Here, the aver-
age shape is denoted as the drift, and the cubic term is denot-
ed as the generalized covariance. These correction terms 
allow the curve to fit the given data points. The orthogonal 
projection for the curve case is computed as follows. Suppose 
that P be a test point, Qi denotes the current point on a curve, 
and Ti is the tangent vector at Qi. At the orthogonal projection 
point, (P - Qi)Ti = 0 should be satisfied. Considering the sign 
of (P - Qi)Ti, the span of the curve with two consecutive 
points Qi and Qi+1 is located, which contains the orthogonal 
projection of P. Next, the orthogonal projection of P is com-
puted by the inverse kriging between the two points as fol-
lows. Intermediate points on the curve are obtained for pa-

 
Figure 1. Illustration of the first order approximation of the 
curve and the orthogonal projection of P on the tangent line. 
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rameters ti. Here, the number of intermediate points for the 
inverse kriging is determined depending on the desired accu-
racy. Next, a function t = f ((P - Q)T) is constructed by inter-
polating the parameters ti using their scalar values (P - Qi)Ti. 
The parametric value of orthogonal projection on the curve of 
P is then obtained by computing the parameter t satisfying t = 
f(0). For the surface case, isoparametric curves on the surface 
are considered, and the procedure for the orthogonal projec-
tion on the curve is iteratively applied.  

Hoschek and Lasser [30] presented a method of iterative 
parameter adjustment for parametrization. They did not ex-
plicitly discuss the orthogonal point projection onto a curve or 
a surface. However, their approach can be directly applied to 
finding orthogonal projection. This process for orthogonal 
projection onto a curve is summarized as follows. Consider a 
point P and a parametric curve c(t). Then, the parameter t is 
iteratively adjusted to make the error vector D = c(t) – P per-
pendicular to c(t). The amount of adjustment dt at each itera-
tion is obtained from the distance between the projection of P 
onto the tangent line at c(t) and the point c(t). As the iteration 
continues, the amount of adjustment dt converges to zero, 
leading to the parametric value t for the orthogonal projection 
of P onto c(t). This scheme can be extended to the surface 
case. In this process the first derivative of the curve is em-
ployed to approximate the local shape of the curve as shown 
in Figure 1. 

Two different versions of Hoschek and Lasser’s method 
are also proposed. Using the Taylor expansion, the terms up 
to the first derivative of the expansion are taken for formula-
tion of the parameter adjustment [31]. In [32], the function 
DD is used to derive the amount of correction. Namely, Ho-
scheck and Lasser’s method is based on the first derivative of 
a curve or a surface for the iteration.  

On the other hand, Hu and Wallner [33] proposed a method 
based on the second derivative properties of a curve or a sur-
face for the orthogonal point projection. The core idea of the 
point projection onto a curve is to approximate the local shape 
of the curve at a point using a curvature circle. Next, the giv-
en point is projected onto the circle to produce Q as shown in 
Figure 2. Using Q the amount of parametric value of t is es-

timated to obtain the orthogonal projection point on the curve. 
The illustration of this method is given Figure 2, where C is 
the center of the curvature circle. This process continues until 
the amount of adjustment is less than the user-defined toler-
ance. This scheme is directly applied to the problem of the 
orthogonal point projection onto a surface. The schematic 
illustration of the surface case is given in Figure 3, where s is 
the surface. A normal curvature in the direction P from s0 is 
computed. Then, a circle is defined using the normal curva-
ture with the center of curvature C and the value of the nor-
mal curvature. Next, the point P is projected onto the circle to 
produce the approximate projection point Q as shown in the 
figure. Using the projected point Q, the amounts of updates 
for the parameter u and v of the surface are estimated. This 
procedure is repeated until the desired accuracy is obtained. 
This method shows improved stability compared to and per-
formance similar to Newton-Raphson method. However, the 
method cannot overcome the dependency of initial values for 
convergence to the right solution. 

