

Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115
www.jcde.org

A multi-user selective undo/redo approach for collaborative

CAD systems

Yuan Cheng1, Fazhi He1,*, Bin Xu1, Soonhung Han2, Xiantao Cai1 and Yilin Chen1
1 School of Computer Science and Technology, Wuhan University, Wuhan, China

2 Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea

(Manuscript Received September 16, 2013; Revised October 31, 2013; Accepted November 1, 2013)

--

Abstract

The engineering design process is a creative process, and the designers must repeatedly apply Undo/Redo operations to modify CAD

models to explore new solutions. Undo/Redo has become one of most important functions in interactive graphics and CAD systems.
Undo/Redo in a collaborative CAD system is also very helpful for collaborative awareness among a group of cooperative designers to
eliminate misunderstanding and to recover from design error. However, Undo/Redo in a collaborative CAD system is much more com-
plicated. This is because a single erroneous operation is propagated to other remote sites, and operations are interleaved at different sites.
This paper presents a multi-user selective Undo/Redo approach in full distributed collaborative CAD systems. We use site ID and State
Vectors to locate the Undo/Redo target at each site. By analyzing the composition of the complex CAD model, a tree-like structure called
Feature Combination Hierarchy is presented to describe the decomposition of a CAD model. Based on this structure, the dependency
relationship among features is clarified. B-Rep re-evaluation is simplified with the assistance of the Feature Combination Hierarchy. It
can be proven that the proposed Undo/Redo approach satisfies the intention preservation and consistency maintenance correctness crite-
ria for collaborative systems.

Keywords: Undo/Redo; Collaborative CAD; Intention preservation; Configuration management

--

1. Introduction

When exploring a new system for the first time, a user
needs to execute and cancel operations repeatedly to fully
understand each function. The idea that "any system with a
complex interaction interface should offer Undo/Redo sup-
port" was proposed in the late 1980s [1]. The fact that “no
one will doubt the importance of offering Undo/Redo func-
tion in interactive systems" was also pointed out [2].

Collaborative CAD systems are an important platform for
geographically dispersed designers working together. As an
important feature in collaborative systems, Undo/Redo can
help in reducing errors and eliminating misunderstandings [3-
4]. Several kinds of group Undo/Redo models have been
proposed, and the selective Undo/Redo model is the one most
adopted. Supporting Undo/Redo in a collaborative CAD sys-
tem is considered to be more complex and technically chal-
lenging than in a single-user environment.

Artifacts in collaborative design have a complex structure.

Features are combined to form the boundary representation of
a CAD model. The creation of a new feature depends on the
existing features. When an operation is chosen as the Undo
target, operations that depend on it must be obtained. In this
circumstance, the structure of the complex design artifacts
should be clearly presented.

Basic correctness criteria for a generic collaborative envi-
ronment should be satisfied, such as intention preservation
and consistency maintenance. The intention of an Undo and
Redo commands is to eliminate and re-create the feature cre-
ated by a certain modeling operation. Operations are inter-
leaved at different sites, and an error can be detected after a
number of operations are performed after it. The Undo/Redo
implication should be interpreted unambiguously.

As a continuation of our previous work [5- 7], a multi-user
selective Undo/Redo method for a 3D collaborative CAD
environment is proposed. Within our method, the Undo/Redo
target can be uniquely identified at each site. We also studied
the structure of the complex design artifacts, and a tree-like
structure called a Feature Combination Hierarchy is con-
structed to present the decomposition of a CAD model. Based
on this structure, the dependency relationship among features
and operations is clarified. The boundary model must be re-
fined each time an Undo or Redo is issued, and this can be

*Corresponding author. Tel.: +86 18986211761
E-mail address: fzhe@whu.edu.cn

© 2014 Society of CAD/CAM Engineers & Techno-Press

doi: 10.7315/JCDE.2014.011

104 C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115

achieved with the assistance of the proposed structure.
This paper is extended on the basis of our conference work

[8]. In this paper, the construction of the Feature Combination
Hierarchy is presented in more detail (section 3), the Un-
do/Redo algorithm is optimized against our conference work
(section 4), and; a more detailed example is given (section 5).

