

Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95
www.jcde.org

Quadrilateral mesh fitting that preserves sharp features

based on multi-normals for Laplacian energy

Yusuke Imai*, Hiroyuki Hiraoka and Hiroshi Kawaharada
Department of Precision Mechanics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

(Manuscript Received September 16, 2013; Revised October 24, 2013; Accepted November 1, 2013)

--

Abstract

Because the cost of performance testing using actual products is expensive, manufacturers use lower-cost computer-aided design simu-

lations for this function. In this paper, we propose using hexahedral meshes, which are more accurate than tetrahedral meshes, for finite
element analysis. We propose automatic hexahedral mesh generation with sharp features to precisely represent the corresponding features
of a target shape. Our hexahedral mesh is generated using a voxel-based algorithm. In our previous works, we fit the surface of the voxels
to the target surface using Laplacian energy minimization. We used normal vectors in the fitting to preserve sharp features. However, this
method could not represent concave sharp features precisely. In this proposal, we improve our previous Laplacian energy minimization
by adding a term that depends on multi-normal vectors instead of using normal vectors. Furthermore, we accentuate a convex/concave
surface subset to represent concave sharp features.

Keywords: CAD model; Hexahedral mesh; Sharp feature; Fitting algorithm; Multi-normalvectors

--

1. Introduction

In manufacturing, the cost of computer simulations is low-
er than testing actual prototypes. Thus, most manufacturers
run simulations, which require volume meshes. Up until a
decade ago, the simulation process started from surface
meshes that were made using computer aided design (CAD)
software. However, there were differences in the shape be-
tween the actual products and the CAD model, a result of
manufacturing factors such as springback in production
presses. Even if manufacturers used metal dies with the same
shapes as in the CAD models, the parts obtained from the
processes such as press working do not have the same shape
as the CAD model. Thus, the actual products are different
from the CAD model. For realistic simulations, the CAD
model must be identical to the products. Today, the simula-
tion process starts from point clouds scanned from the actual
products. This process is called reverse engineering.

Tetrahedral/hexahedral meshes generated from such point
clouds directly affect the results in finite element method
(FEM) analysis. Hexahedral meshes are important because
they are superior to tetrahedral meshes (see Figure 1(a)) in
terms of accurate analysis. Thus, in this paper, we use hexa-

hedral volume meshes (see Figure 1(b)) whose elements are
only hexahedral cells (called all-hexahedral meshes) and
consider their surface.

In the structural analysis between two objects, the peak
stress occurs near or around the contact regions. Such regions
are often sharp features. A sharp feature is typically a cusp
part (such as an edge or point) of an object. Thus, to obtain
accurate simulation results, the surface mesh must represent
sharp features.

In this paper, we consider a voxel-based hexahedral mesh
generation algorithm [1, 2]. In addition, the volume mesh for
the FEM must satisfy the constraint that all Jacobians are
positive. The Jacobian is a triple scalar product ܽ ∙ ሺܾ ൈ cሻ,
where	ܽ, ܾ and ܿ are vectors (edges) adjacent to the corner
vertex of a cell. Our ultimate goal is automatic hexahedral
mesh generation without negative Jacobians. In this paper,
we discuss the quadrilateral surface of a hexahedral mesh
(The algorithm we investigated in previous studies is voxel-
based [1, 2]). Thus, our inputs are the target surface mesh and
the quadrilateral mesh that is the surface of the voxel mesh.

Generically, we can classify the methods of boundary-
fitted hexahedral meshing as voxel-based [3, 4], advancing
front [5-7], whisker waving [8], cycle elimination [9], medial
axis-based [10], and sweep/mapped methods [11, 12], alt-
hough other types exist. Hexahedral mesh generation algo-
rithms can be fully or semi-automatic, but there is no scheme
that guarantees all Jacobians will be positive. On the other

*Corresponding author. Tel.: +81-3-3817-1821, Fax.: + 81-3-3817-1820

E-mail address: imai@lcps.mech.chuo-u.ac.jp
© 2014 Society of CAD/CAM Engineers & Techno-Press

doi: 10.7315/JCDE.2014.009

 Y. Imai et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95 89

hand, there is a scheme that guarantees that positive Jacobi-
ans does exist for tetrahedral meshes. Before considering
how to achieve positive Jacobians, we generate quadrilateral
surfaces of the all-hexahedral meshes that represent the target
surfaces. In this paper, we propose an automatic fitting algo-
rithm with sharp features based on previous works [1, 2, 13].