The extension of Hu and Wallner’s method is proposed by 
Liu et al. [34]. Unlike Hu and Wallner’s method their method 
can handle orthogonal point projection onto a surface only. 
The local shape of the surface is approximated by a torus 
patch as shown in Figure 4. The major and minor circles of 
the torus are constructed using the maximum and minimum 

 

Figure 3. Hu and Wallner’s second order method for surfac-
es 

 

Figure 4. A torus patch is created to approximate the local 
shape of the surface near s0 

 

Figure 2. Hu and Wallner’ second order method for curves. 
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principal curvatures. Next, the test point is projected onto the 
patch. Using the projected point Q on the patch, the paramet-
ric values of the original surface corresponding to the orthog-
onal projection on the torus patch are estimated. For this pa-
rameter estimation, the surface is Taylor expanded up to the 
second order. Then, a Newton-type iteration method is em-
ployed to find the parameter changes of the surface corre-
sponding to the projection point on the torus patch. This 
method is demonstrated to show better performance than Hu 
and Wallner’s method in terms of speed and stability. How-
ever, because it requires the Newton-type iteration method to 
find the parameter values on the surface, the stability of the 
method is not guaranteed.  

Ko [35] presented a method of orthogonal projection of a 
point onto a 2D planar curve. He approximated the local ge-
ometric shape of a curve at a point using a quadratic polyno-
mial based on the Taylor expansion of the curve at the point. 
Then the approximated orthogonal projection point is com-
puted using the polynomial analytically, which is then pro-
vided as input to the next iteration. This process continues 
until the orthogonal projection point is obtained with a user-
defined accuracy. In his method, the possibility of using the 
third derivatives of the curve is presented to improve the 
overall performance of the point projection. 

Song et al. [36] used a biarc for approximating the local 
geometric structure of a parametric curve near the point of 
interest. The projection onto the biarc approximation is com-
puted, giving the update for the parameter. This process is 
repeated until the termination condition is satisfied. Here, the 
concept of biarc approximation is of main interest. A biarc 
consists of two circular arcs connected at a common end point. 
The biarc is designed to approximate the local shape of the 
curve over a certain interval containing the projection point 
with the boundary positions and the first order derivatives.  

The core idea of the geometric iteration approaches is to 
approximate the shape of a curve or a surface in the neigh-
borhood of a point on the curve or the surface as closely as 
possible using a simple analytical expression, and to compute 
the orthogonal projection point on the approximate shape 
efficiently. From the approximated projection point, the 
amount of adjustment for the parameter(s) is computed to 
produce a new parametric value(s). This process is repeated 
until the computed orthogonal projection point converges to 
the accurate orthogonal projection point. This means that if 
the shape can be approximated as accurately as possible to the 
true shape, and the orthogonal point on the approximated 
shape can be obtained efficiently, then the convergence to the 
true orthogonal projection point can be accelerated, and the 
sensitivity to the initial point can be reduced. 

So far, the first and the second order approximation ap-
proaches have been presented. Moreover, there has been an 
attempt to use the third order derivative properties for the 
local shape approximation. Considering general curves or 
surfaces except the line segments or the planes, the second 

order approximation methods have demonstrated better per-
formance than the first order methods.  

When a curve is defined implicitly, Aigner and Juttler [20] 
proposed a robust method for computing orthogonal projec-
tion, called the circle shrinking method. The core idea of this 
approach is as follows. Consider a point P and a curve c(x,y) 
= 0 that is implicitly defined. When Q is the orthogonal pro-
jection point, a circle can be defined, whose center and radius 
are P and |P - Q|, respectively. Because Q is the closest point 
from P, the circle intersects the curve only at Q, meaning that 
no other point on the curve is inside the circle, and the implic-
it function values are either zero or have the same sign as P. 
As shown in Figure 5, Qi on the curve is provided as the ini-
tial point of iteration. Then, a circle passing Qi is created with 
P as its center. The function (P – Qi)c is tested to check if 
Qi is the orthogonal projection point or not. If not, a point Q+ 
in the neighborhood of Qi is selected on the circle. Q+ can be 
the first local maximum of c(x,y) along the arc from Qi. Next, 
a line segment connecting P and Q+ is obtained. The intersec-
tion between the line and the curve is calculated, which is 
denoted as Qi+1. This process is repeated until the radii of the 
successive circles do not change by more than a certain toler-
ance.  