The remainder of this article is organized as follows. In
Section 2, the basic concepts of Undo/Redo operations and
research fields are introduced. In section 3, the feature com-
bination hierarchy is introduced. In section 4, our Undo/Redo
method for a 3D collaborative system is introduced. In sec-
tion 5, test results of the proposed method are presented. Fi-
nally, a summary of major contributions are given in section
6.

2. Related works

An Undo/Redo model determines the number and se-
quence of the undoable operations. There have been many
efforts in the research field of Undo/Redo models. The initial
research of Undo/Redo models are in single-user environ-
ments [9-10]. The Undo/Redo models in single-user envi-
ronments are classified into 4 categories: 1) the single-step
Undo/Redo model [2], 2) the linear Undo/Redo model [3], 3)
the US&R (Undo, Skip, Redo) model [11], and 4) the history
Undo/Redo model [12]. However, in a multi-user collabora-
tive editing system, operations are interleaved at different
sites. The last operation at the local site is not necessarily the
last executed operation at other sites. Therefore, the selective
Undo/Redo model is the most adopted multi-user Undo/Redo
model. Its flexibility is limited by the Undo/Redo scope;
namely, local Undo/Redo and global Undo/Redo [11, 15- 17].
AnyUndo is a framework which separates an Undo policy
from the Undo mechanism. It allows users to devise a single
Undo algorithm to support both local and global Undo/Redo
and multiple models mentioned above [4, 13]. Moreover, it
allows for undoing any operation at any time. This idea has
been extended in the literature [7, 14].

Table 1 gives a detailed description of the features of the
selective Undo/Redo model and the representative prototype.

Different application systems have different characteristics.
There are also different methods in the Operation ID, correla-
tivity analysis and processing.

Operation ID is required in every selective Undo/Redo
model. The symbol "√ " means the operation ID is adopted
by the model, but no implementation method is described.
Detailed implementation methods are given in the literature
[2, 18, 19, 21].

The Multi-user Undo/Redo model from Abowd [2] and
Choudhary [18] do not take correlativity among operations
into consideration, but the Selective Undo model in GINA
[19] and Any Undo Model [4] do. However, in the selective
Undo model, an operation cannot be undone or redone when
it has a relationship with operations executed afterwards. In
the last two models, operation parameters are transferred
when making a Redo operation. When confronting unre-
solved conflicts, they adopt a multi-version method as a solu-
tion. The Multi-level model [20] and cascading selective Un-
do model [21] are designed for the single-user environment.
The solution for the correlativity among operations is based
on the task ID and task correlativity. That is, when undoing
an operation, all tasks related to it are undone. Edwards's
model supports the Redo, while Cass's model does not.

There has been little research work in collaborative CAD
systems in the field of multi-user Undo/Redo, to the best of
our knowledge. There are still defects in our previous re-
search on multi-user Undo/Redo solutions [7]. At first, when
clarifying the dependency relationship among operations,
every attached feature is checked to see if it references the
topological entities created by the Undo target. This will
cause low efficiency. Secondly, model restoration is done by
storing the model state after the execution of every modeling
operation. The effect of the Undo target is eliminated by ob-
taining the model state at its execution first and re-executing
all the valid operations. If the Undo target is at the front end
of the history buffer and there are fewer operations that de-
pend on it, the restoration efficiency will be very low.

Yet, there are still two other ways for model restoration
[23]. One is by re-executing all the valid operations in the

Table1. Undo/Redo implementation in multi-user collaborative systems.

Model Multi-user Undo Selective Undo Selective Undo Any Undo Multi-level Undo
Cascading

Selective Undo

Literature [18] [11, 19] [15] [4] [20] [21]

Operation
Location

User ID √ User＋
Object ID

√ √ Task ID

Dependency
Process × × √ √ √ √

Object Data Record Text 2D Graphic Text Strokes Slides

Prototype Suite DistEdit GINA
Web-based
REDUCE

Flatland White-
board

Little-JIL-based
Application

C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115 105

history buffer. Despite huge computational workload, it is
still feasible because of hardware speed acceleration. The
second way is by storing interim geometry models or incre-
mental values between neighboring modeling operations.
This method was adopted by Wang from the National CAD
Engineering Center, HUST [22].

