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Abstract 
 
Because the cost of performance testing using actual products is expensive, manufacturers use lower-cost computer-aided design simu-

lations for this function. In this paper, we propose using hexahedral meshes, which are more accurate than tetrahedral meshes, for finite 
element analysis. We propose automatic hexahedral mesh generation with sharp features to precisely represent the corresponding features 
of a target shape. Our hexahedral mesh is generated using a voxel-based algorithm. In our previous works, we fit the surface of the voxels 
to the target surface using Laplacian energy minimization. We used normal vectors in the fitting to preserve sharp features. However, this 
method could not represent concave sharp features precisely. In this proposal, we improve our previous Laplacian energy minimization 
by adding a term that depends on multi-normal vectors instead of using normal vectors. Furthermore, we accentuate a convex/concave 
surface subset to represent concave sharp features. 
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1. Introduction 

In manufacturing, the cost of computer simulations is low-
er than testing actual prototypes. Thus, most manufacturers 
run simulations, which require volume meshes. Up until a 
decade ago, the simulation process started from surface 
meshes that were made using computer aided design (CAD) 
software. However, there were differences in the shape be-
tween the actual products and the CAD model, a result of 
manufacturing factors such as springback in production 
presses. Even if manufacturers used metal dies with the same 
shapes as in the CAD models, the parts obtained from the 
processes such as press working do not have the same shape 
as the CAD model. Thus, the actual products are different 
from the CAD model. For realistic simulations, the CAD 
model must be identical to the products. Today, the simula-
tion process starts from point clouds scanned from the actual 
products. This process is called reverse engineering.  

Tetrahedral/hexahedral meshes generated from such point 
clouds directly affect the results in finite element method 
(FEM) analysis. Hexahedral meshes are important because 
they are superior to tetrahedral meshes (see Figure 1(a)) in 
terms of accurate analysis. Thus, in this paper, we use hexa-

hedral volume meshes (see Figure 1(b)) whose elements are 
only hexahedral cells (called all-hexahedral meshes) and 
consider their surface.  

In the structural analysis between two objects, the peak 
stress occurs near or around the contact regions. Such regions 
are often sharp features. A sharp feature is typically a cusp 
part (such as an edge or point) of an object. Thus, to obtain 
accurate simulation results, the surface mesh must represent 
sharp features. 

In this paper, we consider a voxel-based hexahedral mesh 
generation algorithm [1, 2]. In addition, the volume mesh for 
the FEM must satisfy the constraint that all Jacobians are 
positive. The Jacobian is a triple scalar product ܽ ∙ ሺܾ ൈ cሻ, 
where	ܽ, ܾ and ܿ are vectors (edges) adjacent to the corner 
vertex of a cell. Our ultimate goal is automatic hexahedral 
mesh generation without negative Jacobians. In this paper, 
we discuss the quadrilateral surface of a hexahedral mesh 
(The algorithm we investigated in previous studies is voxel-
based [1, 2]). Thus, our inputs are the target surface mesh and 
the quadrilateral mesh that is the surface of the voxel mesh. 

Generically, we can classify the methods of boundary-
fitted hexahedral meshing as voxel-based [3, 4], advancing 
front [5-7], whisker waving [8], cycle elimination [9], medial 
axis-based [10], and sweep/mapped methods [11, 12], alt-
hough other types exist. Hexahedral mesh generation algo-
rithms can be fully or semi-automatic, but there is no scheme 
that guarantees all Jacobians will be positive. On the other 
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hand, there is a scheme that guarantees that positive Jacobi-
ans does exist for tetrahedral meshes. Before considering 
how to achieve positive Jacobians, we generate quadrilateral 
surfaces of the all-hexahedral meshes that represent the target 
surfaces. In this paper, we propose an automatic fitting algo-
rithm with sharp features based on previous works [1, 2, 13]. 

 
2. Previous hexahedral meshing  

First, we summarize the previous hexahedral mesh genera-
tion algorithm [1, 2, 13]. The underlying algorithm can be 
broken down as follows. 