2. Previous hexahedral meshing

First, we summarize the previous hexahedral mesh genera-
tion algorithm [1, 2, 13]. The underlying algorithm can be
broken down as follows.

1. Input target surface mesh (see Figure 2(a) [14]).

2. Generate voxels to wrap around the target surface
using Polymender [15] (see Figure 2(b)).

3. Extract the boundary surface of voxels.

4. Fit the boundary surface of voxels (see the fitted
surfaces in Figure 2(c) [1, 2] and Figure 2(d) [13]).

5. Determine the positions of the inner vertices.

6. Apply post-processing.

7. Output hexahedral mesh.

(a)

(b)

Figure 1. Tetrahedral/hexahedral meshes: (a) tetrahedral
mesh, (b) hexahedral mesh.

(a)

(b)

(c)

(d)

Figure 2. Gear: (a) target surface (triangle mesh), (b)
voxels of gear, (c) quadrilateral mesh without sharp
features, (d) with sharp features.

90 Y. Imai et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95

In Step 4 above, we fit the boundary surface of voxels to
the target surface mesh. We call this the fitting part. We
proposed a fitting algorithm that did not represent sharp
features (see Figure 2(c)) [1, 2]. Thus, we proposed a mod-
ified fitting algorithm [13]. The modified algorithm repre-
sents convex sharp features (see Figure 2(d)). However, it
could not represent concave sharp features. Therefore, we
are now proposing a new fitting algorithm based on multi-
normal vectors and convex/concave accentuation.

3. Fitting algorithm

In this section, we explain the new fitting algorithm. Let
௜ݒ
଴, i ൌ 1,2,⋯	be the positions of the voxel’s boundary

vertices at step 0 (initial positions). The new fitting algo-
rithm is iterative (k = 0 to T) .

Algorithm 1:

1. Determine ݅ݒ
݇൅1, i ൌ 1,2,⋯	by minimizing the fol-

lowing quadratic energy function [16], where
௜࢜
௞	denotes the position of the boundary vertex ࢜௜

at step k, and ݅ݓ
݇൅1 denotes the corresponding

point on the input surface to ࢜௜
௞.

2. Apply surface Laplacian smoothing to the (k+1)-th
surface. If ݇ ് T, then increase k by 1 and return to
step 1.

Let ܧ be the boundary edges of the boundary surface
of voxels, ሺ݅, ݆ሻ be an edge between ࢜௜ and ࢜௝
|ሺ݅, ݆ሻ|	be the number of edges connecting to ࢜௜, and ࢜࢔௜
and ݊ݓ௜

௞ାଵ be unit normal vectors at ݒ௜
௞ on the ݇-th

boundary surface and ݓ௜
௞ାଵ on the target surface, re-

spectively. ‖ ‖denotes the norm of a vector. ܽ ∙ ܾ de-
notes the inner product between vectors ܽ and ܾ. is
the user-defined maximum iteration number (ܶ ൌ 30 in
this paper). The minimizing of the quadratic energy func-
tion is as follows:

min
௩೔
ೖశభ
∙෍ቐܿଵ ቯቌݒ௜

௞ାଵ െ
1

|ሺ݅, ݆ሻ|
෍ ௝ݒ

௞ାଵ

ሺ௜,௝ሻ∈ா

ቍ
௜

 െቀݒ௜
௞ െ

ଵ

|ሺ௜,௝ሻ|
∑ ௝ݒ

௞
ሺ௜,௝ሻ∈ா ቁቯ

ଶ

 ൅ܿଶฮݒ௜
௞ାଵ െ ௜ݒ

௞ฮ
ଶ
൅ ܿଷฮݒ௜

௞ାଵ െ ௜ݓ
௞ାଵฮ

ଶ

 ൅ܿସ ൞∑
ቆ
ష೙ೡ೔೓

ೖశభ

ೌ೔೓
ೖశభ ∙௡௪೔೟

ೖశభቇ

ெ೔
ሺ௛,௧ሻ ൢ

ۙ
ۖ
ۘ

ۖ
ۗ

																														ሺ1ሻ

Here, ܿଵ ൌ 1, ܿଶ ൌ

ଵ

ଶ
, ܿଷ ൌ 2, ܿସ ൌ 0.01.