3. Feature combination hierarchy in 3D collaborative
CAD systems

In a collaborative CAD system, functions and data are rep-
licated at every site. A modeling operation is executed at the
local site immediately before it is sent to other remote sites. A
CAD model is a complex design artifact combined by fea-
tures created by collaborative sites. The feature modeling
operations that aid in the designing of complex artifacts con-
sist of geometric operations and Boolean operations. Geomet-
ric operations choose topological entities from an existing
solid model as the operation target. An example would be to
choose a topological edge to fillet. There are three types of
Boolean operations, namely Union, Subtraction and Intersec-
tion. By executing Boolean operations, a new solid is gener-
ated from two existing solids. Typical examples include pro-
trusion and hole-attachment operations. Although the history
buffer can honestly record the arriving sequence of all model-
ing operations at a collaborative site, it is still inadequate to
represent the structure of the design artifact and inter-
dependency among features. We use the boundary represen-
tation of ACIS for representing the shape of the CAD model.
In ACIS, an attribute is attached to entities to describe their
system-defined or user-defined characteristics. Given this,
every entity created by a certain modeling operation is at-
tached with a CREATE_ATTRIB in the form of (Cre-
ate_SiteID, Create_SEQ) as auxiliary information of its ID.
Therefore, whenever a topological entity is located, its gener-
ation operation can be obtained no matter which persistent
naming mechanism is employed. Details of the workflow in a
collaborative CAD system are presented in subsection 4.1. In

this section, we study the structure of the complex design
artifact, and the Feature Combination Hierarchy data struc-
ture, denoted as FCH for brevity, is introduced.

3.1 A brief view of the feature combination hierarchy

An FCH is a tree-like data structure to represent how 3D
objects are combined and their relations in a CAD model.
Objects, also called sub-configurations, created during the
collaborative design process are categorized as primitive ob-
jects and composite objects. A primitive object cannot be
logically decomposed into any primitive objects or constitu-
ents. Features created by inter-dependent modeling operations
can be combined into composite objects using Boolean op-
erations. It can also be decomposed into its component parts
which in turn may be decomposed recursively so as to be
addressed separately.

The CAD model created in a collaborative CAD system is
constructed in a manner that a base feature is created firstly
and other features are attaching to it incrementally. Based on
this, a CAD model is decomposed into a primitive object
representing the constructive base feature and several sub-
configurations depending on the base feature. The special
primitive object delegating the constructive base feature of a
sub-configuration is called Base Object. There two types of
composite objects: the complex CAD model and sub-
configurations built intermediately by combining several
inter-dependent features. Figure 1 illustrates how a CAD
model, called PART in this example, is decomposed into
different sub-configurations. The BaseCylinder feature is the
constructive base feature of the PART model. So, the corre-
sponding BaseCylinder object is noted as the Base Object of
the PART object. The CylinderChamfer sub-configuration is
a primitive object even though it is constructed by two mod-
eling operations. That means a cylinder needs to be created
first, and the edge of the cylinder’s top face is filleted after-
wards. The CylinderUnion sub-configuration is a composite
object which can be decomposed further. CylinderBoss1 is
the base object of the CylinderUnion sub-configuration.

Figure 1. An example of complex artifact decomposition.

106 C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115

The tree-like data structure and main characteristics are
summarized as follows:

1) The root of the hierarchy is a composite object del-
egating the complex design artifact. A class Artifact
is declared to represent the root. The root node has
several branches. Each branch is a decomposed
sub-configuration from the complex design artifact.
The first branch is always the constructive base fea-
ture of the part. The other branches are sub-
configurations depending on the base feature. The
root owns pointers to its branches. Different
branches are in a non-interacting relationship.

2) The object that an intermediate node in the hierar-
chy delegates can be divided into three types: a) a
composite object created by a Boolean union opera-
tion which can be decomposed further; b) a primi-
tive object created by a Boolean subtraction or in-
tersection operation; and c) a primitive object creat-
ed by executing geometric operations.

3) The leaf node is an additive feature volumetrically
added onto the complex design artifact, or a sub-
tractive feature volumetrically removed from the ar-
tifact.

4) In an FCH, a composite object is always created by
a Boolean Union operation. It should be decom-
posed in the way the root is decomposed. However,
as far as a primitive object is concerned, its evolv-
ing process is also clarified if it is created by a
number of modeling operations. This will be illus-
trated in subsection 3.2.

