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Abstract.  We carry the knowledge that the skeleton bones of the human body are not always without defects and 
some various defects could occur in them. In the present paper, as the first endeavor, free vibration and buckling analysis 
of femur bones with femoral defects are investigated. A major strength of this study is the modeling of defects in femur 
bones. Materialise Mimics software is adopted to model the bone geometry and the SOLIDWORKS software is used 
to generate the defects in bones. Next, the ABAQUS software is employed to study the behaviors of bones with defects. 
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1. Introduction 
 

Femur bone is the largest and longest bone found in the human body (Gupta and Tse 2014). The 

femur bone plays an important role in the weight of body (Jade 2012). It has strong potential for 

fracturing in comparison with other bones, especially for the elderly people (Gupta and Tse 2014). 

The hip joint is constructed with the connection of proximal end of femur bone to the pelvis and the 

knee joint is formed with the connection of tibia to the distal end of femur bone (Jade 2012). Up to 

now several works have been studied the behaviors of femur bones (Hambli 2014, Yosibash et al. 

2014, El Sallah et al. 2016). Kumar et al. (2014) studied the femur bone with no defects using the 

simulation software based on the finite element method to find out the modes of vibration, the natural 

frequencies and the location of bone fracturing. Voo et al. (2004) presented a methodology for 

investigating stress fracture injuries using computational models and biomechanical stress analysis 

in a human femur bone. It was concluded that certain geometric features are important risk factors 

for the stress fracture of femoral neck. Haider et al. (2013) developed a QCT-derived FE model of a 

proximal femur including node-specific modulus assigned on the basis of local bone density. 

According to an applied fracture load, the influences of three commonly used boundary conditions 

available in literature were investigated with the comparison of resulting strain field. Bending 

analysis of femur bones was done by Bhardwaj et al. (2014) to find out the mechanical behaviors of 

them by using FE software. In their work, Von Mises and bending stresses were calculated for a 

known critical load. It was obtained that the maximum Von Mises stresses were about 131.3 MPa, 
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and the maximum deflection was calculated to be 1.8 cm, for the critical bending moment of 200 

N.m. In order to find the way to determine the orthotropic properties in a proximal femur, (San et 

al. 2012) suggested a finite element model based on the directions of the principal stresses produced 

by a physiological load scheme. To study the effects of material properties on the mechanical 

behaviors of bone in their suggested method, isotropic and orthotropic models were chosen. Taylor 

et al. (2002) CT scanned a cadaveric bone to calculate the natural frequencies by adopting a modal 

analysis. After modeling the geometrical shape of bone, a FE model was constructed and the 

maximum values of the orthotropic elastic constants were achieved by comparing the results of this 

model with those obtained from the experimental test. Geraldes and Phillips (2014) presented an 

iterative orthotropic three-dimensional adaptation algorithm for a FE model of the whole femur 

bone. The orthotropic prediction for the material properties of femur bone leads to the better 

prediction for the density of bone in comparison with the isotropic approach. The inaccuracy of 

isotropic models is also investigated in present paper, which will be discussed in the next sections. 

Nishiyama et al. (2013) developed a fast and validated methodology to predict the structural stiffness 

of bone and its failure load with a sensitivity study of varying boundary conditions. The effects of 

age-related differences in femoral loading and bone mineral density on strains were investigated by 

Anderson and Madigan (2013). They concluded that by decreasing bone mineral density, strains in 

a fairly uniform manner will increase. Campion et al. (2017) investigated a below-knee amputation 

based on a new finite element method for the optimization of prosthesis shape. Belaid et al. (2017) 

studied mechanical behavior of stabilization techniques for tibial plateau fractures by applying finite 

element method. In their work, displacements and stresses related to the fracture were presented. 

The effects of real complex bone geometry on natural frequencies were studied by Sadeghi et al. 

(2018). Stability of the distal femoral defect after reconstruction with fibular grafts of different 

lengths were analyzed by Ma et al. (2014) in which a three-dimensional model of a healthy volunteer 

was developed using computed tomography images. Biomechanical performance of the metal plate 

and bone strut technique for fixing recalcitrant nonunion of femur midshaft segmental defects was 

reported by Coquim et al. (2018). The effect of initial stress and magnetic field on the behavior wave 

propagation in human dry bones were studied by Mahmoud et al. (2014). 