Surface Laplacian smoothing is used to prevent vertices
from becoming congested near the sharp features of the tar-
get surface. Ordinary Laplacian smoothing, however, erases
sharp features. Thus, we use feature-preserving Laplacian
smoothing instead of ordinary Laplacian smoothing.

The first term in the above minimization is the differ-
ence between successive Laplacians. The second term is
the difference between ݒ௜

௞ାଵ and ݒ௜
௞. The third term is the

difference between ݒ௜
௞ାଵ and ݓ௜

௞ାଵ. The fourth term is
the non-matching rate between the multi-normal vectors
nݒ௜௛

௞ , ݄ ൌ 1,2,3⋯	and nݓ௜௧
௞ାଵ, ݐ ൌ 1,2,3⋯ . We describe

multi-normal vectors and the non-matching rate in detail in
Section 4. In this term, the multi-normal vector nݒ௜௧

௞ , ݄ ൌ
1,2,3,⋯is a set of linear formulas of ݒ௜

௞ାଵ (not unit vec-
tors). In a previous study, we used a similar minimization
(Eq. (2)) [13].

min
௩೔
ೖశభ
∙෍ቐܿଵ ቯቌݒ௜

௞ାଵ െ
1

|ሺ݅, ݆ሻ|
෍ ௝ݒ

௞ାଵ

ሺ௜,௝ሻ∈ா

ቍ
௜

 െቀݒ௜
௞ െ

ଵ

|ሺ௜,௝ሻ|
∑ ௝ݒ

௞
ሺ௜,௝ሻ∈ா ቁቯ

ଶ

 ൅ܿଶฮݒ௜
௞ାଵ െ ௜ݒ

௞ฮ
ଶ
൅ ܿଷฮݒ௜

௞ାଵ െ ௜ݓ
௞ାଵฮ

ଶ

 ൅ܿସ ቄฮ݊ݒ௜
௞ାଵฮ

ଶ
െ ሺ݊ݒ௜

௞ାଵ ∙ ௜ݓ݊
௞ାଵሻଶቅൢ								ሺ2ሻ

The corresponding fourth term of Eq. (2) is a quadratic

formula (not linear) that represents the non-matching rate
between normal vectors ݊ݒ௜

௞ାଵand ݊ݓ௜
௞ାଵsimilarly. How-

ever, the value of the fourth term of Eq. (2) does not change
by using െ݊ݒ௜

௞ାଵinstead of ݊ݒ௜
௞ାଵ. Therefore, let a normal

T

Figure 3. Bolt with reverse part.

 Y. Imai et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95 91

vector ݊	be a minimizer of the corresponding fourth term of
Eq. (2). Then, െ݊ is also a minimizer, because the corre-
sponding fourth term is quadratic. Figure 3 shows the result-
ing mesh with a reverse part. Thus, we set ܿସ to be very
small. In this case, the resulting mesh does not represent con-
vex/concave sharp features (see Figure 5(c)). Figures 5(a)
and 5(b) show the target surface and voxels of the bolt, re-
spectively. Thus, we define a new fourth term of Eq. (1) as a
linear formula.

In one approach [16], ݓ௜
௞ାଵ is the closest point to ݒ௜

௞ on
the target surface mesh. In others [1, 2], however, ݓ௜

௞ାଵ is
the closest vertex on the target surface mesh. These two defi-
nitions of ݓ௜

௞ାଵ are distinctly different. We increased the
number of vertices on the target surface mesh by up-
sampling [1, 2]. We chose subdividing triangles for up-
sampling. As in the loop subdividing method, we subdivided
each triangle on the target surface into four triangles. We
applied this subdivision five times. Let ௝ܵ, j ൌ 0,1,2,⋯ be
vertices (including up-sampling) on the target surface. Let
݊ ௝ܵ be the unit normal vector at ௝ܵ on the target surface.

The definition of ݓ௜
௞ାଵ in this paper is:

௜ݓ
௞ାଵ 	≡ argmin.