5) Given a sub-configuration SC decomposed into

sub-configurations SC1 and SC2, The Base Object
of SC is also the Base Object of SC1 and SC2.

6) During the evolving process of a part, the part is
updated after the execution of every modeling op-
eration. Therefore, the corresponding FCH is up-
dated as well. With the consistency maintenance
mechanism of our previous work, the CAD models
at every site are consistent. Therefore, the FCHs at
every site are also consistent.

3.2 Basic feature modeling operation representation

Separate classes are declared for the ultimate CAD model
and primitive/composite objects separately, as illustrated
below:

Struct
{

long int BoundaryModelPointer;
// Pointer to the boundary model of the sub-
// configuration

long int BaseObjectPointer;

 // Pointer to the base object of the sub-configuration

int OpSEQ;
// The sequence number of modeling operation
// creating this sub-configuration from its previous
// version

CString OperationType;

(a)

(b)

Figure 2. Decomposition of the object created by different types of modeling operation: (a) decomposition of the object cre-
ated by Boolean operations, (b) decomposition of the object created by geometric operations.

C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115 107

// A geometric operation or Boolean Union,
// Subtraction or Intersection operation

int SubConf_No;
// The branch the sub-configuration is in

std::list<Sub_Configuration>m_listSubConfPointer;
// Pointers to the decomposed sub-configurations if
// a composite object or empty if a primitive object

Sub_Configuration *next;
// Pointer to the evolved version of this sub-
// configuration after executing a consequent
// modeling operation

} Sub_Configuration ;

Struct
{

long int BoundaryModelPointer;
// Pointer to the boundary model of the sub-
// configuration

long int BaseFeaturePointer;
// Pointer to the base feature of the part

std::list<Sub_Configuration> m_listSubConfPointer;
// Pointers to the decomposed sub-configurations

} Artifact;

Based on the two classes, the decomposition of an object

obtained by executing different types of feature modeling
operations are illustrated in Figure 2. The node at the higher
level delegates the renewed sub-configuration with whichever
kind of feature modeling operation is executed. Figure 2(a)
illustrates the decomposition of an object obtained by execut-
ing Boolean union, subtraction and intersection. The object
obtained after executing a Boolean union operation is a com-
posite object that is decomposed into a Base Object and an
additive feature. The object obtained after executing a Boole-
an subtraction or intersection operation is a primitive object.
However, the primitive object obtained is also illustrated. The
grey-shadowed node means the feature is volumetrically re-
moved from the sub-configuration. Figure 2(b) illustrates the
evolving process of a primitive object created by the geomet-
ric operation.

4. Undo/Redo method in replicated collaborative
modeling systems

Before the Undo/Redo method is proposed, it is necessary
to discuss the consistency maintenance mechanism we adopt-
ed in our collaborative CAD system. A collaborative CAD
system requires the execution of a modeling operation to
satisfy causality preservation and intention preservation. All
replicas reach the state of convergence at the end of a collabo-
rative task. In order to identify the sequencing of simultane-

ous operations issued by collaborative sites in a replicated
collaborative CAD system, a timestamp ordering technique
based on the Lamport State Vector [25] is employed. A State
Vector is an N component vector, where N represents the
total number of all the collaborative sites, and each site has a
unique ID ranging from 0 to N-1. Every site keeps a State
Vector where the i-th component indicates how many oper-
ations from site i have been executed at the site. Two State
Vectors, SVi and SVj, are compared in a way that: 1) SVi =
SVj iff each element of SVi is equal to the corresponding ele-
ment in SVj; 2) SVi < SVj iff each element of SVi is equal to
or less than the corresponding element in SVj and at least one
component of SVi is less than that in SVj; 3) SVi > SVj iff
each element of SVi is greater than the corresponding element
in SVj. Whenever a modeling operation is sent to the remote
sites, a State Vector at its generation moment is attached to it.
An operation can only be executed in the causality-ready
condition, such as when its State Vector is not greater than
the State Vector kept at that remote site. The goal of intention
preservation is reached by adopting an optimistic serialization
concurrency control method proposed by our research group
[26, 27].