1. Input target surface mesh (see Figure 2(a) [14]). 

2. Generate voxels to wrap around the target surface 
using Polymender [15] (see Figure 2(b)). 

3. Extract the boundary surface of voxels. 

4. Fit the boundary surface of voxels (see the fitted 
surfaces in Figure 2(c) [1, 2] and Figure 2(d) [13]). 

5. Determine the positions of the inner vertices. 

6. Apply post-processing. 

7. Output hexahedral mesh. 

 

(a) 

 

 
(b) 

Figure 1. Tetrahedral/hexahedral meshes: (a) tetrahedral 
mesh, (b) hexahedral mesh. 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 2. Gear: (a) target surface (triangle mesh), (b) 
voxels of gear, (c) quadrilateral mesh without sharp 
features, (d) with sharp features. 
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In Step 4 above, we fit the boundary surface of voxels to 
the target surface mesh. We call this the fitting part. We 
proposed a fitting algorithm that did not represent sharp 
features (see Figure 2(c)) [1, 2]. Thus, we proposed a mod-
ified fitting algorithm [13]. The modified algorithm repre-
sents convex sharp features (see Figure 2(d)). However, it 
could not represent concave sharp features. Therefore, we 
are now proposing a new fitting algorithm based on multi-
normal vectors and convex/concave accentuation.  

 
3. Fitting algorithm 

In this section, we explain the new fitting algorithm. Let 
௜ݒ
଴, i ൌ 1,2,⋯	be the positions of the voxel’s boundary 

vertices at step 0 (initial positions). The new fitting algo-
rithm is iterative (k = 0 to T ) .  

Algorithm 1: 

1. Determine ݅ݒ
݇൅1, i ൌ 1,2,⋯	by minimizing the fol-

lowing quadratic energy function [16], where 
௜࢜
௞	denotes the position of the boundary vertex ࢜௜ 

at step k, and ݅ݓ
݇൅1  denotes the corresponding 

point on the input surface to ࢜௜
௞. 

2. Apply surface Laplacian smoothing to the (k+1)-th 
surface. If ݇ ് T, then increase k by 1 and return to 
step 1. 

Let ܧ be the boundary edges of the boundary surface 
of voxels, ሺ݅, ݆ሻ  be an edge between ࢜௜  and ࢜௝   
|ሺ݅, ݆ሻ|	be the number of edges connecting to ࢜௜, and ࢜࢔௜ 
and ݊ݓ௜

௞ାଵ be unit normal vectors at ݒ௜
௞ on the ݇-th 

boundary surface and ݓ௜
௞ାଵ on the target surface, re-

spectively. ‖ ‖denotes the norm of a vector. ܽ ∙ ܾ de-
notes the inner product between vectors ܽ and ܾ.  is 
the user-defined maximum iteration number (ܶ ൌ 30 in 
this paper). The minimizing of the quadratic energy func-
tion is as follows: 

 

min
௩೔
ೖశభ
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ۗ

																														ሺ1ሻ 

 
Here, ܿଵ ൌ 1, ܿଶ ൌ

ଵ

ଶ
, ܿଷ ൌ 2, ܿସ ൌ 0.01. 

Surface Laplacian smoothing is used to prevent vertices 
from becoming congested near the sharp features of the tar-
get surface. Ordinary Laplacian smoothing, however, erases 
sharp features. Thus, we use feature-preserving Laplacian 
smoothing instead of ordinary Laplacian smoothing. 

The first term in the above minimization is the differ-
ence between successive Laplacians. The second term is 
the difference between ݒ௜

௞ାଵ and ݒ௜
௞. The third term is the 

difference between ݒ௜
௞ାଵ and ݓ௜

௞ାଵ. The fourth term is 
the non-matching rate between the multi-normal vectors 
nݒ௜௛

௞ , ݄ ൌ 1,2,3⋯	and nݓ௜௧
௞ାଵ, ݐ ൌ 1,2,3⋯ . We describe 

multi-normal vectors and the non-matching rate in detail in 
Section 4. In this term, the multi-normal vector nݒ௜௧

௞ , ݄ ൌ
1,2,3,⋯is a set of linear formulas of ݒ௜

௞ାଵ (not unit vec-
tors). In a previous study, we used a similar minimization 
(Eq. (2)) [13]. 