௝
ቊฮݒ௜

௞ െ ௝ฮݏ ቆ1 െ
∑ߙ ൫݊ݒ௜௛

௞ ∙ ௝௧൯ሺ௛,௧ሻݏ݊

௜ܰ
௞ ቇቋ

ሺ3ሻ

This definition is based on a non-matching rate between ݊ݒ௜
௞

and ݊ݏ௝. In this case, ߙ ൌ 0.8.
The old definition of ݓ௜

௞ାଵ is [1, 2]:

௜ݓ
௞ାଵ ≡ min݃ݎܽ

௝
. ฮݒ௜

௞ െ ሺ4ሻ																																													௝ฮݏ

Another old definition of ݓ௜

௞ାଵ is [13]:

௜ݓ
௞ାଵ ≡ min݃ݎܽ

௝
. ൛ฮݒ௜

௞ െ ௝ฮ൫1ݏ െ ௜ݒ݊ߙ
௞ ∙ ሺ5ሻ									௝൯ൟݏ݊

The normal vector ݆݊ݏof a candidate vertex ݆ݏ is closer
to	݊ݒ௜

௞, and the vertex ݏ௝	tends to be chosen as ݓ௜
௞ାଵ.

The new fitting algorithm consists of two parts. In the
first part, we apply the fitting algorithm with Eq. (1). We
set ܿସ ൌ 0.0		and ܶ ൌ 2. In the second part, we apply the
algorithm with Eq. (1) with ܿସ ൌ 0.01, resetting ܭ to 0,
and ܶ ൌ 30	ሺܭ ൌ .30ሻ	݋ݐ	0

4. Fitting algorithm that represents concave sharp
features

In this section, we explain the multi-normal vector and
convex/concave accentuation in the new fitting algorithm.
First, we explain the non-matching rate and corresponding
point ݓ௜

௞ାଵ of ݒ௜
௞ based on a multi-normal vector. In a

previous study [13], we defined ݊ݒ௜
௞ and ݊ݒ௜

௞ାଵ as aver-
ages of normal vectors of triangles at step ܭ and step
௜ݒ݊ respectively. Here, we realize that even if ,1+ܭ

௞ has
the same direction as ݊ݓ௜

௞ାଵ, the normal vector of each

triangle (face) connected to ݒ௜
௞ may not be parallel to the

normal vector of each triangle (face) connected to ݓ௜
௞ାଵ.

A face of the boundary surface of an all-hexahedral mesh
is quadrilateral. We consider a quadrilateral face that has four
triangles and four normal vectors. Therefore, we set the mul-
ti-normal vector of ݒ௜

௞ as the normal vectors of such trian-
gles to ݒ௜

௞. We combine several parallel vectors of this mul-
ti-normal vector into one vector and apply this operation
repeatedly. As a result, this multi-normal vector has no sub-
set of parallel normal vectors. For example, if all triangles
adjacent to ݒ௜

௞ are on a plane, then the multi-normal vector
of ݒ௜

௞	has only one element that is a normal vector of the
plane.

We set ݊ݒ௜௛
௞ , ݄ ൌ 1, 2, 3⋯ as this contracted multi-

normal vector. We apply this process similarly for ௝ܵ. We set
the multi-normal vector ݊ݏ௝௧, ݐ ൌ 1, 2, 3,⋯ as normal vec-
tors of the triangles including ݏ௝ similarly. Let ܣ௜

௞, be		௝ܤ
the numbers of normal vectors of ݊ݒ௜

௞, ௝ after the aboveݏ݊
process.

4.1 Convex/concave accentuation

In this subsection, we add a new step to Algorithm 1 of
Section 3 at the second part (considering the normal vector)
to represent concave sharp features. In concrete terms, before
the determination of ݓ௜

௞ାଵ in step 1 of Algorithm 1, we add
convex/concave accentuation for the subset of the boundary
surface of the all-hexahedral mesh.

To represent sharp features, ݒ௜
௞ାଵ that connects sharp

boundary edges corresponding to sharp features must be on
the corresponding sharp edges. Therefore, it is important that
the corresponding ݓ௜

௞ାଵ is on the sharp edges. Therefore,
before the minimization (decision of ݓ௜

௞ାଵ), we accentuate
the convex/concave subset of the boundary surface of the all-
hexahedral mesh. Figure 4 shows the convex/concave accen-
tuation. The black line denotes the target surface. The red
line denotes the boundary surface of the all-hexahedral mesh.
In this case, the red vertices are not on the convex and con-
cave corners of the black line, and so the boundary surface
does not represent sharp features.