When a feature is eliminated from a boundary model, fea-
tures that depend on it are meaningless. The Undo/Redo
method in a collaborative modeling environment needs to
take the dependency relationship among operations into con-
sideration. As illustrated in subsection 3.2, objects in a com-
posite sub-configuration all depend on its Base Object. Even
a primitive object is constructed on the basis of some primi-
tive object. When a modeling operation is chosen as the undo
target, the first step is to check if the corresponding feature is
the Base Object of some sub-configurations. Afterwards, all
executed operations that depend on the undo target should be
undone altogether.

When an undo command is issued, its intention is to elimi-
nate the effects of one or more operations and restore to some
previous state. The requirements include: 1) to correctly lo-
cate the undo target operation; and 2) to successfully elimi-
nate the effects of the undo target and the operations that
depend on it without affecting the non-interacting sub-
configurations. When a Redo command is issued, its intention
is to undo the most recent undo issued by the same user. In
this section, we propose a local Undo/Redo method where the
user can only undo operations issued by him/her from back to
forth. This is more similar to the single-user environment.
This method has a pre-condition that the collaborative sites
have reached a state of convergence when an Undo command
is invoked.

4.1 Locating Undo/Redo target

In order to satisfy intention preservation requirement 1, the
Undo/Redo target should be correctly located. Due to net-
work latency and the causality preservation based on State
Vectors, the operation history at each collaborative site has
the following characteristics:

108 C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115

1) Modeling operations from the same site are executed in
the same order at all sites.

2) Modeling operations from different collaborative sites
are interleaved and executed in different order at differ-
ent sites.

Since the Undo target that a user is aiming at is not neces-
sarily the last operation in the execution list at each site, when
locating the Undo target, there are 2 aspects we should take
into consideration: 1) locating the Undo target at the local site;
and 2) locating the Undo target at remote sites.

A modeling operation is executed immediately at its gener-
ation site immediately after it is issued. Thus, the Undo object
merely exists in the execution list at the local site.

Consider a collaborative CAD system CS as an example.
There are N collaborative sites in CS. Ai,j (0≤j≤M-1) means
the modeling operation sent from site Si, and M is the total
number of operations. For Si, all the operations it sends are
put in its execution list ExecuteListi from Ai,0 to Ai,M one by

one.
As soon as Si issues an Undo command, it is easy to search

through its ExecuteListi, and the last operation satisfying
Ai.siteId == i is the Undo target.

Given network latency and the summarized characteristic
(2), the Undo target may exist in two lists at any remote site.
One possible list is the execution list, and the other one is the
waiting list keeping waiting operations that are not causality
ready.

When some random remote site Sj receives the Undo re-
quest, the possible identified Undo target may not be the last
executed operation. So, it can only be located in the Exe-
cuteListj or WaitListj. In order to locate the Undo target, the
combination of site ID and operation’s State Vector are
adopted. An operation from Si is sent to Sj in the format of Ai
(SiteId, StateVector). When Ai arrives at Sj, ExecuteListj will
be searched first. If no operation in this list satisfies O.siteId
== i and O.StateVector==Ai.StateVector, then WaitListj will

(a)

(b)

Figure 3. Location of Undo object at remote site: (a) the initial state before applying the undo command, (b) the model state
after applying the undo command.

C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115 109

be searched in order to locate the Undo target.
Figure 3 shows an example of applying operation ID and

State Vector to the Undo process. In the example, Cubid-

Slot(1) is from site 1 and CubidSlot (2) is from site 2. The
Undo command is issued by site 2.

4.2 Undo targets preservation

Algorithm 2: Undo method at a collaborative sitei.

Input: Undo request, history buffer HBi at sitei, current FCH

Output: Re-evaluated geometry model

1: Op = the identified undo target in history buffer;
2: DOS(Op) = Op’s dependency operation set;
3: Op_Node = the object node of Op in the FCH;
4: //obtaining the re-newed sub-configuration without Op’s effect
5: i = Op_Node.SubConf_No;
6: root = root node of FCH；
7: SubConf_Node = root.m_listSubConfPointer[i];
8: Base_Ob = the base object of the SubConf_Node;
9: Temp_Node = Base_Ob->Next;

10: Temp_SubConf = the boudary model Base_Ob delegates;
11: while (Temp_Node != SubConf_Node)
12: if (Temp_Node is in DOS(Op || Temp_Node == Op))
13: delete Temp_Node from FCH;
14: else
15: Temp_SubConf = the re-newed boundary model obtained by executing the feature modeling operation

saved in Temp_Node on Temp_SubConf;
16: creating a new node according to Temp_SubConf and insert the node into FCH;
17: endif
18: Temp_Node = Temp_Node->Next;
19: endwhile
20: root.m_listSubConfPointer[i] = Temp_Node;
21: combine all the existing sub-configurations to obtain the re-evaluated boundary model;

Algorithm 1: Obtaining the dependency operation set of the Undo target.