 

min
௩೔
ೖశభ
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            െቀݒ௜
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         ൅ܿଶฮݒ௜
௞ାଵ െ ௜ݒ

௞ฮ
ଶ
൅ ܿଷฮݒ௜

௞ାଵ െ ௜ݓ
௞ାଵฮ

ଶ
 

         ൅ܿସ ቄฮ݊ݒ௜
௞ାଵฮ

ଶ
െ ሺ݊ݒ௜

௞ାଵ ∙ ௜ݓ݊
௞ାଵሻଶቅൢ								ሺ2ሻ 

 
The corresponding fourth term of Eq. (2) is a quadratic 

formula (not linear) that represents the non-matching rate 
between normal vectors ݊ݒ௜

௞ାଵand ݊ݓ௜
௞ାଵsimilarly. How-

ever, the value of the fourth term of Eq. (2) does not change 
by using െ݊ݒ௜

௞ାଵinstead of ݊ݒ௜
௞ାଵ. Therefore, let a normal 

T

 

Figure 3. Bolt with reverse part. 



         Y. Imai et al. / Journal of Computational Design and Engineering, Vol. 1, No. 2 (2014) 88~95 91 
 

  

vector ݊	be a minimizer of the corresponding fourth term of 
Eq. (2). Then, െ݊ is also a minimizer, because the corre-
sponding fourth term is quadratic. Figure 3 shows the result-
ing mesh with a reverse part. Thus, we set ܿସ to be very 
small. In this case, the resulting mesh does not represent con-
vex/concave sharp features (see Figure 5(c)). Figures 5(a) 
and 5(b) show the target surface and voxels of the bolt, re-
spectively. Thus, we define a new fourth term of Eq. (1) as a 
linear formula. 

In one approach [16], ݓ௜
௞ାଵ is the closest point to ݒ௜

௞ on 
the target surface mesh. In others [1, 2], however, ݓ௜

௞ାଵ is 
the closest vertex on the target surface mesh. These two defi-
nitions of ݓ௜

௞ାଵ are distinctly different. We increased the 
number of vertices on the target surface mesh by up-
sampling [1, 2]. We chose subdividing triangles for up-
sampling. As in the loop subdividing method, we subdivided 
each triangle on the target surface into four triangles. We 
applied this subdivision five times. Let ௝ܵ, j ൌ 0,1,2,⋯ be 
vertices (including up-sampling) on the target surface. Let  
݊ ௝ܵ be the unit normal vector at ௝ܵ on the target surface. 

The definition of ݓ௜
௞ାଵ in this paper is: 

 

௜ݓ
௞ାଵ 	≡ argmin.

௝
ቊฮݒ௜

௞ െ ௝ฮݏ ቆ1 െ
∑ߙ ൫݊ݒ௜௛

௞ ∙ ௝௧൯ሺ௛,௧ሻݏ݊

௜ܰ
௞ ቇቋ 

ሺ3ሻ 
 

This definition is based on a non-matching rate between ݊ݒ௜
௞ 

and ݊ݏ௝. In this case, ߙ ൌ 0.8. 
The old definition of ݓ௜

௞ାଵ is [1, 2]: 
 
௜ݓ
௞ାଵ ≡ min݃ݎܽ

௝
. ฮݒ௜

௞ െ  ሺ4ሻ																																													௝ฮݏ

 
Another old definition of ݓ௜

௞ାଵ is [13]: 
 
௜ݓ
௞ାଵ ≡ min݃ݎܽ

௝
. ൛ฮݒ௜

௞ െ ௝ฮ൫1ݏ െ ௜ݒ݊ߙ
௞ ∙  ሺ5ሻ									௝൯ൟݏ݊

 
The normal vector ݆݊ݏof a candidate vertex ݆ݏ is closer 
to	݊ݒ௜

௞, and the vertex ݏ௝	tends to be chosen as ݓ௜
௞ାଵ. 