To represent sharp features, we first calculate the Laplaci-
an vector at ݒ௜

௞ of the boundary surface. Let ܥܥ௜
௞ be a vec-

tor that is parallel to the average of ݊ݒ௜௛
௞ , ݄ ൌ 1, 2, 3,⋯ , ௜ܣ

௞
whose norm is equal to the inner product between the aver-
age of the multi-normal vector and the Laplacian vector. If
the inner product is negative, the direction of ܥܥ௜

௞ is oppo-
site to the average of ݊ݒ௜௛

௞ , ݄ ൌ 1, 2, 3,⋯ , ௜ܣ
௞. Let ݈ܿ be the

length of an edge of an initial voxel, and ܦ be a user-
defined coefficient (in this paper, we set this to	0.5).

Our convex/concave accentuation is ௜ݒ
௞൅ൌ ܦ ൈ ݈ܿ ൈ

௜ܥܥ
௞ ൈ ቀ

ଵ

ଶ
ቁ
௞/ଷ

, where ݅ ൌ 1, 2, 3⋯ if ܭ is a multiple of 3.
If ܭ is not a multiple of 3, we do not apply accentuation.

After the first part that does not depend on a normal vector,
௜ݒ‖

் െ ௜ݓ
்‖	݅	 ൌ 	1, 2, 3⋯	 are almost	0, because the third

term of ฮݒ௜
௞ାଵ െ ௜ݓ

௞ାଵฮ in Eq. (1) becomes almost 0 .

92 Y. Imai et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95

Thus, in the second part, without convex/concave accentua-
tion, ݓ௜

௞ାଵ does not change for all ܭ because the inside
term of minimizing on the right side of Eq. (3) is always
almost 0 at the same ݏ௝. Therefore, we use convex/concave
accentuation to separate ݒ௜

௞ from ݓ௜
௞ାଵ. After this accentua-

tion, the probability that ݓ௜
௞ାଵ is on a corner (sharp feature)

increases.

4.2 Matching rate between multi-normals

In this section, we explain the matching rate between mul-
ti-normal vectors ݊ݒ௜௛

௞ , ݄ ൌ 1, 2, 3,⋯ , ௜ܣ
௞ and 	ܣ௜

௞ ,
t	௝௧,ݏ݊ ൌ 1, 2, 3,⋯ , .௝ܤ

In order to do this, we calculate all the inner products be-
tween multi-normal vectors ݊ݒ௜௛

௞ , ݄ ൌ 1, 2, 3,⋯ , ௜ܣ
௞ and

t	௝௧,ݏ݊ ൌ 1, 2, 3,⋯ , ௝ (See Table 1). The range of the innerܤ
product is [-1, 1], because ݊ݒ௜௛

௞ and ݊ݏ௝௧ are unit vectors.
First, we obtain the maximums of each row and each col-

umn. We define ∑ ൫݊ݒ௜௛
௞ ∙ ௝௧൯ሺ௛,௧ሻݏ݊ as the sum of the max-

imums (bottom right cell of Table 1). In Table 1, we show
the matching. The Red/Green cells are the maximum cells of
the row/column. The Blue cells are the maximum cells of
both the row and column. The bottom right cell shows the
total of the row and column maximums.

We use this value as the matching rate between ݊ݒ௜௛
௞ , ݄ ൌ

1, 2, 3,⋯ , ௜ܣ
௞ and	݊ݏ௝௧,	t ൌ 1, 2, 3,⋯ , ௝. Let ௜ܰܤ

௞൫ൌ ௜ܣ
௞ ൅

 ௝൯ be the number of rows and columns in Table 1. Theܤ
scaled matching rate ∑ ൫݊ݒ௜௛

௞ ∙ ௝௧൯ሺ௛,௧ሻݏ݊ / ௜ܰ
௞ is [-1, 1].