Input: the identified Undo target operation Op, current FCH
Output: DOS(Op)
1: Op_Node = the object node of Op in FCH;
2: DOS(Op) = Empty;
3: i = Op_Node.SubConf_No;
4: root = root node of FCH;
5: SubConf_Node = root.m_listSubConfPointer[i];
6: Temp_Node = Op_Node.next;
7: while (Temp_Node != SubConf_Node)
8: if (Temp_Node->BaseModelPointer == Op_Node)
9: Temp_Node is put into DOS(Op);

10: if (Temp_Node->BaseModelPointer != Op_Node)
11: Temp_Base_Node = Temp_Node->BaseFeaturePointer;
12: while (Temp_Base_Node != NULL)
13: if (Temp_Base_Node->BaseFeaturePointer == Op_Node)
14: Temp_ Base_Node is put into DOS(Op);
15: else
16: Temp_Base_Node=Temp_Base_Node->BaseFeaturePointer;
17: endif
18: endwhile
19: endif
20: endif
21: Temp_Node = Temp_Node->next
22: endwhile

110 C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115

The intention of an Undo/Redo command is to elimi-
nate/re-create the effect of a certain feature. This means the
B-Rep re-evaluation is an unavoidable step during the Un-
do/Redo process. As far as intention preservation requirement
2 is concerned，whenever an Undo or Redo command is
issued, only the branch that the corresponding feature is in is
effected in an FCH, while the rest of the branches remain
unchanged. Based on the preparations made in subsections
4.1 and 4.3, two algorithms are presented to introduce our
Undo and Redo methods separately. Algorithm 2 illustrates
the Undo implementation at a collaborative site and Algo-
rithm 3 describes the Redo implementation at a collaborative
site. The Redo method is proposed with the pre-condition that
an operation undone because of a dependency relationship
cannot be redone.

5. Implementation and test results

To demonstrate the effectiveness and feasibility of the pro-
posed Undo/Redo solution, we have made several experi-
ments within the prototype we built using ACIS 6.0 and Vis-
ual C++ 6.0. There are 3 collaborative sites, denoted as Site0,
Site1 and Site2, involved in the experiments. The experi-
ments are initiated with a collaborative modeling process
illustrated in Figure 4.

During the collaborative modeling process, a feature mod-
eling command is executed immediately after its generation
at the local site. It is then sent to the other two remote sites for

execution. How many operations are generated at a site and
the execution sequence of all received operations are illustrat-
ed in Table 2.

Three Undo commands are issued and executed in the fol-
lowing way:

(Step 1) Site0 sends an Undo command to Undo the last
operation it issued. The target operation O4 is identified and
the corresponding node denoted as Sub_Configuration4 in the
site’s feature combination hierarchy is obtained. The identi-
fied node represents the one object in the 4th sub-
configuration, and DOS(O4) is empty. Therefore, the sub-
configuration is skipped during the re-evaluation process.
Eventually, the other four sub-configurations are recomposed
as illustrated in Figure 6.

Algorithm 3: Redo method at a collaborative sitei

Input: Redo request, history buffer HBi at sitei, current FCHi

Output: Re-evaluated geometry model
1: if（Op.ReferenceEntityList == NULL）
2: Ob_Base = new SubConfiguration();
3: Ob_Base.BaseModelPointer = NULL;
4: Ob_Base.BoundaryModelPointer = the physical address of base feature model
5: Ob_Base.ModelingCommandString = the advanced modeling command of Op;
6: Ob_Arti = new Artifact(); //creating the root node
7: Ob_Arti.BaseModelPointer = Ob_Base;
8: endif
9: if (Op.ReferenceEntityList！= NULL)