The new fitting algorithm consists of two parts. In the 
first part, we apply the fitting algorithm with Eq. (1). We 
set ܿସ ൌ 0.0		and ܶ ൌ 2. In the second part, we apply the 
algorithm with Eq. (1) with ܿସ ൌ 0.01, resetting ܭ to 0, 
and ܶ ൌ 30	ሺܭ ൌ   .30ሻ	݋ݐ	0
 
4. Fitting algorithm that represents concave sharp 
features 

In this section, we explain the multi-normal vector and 
convex/concave accentuation in the new fitting algorithm. 
First, we explain the non-matching rate and corresponding 
point ݓ௜

௞ାଵ of ݒ௜
௞ based on a multi-normal vector. In a 

previous study [13], we defined ݊ݒ௜
௞ and ݊ݒ௜

௞ାଵ as aver-
ages of normal vectors of triangles at step ܭ and step 
௜ݒ݊ respectively. Here, we realize that even if ,1+ܭ

௞ has 
the same direction as ݊ݓ௜

௞ାଵ, the normal vector of each 

triangle (face) connected to ݒ௜
௞ may not be parallel to the 

normal vector of each triangle (face) connected to ݓ௜
௞ାଵ.  

A face of the boundary surface of an all-hexahedral mesh 
is quadrilateral. We consider a quadrilateral face that has four 
triangles and four normal vectors. Therefore, we set the mul-
ti-normal vector of ݒ௜

௞ as the normal vectors of such trian-
gles to ݒ௜

௞. We combine several parallel vectors of this mul-
ti-normal vector into one vector and apply this operation 
repeatedly. As a result, this multi-normal vector has no sub-
set of parallel normal vectors. For example, if all triangles 
adjacent to ݒ௜

௞ are on a plane, then the multi-normal vector 
of ݒ௜

௞	has only one element that is a normal vector of the 
plane.  

We set ݊ݒ௜௛
௞ , ݄ ൌ 1, 2, 3⋯  as this contracted multi-

normal vector. We apply this process similarly for ௝ܵ. We set 
the multi-normal vector ݊ݏ௝௧, ݐ ൌ 1, 2, 3,⋯ as normal vec-
tors of the triangles including ݏ௝ similarly. Let ܣ௜

௞,  be		௝ܤ
the numbers of normal vectors of ݊ݒ௜

௞,  ௝ after the aboveݏ݊
process. 

4.1 Convex/concave accentuation  

In this subsection, we add a new step to Algorithm 1 of 
Section 3 at the second part (considering the normal vector) 
to represent concave sharp features. In concrete terms, before 
the determination of ݓ௜

௞ାଵ in step 1 of Algorithm 1, we add 
convex/concave accentuation for the subset of the boundary 
surface of the all-hexahedral mesh.  

To represent sharp features, ݒ௜
௞ାଵ  that connects sharp 

boundary edges corresponding to sharp features must be on 
the corresponding sharp edges. Therefore, it is important that 
the corresponding ݓ௜

௞ାଵ is on the sharp edges. Therefore, 
before the minimization (decision of ݓ௜

௞ାଵ), we accentuate 
the convex/concave subset of the boundary surface of the all-
hexahedral mesh. Figure 4 shows the convex/concave accen-
tuation. The black line denotes the target surface. The red 
line denotes the boundary surface of the all-hexahedral mesh. 
In this case, the red vertices are not on the convex and con-
cave corners of the black line, and so the boundary surface 
does not represent sharp features.  

To represent sharp features, we first calculate the Laplaci-
an vector at ݒ௜

௞ of the boundary surface. Let ܥܥ௜
௞ be a vec-

tor that is parallel to the average of ݊ݒ௜௛
௞ , ݄ ൌ 1, 2, 3,⋯ , ௜ܣ

௞ 
whose norm is equal to the inner product between the aver-
age of the multi-normal vector and the Laplacian vector. If 
the inner product is negative, the direction of ܥܥ௜

௞ is oppo-
site to the average of ݊ݒ௜௛

௞ , ݄ ൌ 1, 2, 3,⋯ , ௜ܣ
௞. Let ݈ܿ be the 

length of an edge of an initial voxel, and ܦ be a user-
defined coefficient (in this paper, we set this to	0.5).  