The geometric iteration methods have a close relation with 
geometric modeling and processing. Therefore, they can be 
naturally embedded in the whole application pipeline. More 
research on solving the two issues will be performed in the 
near future. 

3.3 Subdivision based method 

3.3.1 Subdivision of curve or surface 

Piegl and Tiller [7] discussed the point projection problem 
in the context of parametrization for surface fitting from a set 
of random points. They used a base surface for estimating 
parameter values of given points by projecting them onto the 
base surface and taking the parameter values of the projected 
points. They claimed that the standard way of projection re-
quires a good initial guess, which is expensive and error 
prone. They proposed a method to do away with Newton-
Raphson method to find the projection points on the surface. 
The base surface is subdivided into quadrilaterals, and each 
point is projected onto the closest quadrilateral. Then, the 
parameter value for the point is computed from the parameter 
values of the corner points of the closest quadrilateral. The 
dependency of the initial guess no longer exists. However, the 
accuracy of the estimated parametrization is dependent on the 
quality of decomposition. The decomposition should be per-
formed in such a way that the subdivided quadrilaterals are 
uniform in size and are created based on the geometry and the 
curvature of the base surface. Ma and Hewitt [37] proposed a 
method for computing point projection and inversion. Their 
concept is somewhat similar to that of Piegl and Tiller’s. But 
the difference lies in the subdivision strategy that a curve or a 
surface is subdivided into Bezier curves or Bezier surfaces. 
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Then, the control polygons are used to find the candidates for 
orthogonal projection. The candidates are recursively subdi-
vided into sub-curves until the control polygons of the sub-
curves become “flat” or reach a limit for recursion. Here, the 
control polygons being “flat” means that the control points of 
a curve are nearly collinear or the control polygon of a sur-
face is nearly planar. Then, the approximated projection 
points are obtained by projecting the points on the straight 
line or the plane. In order to improve accuracy, Newton-
Raphson method can be employed. Ma and Hewitt showed 
that their method outperforms Piegl and Tiller’s method in 
terms of computation time and stability. However, the subdi-
vision of a curve or a surface is still an expensive operation. 
The Ma and Hewitt’s algorithm for computing the nearest 
point on a Bezier curve in R3 space to the test point, however, 
produces incorrect results as demonstrated by Chen et al. [38]. 
They provided an example that Ma and Hewitt’s algorithm 
fails to find the correct answer. This defect may contribute to 
the performance degradation. An improved version of Ma and 
Hewitt’s method is proposed by Selimovic [39]. The new 
method subdivides the curve or the surface recursively as Ma 
and Hewitt’s approach. However, the computational perfor-
mance could be improved by introducing new elimination 
criteria, with which a large number of subdivided parts are 
excluded in the computation. Endpoint interpolation, the con-
vex hull property and tangent cones are used to develop the 
criteria for curves and surfaces. They showed that their ap-
proach could reduce the number of subdivided parts for test-
ing of projection substantially compared with Ma and 
Hewitt’s method. The performance improvement is more 
pronounced for surfaces than for curves, which is demonstrat-
ed in their paper. Chen et al. [40] proposed the circular clip-
ping algorithm, which is more efficient than those in [37] and 
[39]. They used a circle for a planar curve or a sphere for a 
3D curve as an elimination region. The curve segments out-
side the circle or a sphere are eliminated after subdivision. 
This process is repeated until the termination condition is 
satisfied. Oh et al. [41] employed the concept of the cir-
cle/sphere clipping method by [40] but introduced a more 
efficient technique using the separating axis and k-DOP type 
of bounding scheme for culling or clipping unnecessary part 
of curves or surfaces during the iteration. Moreover, through 
testing the uniqueness of the projection point in the subdivid-
ed regions the computational efficiency can be improved. The 
method by Oh et al. [41] was extended to compute projection 
of a moving query point onto a freeform curve [42]. 