In present article, free vibration and buckling analysis of femur bone with femoral defects are 

studied for the first time. Different types of femoral defects are considered to calculate the natural 

frequencies, critical buckling loads and modes of vibration and buckling. Moreover, according to 

the real behaviors of bones, a possible better model for the material properties of femur bones in 

comparison with some other works is also presented. With considering our results, it can be found 

that present 3D models may proof the inaccuracy of isotropic models for both healthy femur bones 

and femur bones with femoral defect. At the end of this section, it is mentioned that the idea 

presented in this article about non-homogeneous model has a good potential to be investigated from 

different views. For example, one can check that whether this model is more accurate than isotropic 

model or not. In which topics it has more accuracy and in which one it is not applicable? Moreover, 

other analyses such as forced vibration or impact can be done based on present models. 

 

 
2. Femoral defect 
 

In daily life, the human body undergoes some vibrations, for example, the exerted vibrations on 

the automobile passengers as a result of the road speed bumps. On the other hand, buckling can also 

be occurred to our body because of several different compression loads that may be exerted to our  
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Fig. 1 Femoral defect (Amanatullah et al. 2014): 17% cortical defect (A), 33% cortical defect (B), 50% cortical 

defect (C), and 67% cortical defect (D) 

 

     
(a) 0% defect (a) 17% defect (a) 33% defect (a) 50% defect (a) 67% defect 

     
(b) Model (I) (b) Model (II) (b) Model (III) (b) Model (IV) (b) Model (V) 

     
(c) Model (I) (c) Model (II) (c) Model (II) (c) Model (IV) (c) Model (V) 

Fig. 2 (a) Computer tomographic reconstruction of each femoral defect (Amanatullah et al. 2014), (b) 

Approximated models for different types of defects, (c) Meshed models for different types of defects 

 

 

bones. Besides, in real life, skeleton bones are not always healthy with no defects and several 

different factors can cause bone damage. Regarding the mentioned descriptions, it seems that the 

inspection of the bone’s vibrations and buckling in the presence of the defects would be necessary 

and valuable research.   

In Fig. 1, different types of femoral defects in real femur bones are introduced. In this figure, 

cortical defect percent is determined by dividing the maximal depth of resection by the width of the 

femur at that location Amanatullah et al. (2014). These defects can be also seen in part (a) of Fig. 2. 

More information on the size of defects and their geometries were defined by Amanatullah et al. 

(2014). It is noted that cortical bone is made up of a solid external layer throughout the walls of the 

diaphysis and the external surfaces of bone while cancellous bone, is located in the epiphyseal and 

metaphyseal region of long bones and has 30 percent greater porosity than cortical bone (Sivakumar 

2013). 
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Model (I) Model (II) Model (III) Model (IV) Model (V) 

Fig. 3 Three-dimensional approximated meshed models for femur bone with defect. 

 

 

3. Methodology 
 

In order to model the femur bone, Materialise Mimics software as an image processing software 

for three-dimensional design and modeling with the biomechanical application is used. The CAD 

software is not a perfect tool for modeling the femur bone as the bone has a complex geometrical 

shape, with complex surfaces and boundaries but Materialise Mimics software models the geometry 

using splines, which is suitable for having FE simulation (Bhardwaj et al. 2014, Tse et al. 2015). 

Then, SOLIDWORKS software is used for better producing the defects in femur bone. The length 

of the bone is assumed to be 0.45 m which is intended for men aged 27 years old with height 173 

cm and women aged 24 years old with height 169 cm and the idea of geometry and size of the defect 

is coming from the work of (Amanatullah et al. 2014) although the defects modeled in the present 

paper are not the same as their modeling. These defects can be seen in part (b) of Fig. 2. 

Then the ABAQUS software is adopted to study the vibration of femur bones with cortical defects 

using the finite element method. The finite element method is widely accepted and used as an 

alternative tool for biomechanics modeling which has complicated geometrical shapes and 

heterogeneous material properties (Mow et al. 1993, Gupta and Tse 2014). 