Our convex/concave accentuation is ௜ݒ
௞൅ൌ ܦ ൈ ݈ܿ ൈ

௜ܥܥ
௞ ൈ ቀ

ଵ

ଶ
ቁ
௞/ଷ

, where ݅ ൌ 1, 2, 3⋯ if ܭ is a multiple of 3. 
If ܭ is not a multiple of 3, we do not apply accentuation. 

After the first part that does not depend on a normal vector, 
௜ݒ‖

் െ ௜ݓ
்‖	݅	 ൌ 	1, 2, 3⋯	 are almost	0, because the third 

term of ฮݒ௜
௞ାଵ െ ௜ݓ

௞ାଵฮ  in Eq. (1) becomes almost 0 . 
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Thus, in the second part, without convex/concave accentua-
tion, ݓ௜

௞ାଵ does not change for all ܭ because the inside 
term of minimizing on the right side of Eq. (3) is always 
almost 0 at the same ݏ௝. Therefore, we use convex/concave 
accentuation to separate ݒ௜

௞ from ݓ௜
௞ାଵ. After this accentua-

tion, the probability that ݓ௜
௞ାଵ is on a corner (sharp feature) 

increases. 

4.2 Matching rate between multi-normals 

In this section, we explain the matching rate between mul-
ti-normal vectors ݊ݒ௜௛

௞ , ݄ ൌ 1, 2, 3,⋯ , ௜ܣ
௞  and 	ܣ௜

௞ , 
t	௝௧,ݏ݊ ൌ 1, 2, 3,⋯ ,   .௝ܤ

In order to do this, we calculate all the inner products be-
tween multi-normal vectors ݊ݒ௜௛

௞ , ݄ ൌ 1, 2, 3,⋯ , ௜ܣ
௞  and 

t	௝௧,ݏ݊ ൌ 1, 2, 3,⋯ ,  ௝ (See Table 1). The range of the innerܤ
product is [-1, 1], because ݊ݒ௜௛

௞  and ݊ݏ௝௧ are unit vectors.  
First, we obtain the maximums of each row and each col-

umn. We define ∑ ൫݊ݒ௜௛
௞ ∙ ௝௧൯ሺ௛,௧ሻݏ݊  as the sum of the max-

imums (bottom right cell of Table 1). In Table 1, we show 
the matching. The Red/Green cells are the maximum cells of 
the row/column. The Blue cells are the maximum cells of 
both the row and column. The bottom right cell shows the 
total of the row and column maximums.  

We use this value as the matching rate between ݊ݒ௜௛
௞ , ݄ ൌ

1, 2, 3,⋯ , ௜ܣ
௞ and	݊ݏ௝௧,	t ൌ 1, 2, 3,⋯ , ௝. Let  ௜ܰܤ

௞൫ൌ ௜ܣ
௞ ൅

 ௝൯ be the number of rows and columns in Table 1. Theܤ
scaled matching rate  ∑ ൫݊ݒ௜௛

௞ ∙ ௝௧൯ሺ௛,௧ሻݏ݊ / ௜ܰ
௞ is [-1, 1].   

4.3 Fitting algorithm based on multi-normal vector  

In this section, we explain Eq. (1) and Eq. (3) in detail. In 
Eq. (3), we use a scaled matching rate between multi-normal 
vectors ݊ݒ௜

௞ and ݊ݏ௝. The definition of ݓ௜
௞ାଵ in this paper 

reflects the details of the target surface. 

Next, we explain the fourth term of Eq. (1).	ݓ௜
௞ାଵ is an el-

ement of ሼݏ௝ሽ௝ୀଵ,ଶ,⋯. Thus, we have a multi-normal vector 
௜௧ݓ݊

௞ାଵ and a normal vector matching table for ݓ௜
௞ାଵ. Let 

௜ܥ
௞ାଵ be the number of normal vectors of ݊ݓ௜

௞ାଵ. There is a 
multi-normal vector ݊ݓ௜௧

௞ାଵ, t ൌ 1, 2, 3,⋯ , ௜ܥ
௞ାଵ.  