3.3.2 Subdivision based root finding 

When Eq. (1) is formulated as a polynomial equation, then 
the root of the equation can be obtained using a subdivision-
based method. Zhou et al. [43] presented a method to com-
pute the stationary points of a distance function. The subset of 
such points corresponds to the orthogonal projection points 
on a curve or a surface. The equation is represented in Bern-

stein form, which is then given as input to the Projected Poly-
hedron (PP) algorithm [44] that finds the solution of the equa-
tion by narrowing down the domain containing roots through 
subdivision. This approach is not restricted to the problems of 
point projection or point inversion. This approach is robust in 
that it always finds the projection point as long as it exists. 
However, this approach is complicated in terms of implemen-
tation and is so expensive that it may not be used for the ap-
plications that require processing a large number of points.  

These methods are robust because they do not use any ini-
tial values, and the whole domain of interest is considered in 
the computation of orthogonal projection points. However, 
they show a drawback in terms of performance because they 
require subdivision of a curve or a surface, which is an expen-
sive operation. The subdivision methods are not used to com-
pute the accurate orthogonal projection points in general be-
cause of the long computation time. Instead, they are usually 
employed to find the initial points, which are then used as 
input to various numerical computation methods for accurate 
orthogonal projection points such as Newton-Raphson meth-
od. Therefore, these methods must be used after considering 
the trade-off between the robustness and performance. 

3.4 Extension of orthogonal projection of points 

Orthogonal point projection onto a surface is extended to 
the orthogonal projection of a curve onto a surface. Here, the 
curve is given in 3D, and its projection on the surface is also a 
curve in 3D, but lies on the surface. Therefore, it can be con-
sidered as a method of curve design on the surface. 

The problem of orthogonal projection of a curve onto a sur-
face was addressed by Pegna and Wolter [17]. They derived a 
set of differential equation for tracing the projected curve on a 
surface. For this development, a few assumptions are neces-
sary. First, the surface should be regular and second order 
continuous. Next, the curve itself should be positioned close 
enough to the surface, and the projected curve should lie in 
the interior of the surface. These assumptions are somewhat 
strict. However, the notion of orthogonal projection of a curve 
onto a surface is more than point projection in that the gov-
erning equation is given by a set of differential equations. 
Consider a parametric surface s(u,v) (0 ≤ u, v ≤ 1) and a space 
curve c(t) with t as a parameter (0 ≤ t ≤ 1). Then the projected 
curve on s, denoted by (t) is given by (t) = s(u(t),v(t)) satis-
fying 
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After taking the derivative of Eq. (16) with respect to t, and 

using the chain rule, we obtain 
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E, F, and G are the first fundamental form coefficients, and 

L, M, and N are the second fundamental form coefficients of s, 
respectively. Given the parametric values of u and v of an 
initial point on the surface, the system Eq. (17) is numerically 
solved to trace the u and v values corresponding to the pro-
jected curve on the surface. Here, Runge-Kutta method can 
be employed. The initial point is obtained by computing the 
orthogonal projection point onto the surface. Ko [45] extend-
ed Eq. (17) to cover the orthogonal projection of lines of cur-
vature and geodesic curves onto a surface. Song et al. [46] 
proposed a second order tracing method for orthogonal pro-
jection of a curve onto a parametric surface. The successive 
tracing points from the starting point are computed using the 
second order tracing formula defined in the parametric do-
main of the surface. The computed points are then approxi-
mated in a polyline based on the Hausdorff measure in the 
parametric domain, which is then mapped on the surface to 
produce the orthogonal projection curve on the surface. Alt-
hough the related theory is complicated compared to the first 
order method, this second order method is claimed to be fast-
er than the first order method. Wang et al. in [47] and [48] 
proposed algorithms for G1 and G2 continuous curve con-
struction on a free-form surface using normal projection, re-
spectively. The condition of normal projection in [17] was 
employed with different formulation of a set of differential 
equations for the normal projection curves. Xu et al. [49] 
proposed a method of orthogonal projection of a curve on a 
parametric surface using a second order approximation 
scheme. The central difference of others is that the projected 
curve on the surface is parameterized with the parameter of 
the curve. A set of differential equations is derived based on 
second order Taylor approximation, which is solved numeri-
cally with error adjustment.  
 