Meshed models of femur bones with different types of defects are shown in part (c) of Figs. 2 

and 3. The meshed model consists of 131726 quadratic tetrahedral elements of type C3D10 with 

192028 nodes. The global size of meshes, is about 0.004 m. It is important to note that the 

convergence of results is also checked in some cases. It is noted that the geometry of defects is 

defined in Fig. 4. 

 
 
4. Numerical results 
 

In the first part of this section, the natural frequencies of femur bone with defects are presented. 

In order to show the accuracy of present modeling, our results are compared with those available in 

the literature in Table 1. A great agreement between the results is achieved. As the next step, in order 

to present the results of femur bone, the material properties are classified into two different models, 

as shown in Fig. 5. One of them is the isotropic model with Young’s modulus E=17 GPa, the mass  
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Model (I) Model (II) 

  
Model (III) Model (IV) 

 
Model (V) 

Fig. 4 Geometry of femoral defects. 

 

 

density ρ=2132.6 kg/m3, the Poisson’s ratio υ=0.3 (Huang et al. 2012). In another model consisted 

of a cortical shaft along the bones’ diaphysis and two cancellous parts in the two ends of bone which 

is closer to the material properties of real human bone. The cortical part is the same as the first model 

and the properties of the cancellous parts are E=3390 GPa, the mass density ρ=1100 kg/m3, the 

Poisson’s ratio υ=0.3 (Hodgskinson and Currey 1992, Jade 2012). From our results, one may find 

that the results of the first model are not accurate in comparison with the second model and the 

isotropic model should not be used. 

In Table 2, the natural frequencies of femur bone with different types of defects for two different 

material properties are tabulated. In this table, it is assumed that the bone has the simply supported 

boundary condition as shown in Fig. 6. For this example, the highest value of 500.19 Hz is observed 
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Table 1 A compression study between analytical method and present simulation for the first four natural 

frequencies (Hz) of beam 

Type of section Boundary Condition Mode number Exact Solution Present 

Rectangular Section 

Fix-Fix 

1 1.4525 1.4528 

2 4.0009 4.0013 

3 7.8461 7.8352 

4 12.969 12.933 

Fix-Free 

1 0.2282 0.2284 

2 1.4265 1.4307 

3 4.0009 4.0028 

4 7.8461 7.8349 

Circular Section 

Fix-Fix 

1 2.5209 2.5131 

2 6.9437 6.9101 

3 13.617 13.501 

4 22.508 22.223 

Fix-Free 

1 0.3961 0.3955 

2 2.4758 2.4755 

3 6.9437 6.9160 

4 13.617 13.509 

 

  
(a) Model 1 (b) Model 2 

Fig. 5 Approximated models for the material properties of femur bone: a) isotropic model, b) non-

homogeneous model consisted of a cortical shaft and two cancellous parts. 

 

  
(a) Model 1 (b) Model 2 

Fig. 6 Boundary conditions for femur bone based on the human skeleton 

 

 

in the case of the isotropic bone for the first mode of vibration and the highest value of 332.01 Hz 

is seen in the of the bone model consisted of a cortical shaft and two cancellous parts. Besides, the 

highest value in all modes of vibration is 3374.9 Hz for the isotropic model and 2636.2 Hz for the  
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Table 2 Natural frequencies (Hz) of femur bone with defects including isotropic and non-homogeneous models 

Mode 
Model (I) Model (II) Model (III) Model (IV) Model (V) 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

1 500.19 332.01 497.80 331.71 485.47 330.55 467.60 325.15 436.13 314.65 

2 572.74 371.48 570.90 371.61 563.55 372.25 554.89 372.26 537.52 369.49 

3 1210.1 865.85 1211.5 866.70 1213.8 868.89 1212.9 868.26 1172.8 859.03 

4 1355.7 1047.6 1351.8 1049.4 1327.7 1055.4 1281.8 1058.7 1180.8 1025.3 

5 1897.4 1331.9 1897.6 1331.3 1883.6 1315.3 1840.6 1219.9 1586 1112.8 

6 2055.2 1530.7 2050.1 1522.3 2013.1 1472.2 1935.2 1347.6 1770 1180.8 

7 2422.1 1843.2 2421.1 1840.3 2404.3 1825.4 2357.9 1772.1 2231.5 1684.6 

8 2921.8 2099.9 2918.7 2102.6 2869.6 2114.5 2757 2143.1 2586.1 2133.3 

9 3023.1 2231.4 3028.8 2240.7 3045.9 2257.5 3043.5 2252.2 2860.8 2218.4 

10 3374.9 2636.2 3359.2 2632.9 3278.4 2610.8 3194.9 2538.5 3199 2436.6 

 