10: identify the operation creating the referenced topological entities;
11: Temp_Node = the object nodes of the operation;
12: Temp_Command_String = the advanced modeling command of the operation;
13: Temp_Type_String = the operation type obtained by parsing Temp_Command_String;
14: Ob_New = new SubConfiguration();
15: Ob_New.BaseModelPointer = Temp_Node;
16: Ob_New.BoundaryModelPointer = pointer points to the new subconfiguration;
17: Ob_New.ModelingCommandString = the advanced modeling command;
18: Ob_New.OperationType = Temp_Type_String;
19: if (the topological entities of Op.ReferenceEntityLis are from the base feature)
20: i = m_listSubConfPointer.count()；
21: Ob_Arti.the_i+1th_Configuration _Pointer = new SubConfiguration();
22: Ob_Arti. the_i+1th_Configuration _Pointer = Ob_New;
23: else
24: Ob_Arti.This_SubConfigurationPointer = Ob.New;
25: endif
26: endif

Table 2. Operation generation and execution at each site.

Site
ID

Operation generated at
the site

Execution sequence
of operations at the

site

Site0
O0:BaseBlock(0)
O1:Cylinder(0)

O4:PolygonExtrusion(0)
O0,O1,O4,O2,O5,O3,O6

Site1
O2:Cylinder(1)

O5:RoundHole(0)
O0,O1,O2,O5,O4,O3,O6

Site2
O3:PolygonExtrusion(1)

O6:Extrusion(0)
O0,O2,O1,O3,O4,O5,O6

C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115 111

(Step 2) Site1 sends its second Undo command. The target
operation O2 is identified and the corresponding node, Cylin-
der2, is obtained in the current Feature Combination Hierar-
chy. Since DOS(O2) = O6, the 5th sub-configuration is
skipped during the re-evaluation process. The result is illu-
trated in Figure 7.

(Step3) Site2 sends an Undo command to Undo the last
operation it issued. The target operation O3 is identified and
the corresponding node denoted as Sub_Configuration2 is
obtained. The identified node represents the one object in the
2th sub-configuration branch, and DOS(O3) is empty. There-
fore, the sub-configuration is skipped during the re-evaluation
process. Eventually, the other two sub-configurations are
recomposed as illustrated in Figure 8.

6. Conclusions

We proposed a selective multi-user Undo/Redo method in
replicated collaborative 3D modeling systems. It identifies the
Undo/Redo target operation uniquely at a local site and re-
mote sites by site ID and a Lamport State Vector so as to
preserve a user’s Undo/Redo intention. With the assistance of
a Feature Combination Hierarchy, the structure of the design
artifact and feature relations are clarified. In this way, opera-
tions that depend on the Undo target can be easily obtained
and will be undone altogether as well. Finally, the correctness
of our algorithms was proven with experiments executed
within a prototype that we built.

Acknowledgments

This paper is supported by the National Science Founda-
tion of China (Grant no. 61070078).

References

[1] Yang Y. Undo support models. International Journal of Man-

Machine Studies.1988; 28(5): 457-481.

[2] Abowd G, Dix AJ. Giving undo attention. Interacting with

Computers.1998; 4(3): 317-342.

[3] Berlage T. A selective undo mechanism for graphical user

interfaces based on command objects. ACM Transactions on

Computer-Human Interaction (TOCHI). 1994; 1(3): 269-294.

[4] Sun CZ. Undo any operation at any time in group editors. In:

Proceedings of the 2000 ACM Conference on Computer Sup-

ported Cooperative Work; 2000; Philadelphia, PA; p.191-200.

[5] Jing SX, He FZ, Liu HJ. Collaborative naming for replicated

collaborative solid modeling system. In: ASME International

Design Engineering Technical Conferences & Computers and

Information in Engineering Conference; 2008 Aug 3-6;

NewYork, NY; p. 141-150.

[6] He FZ, Jing SX. A naming and corresponding mechanism of

topological entities for replicated collaborative solid modeling.

2008; P.R.China Patent. Application Number: 200810047976.9.

[7] Cheng Y, He FZ, Cai XT, Zhang DJ. Group undo/redo method

in 3D collaborative modeling systems with performance evalu-

ation. Journal of Network and Computer Applications. 2013;

36(6): 1512-1522.