4. Orthogonal projection of point onto point sets  

Popularity of 3D scanning devices is growing, and point 
clouds are widely used for model representation. Therefore, 
more and more shape and rendering processes are developed 
to handle point clouds for various operations such as object 
fitting.  

Orthogonal projection of a point onto point clouds requires 
a different approach from that of a point onto a curve or a 
surface because of uncertainty of accurate shape representa-

tion of the point clouds. Alexa and Adamson [50] analyzed 
Levin’s MLS method [51] for computing normals from sur-
faces by point sets. The method based on Levin’s approach 
would not result in orthogonal projection because the normal 
to the estimated tangent frame is not the actual surface normal. 
They provided an enhanced algorithm for computing orthog-
onal projections using the revised normal computation 
scheme. They assumed that the points implicitly define a 
smooth surface and introduced an implicit function f as fol-
lows. 
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The approximating surface is represented by the points x 

satisfying f(x) = 0. Here, n(x) and a(x) are the weighted aver-
ages of normal and points at a location x. Orthogonal projec-
tion of x can then be estimated as follows [50] and [52]: 

1) Set x=x 

2) Compute a(x), n(x), and f(x). 
3) x = x - gf(x),              

g = (n(x)T(a(x)-x))/( n(x)Tf(x)). 
4) If ||(n(x)T(a(x)-x))|| > , go back to step 2. 

The point x is repeatedly adjusted such that the vector (x-
x) becomes in the direction of f(x). Using the implicit rep-
resentation of the surface from the point sets, exact normals 
can be estimated, from which accurate orthogonal projection 
can be computed. 

Orthogonal projection of a point onto a set of points is ad-
dressed in a more general way. Namely, given a cloud of 
points Cn, an arbitrary point P and the projection direction np, 
the projection in direction np, called the directed projection, is 
the point on Cn of P on the straight line Q*(t) = P + tnp, where 
t is a parameter. This is intuitively equivalent to finding the 
intersection between Q*(t) and Cn. Azariadis and Sapidis [53] 
used the directed projection as its main component for solving 
the problem of generating smooth curves on the surface de-
fined by point clouds. They proposed an iterative algorithm 
for finding the directed projection point. A weight function 
was proposed in a heuristic manner using the distance and the 
axis defined by P and n. With the weight, Q* is obtained as a 
root of the following minimization problem: 
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 These steps are repeated until the iteration converges to the 
projection point. This problem can be extended for computing 
orthogonal projection. Liu et al. [54] discussed a method of 
handling the case that the projection direction is not given. 
They proposed a method for estimating the projection direc-
tion, and an iterative algorithm to compute the projection of a 
3D point onto a set of points. It turns out that their method 
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inherently computes the orthogonal projection or normal pro-
jection of the given point onto the point clouds. Du and Liu 
[55] addressed the problem of lack of robustness of the meth-
od by [53] with respect to outliers and provided a way to 
overcome the issue using the concept of least median of 
squares. Zhang and Ge [56] proposed an improved MLS al-
gorithm for the directed projection problem. Unlike MLS 
projection approach that the solution always lies along the 
normal direction, their proposed method computes directed 
projection by searching the solution along the projection di-
rection. Moreover, they avoided the problem of incorrect 
choice of points for evaluating the weighting values. The 
existing MLS approach selects the neighboring points based 
on the shortest distance from the given point, which is prone 
to error when the geometric shape of the surface is complicat-
ed. For the criterion, the shortest distance from the projection 
vector was used for improved convergence.  
 