4.3 Fitting algorithm based on multi-normal vector

In this section, we explain Eq. (1) and Eq. (3) in detail. In
Eq. (3), we use a scaled matching rate between multi-normal
vectors ݊ݒ௜

௞ and ݊ݏ௝. The definition of ݓ௜
௞ାଵ in this paper

reflects the details of the target surface.

Next, we explain the fourth term of Eq. (1).	ݓ௜
௞ାଵ is an el-

ement of ሼݏ௝ሽ௝ୀଵ,ଶ,⋯. Thus, we have a multi-normal vector
௜௧ݓ݊

௞ାଵ and a normal vector matching table for ݓ௜
௞ାଵ. Let

௜ܥ
௞ାଵ be the number of normal vectors of ݊ݓ௜

௞ାଵ. There is a
multi-normal vector ݊ݓ௜௧

௞ାଵ, t ൌ 1, 2, 3,⋯ , ௜ܥ
௞ାଵ.

In order to define the fourth term as linear formulas of
௜ݒ
௞ , we define ∑ ሺ݊ݒ௜௛

௞ାଵ ∙ ௜௧ݓ݊
௞ାଵሻሺ௛,௧ሻ as the sum of the

inner products between ݊ݒ௜௛
௞ାଵ (linear formula) and ݊ݓ௜௧

௞ାଵ
at the colored cells in the normal vector matching table for
௜ݓ
௞ାଵ. (At the Blue cells, we add the inner product to the sum

twice).
Let ܽ௜௛

௞ାଵ be the twofold triangle area that corresponds to
௜௛ݒ݊

௞ , and ܯ௜
௞ሺൌ ௜ܣ

௞ ൅ ௜ܥ
௞ାଵሻ be the number of rows and

columns in the normal vector matching table for ݓ௜
௞ାଵ .

During minimizing, ܽ௜௛
௞ାଵ is constant. After the second part,

we carry out post-processing to improve the quality of the
resulting all-hexahedral mesh.

5. Result

In this section, we show the experimental results of our
method. Figure 5(d) shows the boundary quadrilateral sur-
face mesh of the all-hexahedral mesh (bolt model) calculated
by our method. Figures 6(a), 6(b), 6(c), and 6(d) are the tar-
get surface, the boundary quadrilateral surface mesh of the
bearing model using a previous method [13], voxels, and the
all-hexahedral mesh calculated by our method for the bearing
model, respectively. The concave sharp features of the bolt
and bearing models are successfully represented. Similarly,
our method can represent convex sharp features of the target
surface mesh.

The smooth-feature model in Figure 7 has a convex sharp
feature that diminishes gradually. Figures 7(a), 7(b), and 7(c)
are the target surface, voxels, and result of our method for a
smooth-feature model, respectively.

The computation times for our experiments were only a
few seconds. Let ො݊ be the number of vertices of the bounda-
ry surface of voxels, and ෡ܰ be the number of vertices (in-
cluding up-sampling) of the target surface. We solve the

Table 1. Normal vector matching table.

௜ଵݒ݊
௞ ௜ଶݒ݊

௞ ௜ଷݒ݊
௞ ݒ݊ …

௜஺೔
ೖ

௞
Max

௝ଵݏ݊ 0.10 0.96 -0.02 0.38 0.96

௝ଶݏ݊ 0.75 -0.10 0.11 -0.29 0.82

…

…

௝஻ೕݏ݊ 0.05 0.80 0.36 0.55 0.80

Max 0.75 0.96 0.99 … 0.75 9.64

Figure 4. Convex/concave accentuation.

 Y. Imai et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95 93

(a)

(b)

(c)

(d)

Figure 5. Bolt: (a) target surface, (b) voxels of bolt, (c)
boundary quadrilateral surface of all-hexahedral mesh
using a previous method [13], (d) all-Hexahedral mesh
using our method.

(a)

(b)

(c)

(d)

Figure 6. Bearing: (a) target surface, (b) boundary
quadrilateral surface without, sharp features, (c) voxels, (d)
boundary quadrilateral surface using our method

94 Y. Imai et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95

linear system in the fitting part with a computation time of
Oሺ ො݊ଶሻ. However, we can solve this quickly because the ma-
trix of this linear system is sparse. The computation time of
all other parts is Oሺ ො݊ ෡ܰሻ. Thus, using octree, we decrease the
actual computation time.