[8] Cheng Y, He FZ. A multi-user selective undo/redo approach

for collaborative CAD systems. In: Proceedings of the 2013

Asian Conference on Design and Digital Engineering (ACDDE

2013); 2013 Aug 12-14; Seoul, Korea; p. 593-603.

[9] Archer Jr JE, Conway R, Schneider FB. User recovery and

reversal in interactive systems. ACM Transactions on Pro-

gramming Languages and Systems. 1984; 6(1): 1-19.

[10] Kontogiannis T. A systems perspective of managing error

recovery and tactical replanning of operating teams in safety

critical domains. Journal of Safety Research. 2011; 42: 73-85.

[11] Prakash A, Knister MJ. Undoing actions in collaborative work:

Framework and experience. Computer Science and Engineer-

ing Division. Dept. of Electrical Engineering and Computer

Science. University of Michigan. 1994.

[12] Lanvin DF, Castnedo RL. Extending object-oriented languages

with backward error recovery integrated support. Computer

Languages, Systems & Structure. 2010; 36: 123-141.

[13] Sun CZ. Undo as concurrent inverse in group editors. ACM

Transactions on Computer-Human Interaction. 2002; 9(4):

309-361.

[14] Weiss S. Logoot-undo: Distributed collaborative editing sys-

tem on P2P networks. IEEE Transactions on Parallel and Dis-

tributed Systems. 2010; 21(8): 1162-1174.

[15] Young R, Whitington J. Using a knowledge analysis to predict

conceptual errors in text-editor usage. In: SIGCHI Conference

on Human Factors in Computing Systems: Empowering Peo-

ple; 1990 Apr 1-5; Seattle, WA; p.91-98.

[16] Prakash A, Knister MJ. Undoing actions in collaborative work.

In: Proceedings of the 1992 ACM Conference on Computer-

Supported Cooperative Work (CSCW '92); 1992; p. 273-280.

[17] Ressel M, Gunzenhauser R. Reducing the problems of group

undo. In: International ACM SIGGROUP Conference on Sup-

porting Group Work; 1999 Nov 14-17; Phoenix, AZ; p.131-

139.

[18] Choudhary R, Dewan P. A general multi-user undo/redo model.

In: Proceedings of European Conference on Computer

Supported Cooperative Work; 1995 Sep 11-15; Stockholm,

Sweden; p.231-246.

[19] Prakash A, Knister MJ. A framework for undoing actions in

collaborative systems. ACM Transactions on Computer-

Human Interaction. 1994; 1(4): 295-330.

[20] Edward WK, Igarashi T. A temporal model for multi-level

undo and redo. In: ACM Symposium on User Interface Soft-

ware and Technology; 2000 Nov 5-8; San Diego, CA; p. 31-40.

[21] Cass AG, Fernandes CST. Using task models for cascading

selective undo. LNCS. 2007; 4385: 186-198

[22] Wang TY, Wu JJ. Research on undo/redo technology in

CAD/CAM. Engineering Journal of Wuhan University. 1998;

31(3): 65-66.

[23] Bidarra R, Bronsvoort W. Semantic feature modeling. Com-

puter Aided Design. 2000; 32(3): 201-225.

[24] Jing SX, He FZ, Liu HJ. A survey of persistent naming prob-

lem for topological entities. Journal of Computer Aided Design

& Computer Graphics. 2007; 19(5): 545-552.

112 C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115

[25] Lamport L. Time, clocks, and the ordering of events in a dis-

tributed system. Communications of the ACM. 1978; 21(7):

558-565.
[26] Jing SX, He FZ, Han SH. A method for topological entity

correspondence in a replicated collaborative CAD system.

Computers in Industry. 2009; 60(7): 467-475.

[27] Cheng Y, He FZ, Cai XT, Cheng Y. A method for object refer-

ence in collaborative modeling systems. Journal of Computer

Research and Development. 2011; 48(11): 2031-2038.

Figure 4. An example of the collaborative modeling process.

C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115 113

Figure 5. The feature combination hierarchy at each site after the collaborative modeling process.

114 C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115

Figure 6. The Feature combination hierarchy after the first undo command.

Figure 7. The feature combination hierarchy after the second Undo command.

C. Yuan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 103~115 115

Figure 8. The feature combination hierarchy after the last Undo command.