5. Conclusions   

Orthogonal projection is an important process in geometric 
modeling, computer aided design and computer graphics. The 
problem itself can be formulated in a mathematically rigorous 
manner. However, the actual solution method to the problem 
still experiences the stability and performance issues because 
orthogonal projection is usually given as roots of nonlinear 
equations, and solving them is usually an unstable and time 
consuming operation. Therefore, various applications from 
registration, curve and surface fitting, and similarity assess-
ment that require accurate orthogonal projection are inevita-
bly suffering from robustness and performance degradation.  

In this review, a mathematical discussion on orthogonal 
projection is provided, and methods of computing orthogonal 
projection are reviewed. The solution methods are mainly 
classified into two groups: iteration-based and subdivision 
based methods. Extension to curve projection and projection 
onto a point cloud is explored. Various solution methods be-
longing to each category are presented and compared.  

Mathematically, orthogonal projection requires that there 
should exist a tangent vector at the projected point on a curve 
or a surface. This means that the curve or the surface should 
be regular, and a tangent vector or a tangent plane should 
exist. When there are points on a surface or a curve where 
such a condition is not satisfied, orthogonal projection cannot 
be defined mathematically, which is a degenerate case. If 
computing orthogonal projection is a primary goal, the de-
generate case needs to be handled with care to avoid a crash 
case of the computation method. 

When the first derivative vanishes at a point on a curve or a 
surface, the curve or the surface is no longer regular, and no 
tangent line or tangent plane is considered at that point. Such 
a point is called the singular point, where differential geome-
try cannot be considered, and no unique normal vector can be 
obtained. Therefore, the mathematical definition of orthogo-
nal projection is no longer applied in this case. However, such 

a degenerate case should be “nicely” handled for robustness 
of orthogonal projection computation. Computationally, the 
degenerate cases can be detected by checking the first deriva-
tive value during computation. If the derivative becomes less 
than a user-defined tolerance, the computation method stops, 
the type of singularity is analyzed, and a routine to handle 
such a type is called for to take care of the situation. In this 
paper, we focus on a smooth curve or a smooth surface, 
which are regular. When there is a singular point, the curve or 
the surface is subdivided into regions, each of which becomes 
regular. Next, orthogonal projection is performed. If compu-
ting the minimum distance is a main task, such a degenerate 
case can be handled using a minimization routine.  

The recommended choice for orthogonal projection can be 
made depending on the representation methods of a curve or a 
surface. If a curve is given in implicit form, the method by 
[20] can be used because of its robustness in computation. For 
a curve and a surface in parametric form, two aspects should 
be taken into consideration: robustness and computation time. 
In order to guarantee the robustness of the orthogonal projec-
tion computation, a subdivision based global scheme should 
be employed, followed by Newton type iteration to improve 
accuracy. Under the condition that points are located closely 
enough near the target curve or surface, a simple Newton type 
iteration method is the best choice because of its speed and 
simplicity. However, satisfying such a condition is quite arbi-
trary. Therefore, either of the methods by [33] or [34] can be 
employed. Here, [33] is simpler than [34] in terms of imple-
mentation but is inferior to [34] in terms of robustness.  

It is concluded that there is no perfect algorithm to solve 
the problem of orthogonal projection that satisfies high accu-
racy, robustness and efficient computation time simultaneous-
ly. Instead, much of the literature has focused on robustness 
of the solution methods although a certain amount of time 
loss is expected, which is a reasonable direction of research. 
Methods with increased robustness in computation of orthog-
onal projection will benefit in the actual applications more 
than unstable methods with less computation time, because 
the computation time can be handled by optimized hardware 
and software. Because the robustness of the solution process 
is the most critical component in the computation of orthogo-
nal projection and the most influential to the other applica-
tions, it is recommended that more research efforts should be 
directed to improving the robustness of orthogonal projection 
computation. 
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