In order to define the fourth term as linear formulas of 
௜ݒ
௞ , we define ∑ ሺ݊ݒ௜௛

௞ାଵ ∙ ௜௧ݓ݊
௞ାଵሻሺ௛,௧ሻ  as the sum of the 

inner products between ݊ݒ௜௛
௞ାଵ (linear formula) and ݊ݓ௜௧

௞ାଵ  
at the colored cells in the normal vector matching table for   
௜ݓ
௞ାଵ. (At the Blue cells, we add the inner product to the sum 

twice). 
Let ܽ௜௛

௞ାଵ be the twofold triangle area that corresponds to 
௜௛ݒ݊

௞ , and ܯ௜
௞ሺൌ ௜ܣ

௞ ൅ ௜ܥ
௞ାଵሻ be the number of rows and 

columns in the normal vector matching table for ݓ௜
௞ାଵ . 

During minimizing, ܽ௜௛
௞ାଵ  is constant. After the second part, 

we carry out post-processing to improve the quality of the 
resulting all-hexahedral mesh. 

 
5. Result 

In this section, we show the experimental results of our 
method. Figure 5(d) shows the boundary quadrilateral sur-
face mesh of the all-hexahedral mesh (bolt model) calculated 
by our method. Figures 6(a), 6(b), 6(c), and 6(d) are the tar-
get surface, the boundary quadrilateral surface mesh of the 
bearing model using a previous method [13], voxels, and the 
all-hexahedral mesh calculated by our method for the bearing 
model, respectively. The concave sharp features of the bolt 
and bearing models are successfully represented. Similarly, 
our method can represent convex sharp features of the target 
surface mesh. 

The smooth-feature model in Figure 7 has a convex sharp 
feature that diminishes gradually. Figures 7(a), 7(b), and 7(c) 
are the target surface, voxels, and result of our method for a 
smooth-feature model, respectively. 

The computation times for our experiments were only a 
few seconds. Let ො݊ be the number of vertices of the bounda-
ry surface of voxels, and ෡ܰ be the number of vertices (in-
cluding up-sampling) of the target surface. We solve the  

Table 1. Normal vector matching table. 

௜ଵݒ݊ 
௞ ௜ଶݒ݊ 

௞ ௜ଷݒ݊ 
௞ ݒ݊ … 

௜஺೔
ೖ

௞
Max 

௝ଵݏ݊  0.10 0.96 -0.02  0.38 0.96 

௝ଶݏ݊  0.75 -0.10 0.11  -0.29 0.82 

…
      

…
 

௝஻ೕݏ݊ 0.05 0.80 0.36  0.55 0.80 

Max 0.75 0.96 0.99 … 0.75 9.64 

 

Figure 4. Convex/concave accentuation. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Bolt: (a) target surface, (b) voxels of bolt, (c) 
boundary quadrilateral surface of all-hexahedral mesh 
using a previous method [13], (d) all-Hexahedral mesh 
using our method. 

 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

Figure 6. Bearing: (a) target surface, (b) boundary 
quadrilateral surface without, sharp features, (c) voxels, (d) 
boundary quadrilateral surface using our method 
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linear system in the fitting part with a computation time of  
Oሺ ො݊ଶሻ. However, we can solve this quickly because the ma-
trix of this linear system is sparse. The computation time of 
all other parts is Oሺ ො݊ ෡ܰሻ. Thus, using octree, we decrease the 
actual computation time. 

 
6. Conclusions 

We have proposed a new fitting algorithm based on multi-
normal vectors and convex/concave accentuation in order to 
represent convex/concave sharp features on a target surface. 
Using this algorithm for automatic hexahedral mesh genera-
tion, we obtained boundary surfaces of all-hexahedral mesh-
es with convex/concave sharp features. In future work, we 
intend to determine the best coefficients for our algorithm. In 
addition to the surface mesh, we would like to expand this 
research to internal vertices. 
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