6. Conclusions

We have proposed a new fitting algorithm based on multi-
normal vectors and convex/concave accentuation in order to
represent convex/concave sharp features on a target surface.
Using this algorithm for automatic hexahedral mesh genera-
tion, we obtained boundary surfaces of all-hexahedral mesh-
es with convex/concave sharp features. In future work, we
intend to determine the best coefficients for our algorithm. In
addition to the surface mesh, we would like to expand this
research to internal vertices.

Acknowledgments

This work was supported by JSPS KAKENHI Grant
Number 24760124.

References

[1] Kawaharada H, Hiraoka H. Boundary stencils of volume sub-

division for simulations. In: Proceedings of the ACDDE; 2011

Aug 27-29; Shanghai, China; p. 3-8.

[2] Kawaharada H, Sugihara K. Hexahedral mesh generation

using subdivision. Computational Engineering. 2011; 16(2):

12-15.

[3] Schneiders R, Schindler R, Weiler F. Octree-based generation

of hexahedral element meshes. In: The 5th International Mesh-

ing Roundtable; 1996 Oct 10-11; Pittsburgh, PA; p. 205-215.

[4] Loic M. A new approach to octree-based hexahedral meshing.

In: The 10th International Meshing Roundtable; 2001 Oct 10-

11; Newport Beach, CA; p. 209-221.

[5] Saten ML, Owen SJ, Blacker TD. Unconstrained paving and

plastering: A new idea for all hexahedral mesh generation. In:

The 14th International Meshing Roundtable; 2005 Sep 11-14;

San Diego, CA; p. 399-416.

[6] Wada Y, Yoshimura S, Yagawa G. Automatic mesh genera-

tion method using intelligent local approach 2nd report its ex-

tension to hexahedral mesh generation. Journal of Transactions

of the Japan Society of Mechanical Engineers Series. 2001;

67(655): 496-502.

[7] Blacker TD, Meyers RJ. Seams and wedges in plastering: A 3d

hexahedral mesh generation algorithm. Engineering with

Computers. 1993; 2(9): 83-93.

[8] Tautges TJ, Blacker T, Mitchell SA. The whisker weaving

algorithm: A connectivity-based method for constructing all-

hexahedral finite element meshes. International Journal for

Numerical Methods in Engineering. 1996; 39: 3327-3349.

[9] Muller-Hannemann M. Hexahedral mesh generation by suc-

cessive dual cycle elimination. In: The 7th International Mesh-

ing Roundtable; 1998 Oct 26-28; Dearborn, MI; p. 365-378.

(a)

(b)

(c)

Figure 7. Smooth-feature: (a) target surface, (b) voxels, (c)
result of our method.

 Y. Imai et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95 95

[10] Sheffer A, Etzion M, Rappoport A, Bercovier M. Hexahedral

mesh generation using the embedded Voronoi graph. In: The

7th International Meshing Roundtable; 1998 Oct 26-28; Dear-

born, MI; p. 347-364.

[11] Jason S, Mitchell SA, Knupp P, White D. Methods for multi-

sweep automation. In: The 9th International Meshing

Roundtable; 2000 Oct 2-5; New Orleans, CA; p. 77-87.

[12] Xevi R, Sarrate J. An automatic and general least-squares

projection procedure for sweep meshing. In: The 15th Interna-

tional Meshing Roundtable; 2006 Sep 17-20; Birmingham, AB;

p. 487-506.

[13] Moriya S, Hiraoka H, Kawaharada H. Replication of sharp

features hexahedral meshes using modified Laplacian energy

minimization. In: Proceedings of the 3rd Asian Conference on

Design and Digital Engineering; 2012 Dec 6-8; Hokkaido,

JAPAN; Paper No. 100062.

[14] Aim@Shape Project [Internet]. Darmstadt: Germany; [cited

2012 Jul 11]. Available from: http://shapes.aimatshape.net/

[15] Polymender [Internet]. Seattle; [cited 2012 Jul 11]. Available from:

http://www1.cse.wustl.edu/~taoju/code/polymender.htm

[16] Mehra R, Zhou Q, Long J, Sheffer A, Gooch A, Mitra NJ. Abstrac-

tion of man-made shapes. ACM Transactions on Graphics. 2009;

28(5): 1-10.