   

   

   

Fig. 7 First nine modes of vibration for femur with a defect. 
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Table 3 A compression study between analytical method and present simulation for buckling load (×106) N of 

beam 

Type of section Boundary Condition Exact Solution Present 

Rectangular Section 
Fix-Fix 3.7899 3.7747 

Fix-Free 0.2369 0.2368 

Circular Section 
Fix-Fix 3.0372 3.0270 

Fix-Free 0.1898 0.1898 

 
Table 4 Buckling loads (N) of femur bone with defects including isotropic and non-homogeneous models 

Mode 
Model (I) Model (II) Model (III) Model (IV) Model (V) 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

1 5614.6 3055.5 5693 3561.3 5391.4 2947.5 5691.6 2751 3979 2302.7 

2 6524 3507.8 6669.7 4101.6 6632.7 3460 7142.5 3446.6 5693.9 3101.7 

3 10080 6876.9 10284 8066.6 10235 6832 11434 6758.5 9038.2 5808.7 

4 11295 7133.2 11609 8454.2 11831 7018.8 13476 6933.3 11390 5904.8 

5 19216 7215.8 19610 8622 19535 7136.7 21417 7131.4 12873 6210.8 

6 21100 8335.2 21676 9802.5 22007 7722.3 24435 7468.2 17207 6463.3 

7 25787 8459.2 26188 9917.7 25532 7979.6 26972 7712 17893 6695.3 

8 27106 8948.4 27853 10515 28322 8931.4 28345 8631.6 18643 7497.5 

9 28537 9197.2 29066 10585 29073 9352.4 29045 9043.5 19513 7846.5 

 

 

second model. 

From this table, it is found that in some cases the femoral defect plays an important role in the 

vibration of femur bone and its effect can’t be neglected. It is also understood that for almost all 

modes of vibration presented in this table, the isotropic model doesn’t have acceptable results. This 

table shows that all the natural frequencies predicted by model 2 are less than those calculated based 

on model 1. It is mentioned that the external excitation on the femur bone must be avoided to 

coincide with these natural frequencies; otherwise, it could lead to fracture of the bone (Gupta and 

Tse 2014). 

The first-nine modes of vibration for femur bone with the are also shown in Fig. 7. The sub-

figures show the displacement profile for the vibration at the corresponding modal frequency. It is 

noted that the buckling analysis of bones with femoral defects is also done by the authors of the 

paper but the results have some negative critical buckling loads and some variations can be seen in 

the results which may not agree with engineering sense. So, we decide to omit the buckling results. 

We think that the complexity of bone geometry with defect, the nodes selected for boundary 

condition and the meshes used in it may cause this problem. A bit of this problem may be seen in 

Table 4 where as some of the frequencies of model (II) are less than those in model (I).  

At this step, we are going to study the results of the stability analysis of femur bones with 

femoral defects for isotropic and non-homogeneous models. Both buckling loads and modes of 

buckling are presented in this part. As the first step, a comparison between the critical buckling 

loads for different boundary conditions are presented in Table 3. It can be seen that our results are 

in good agreement with those in the open literature. Before starting our discussion on femur bone, 

similar to the previous part, the boundary conditions are introduced. As shown in Fig. 8, the 

boundary conditions on both sides of the femur bone are defined. For the left sub-figure, all the  
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(a) Model 1 (b) Model 2 

Fig. 8 Boundary conditions used in our modeling 

 

   

   

Fig. 9 First six modes of buckling for femur bone with a defect. 

 

 

degrees of freedom except the displacement in the x-direction are restrained and for the right sub-

figure, the pinned boundary condition introduced in ABAQUS software is used. It is noted that for 

the start of buckling analysis, 1N load is applied at the end hip joint of femur bone (left sub-figure). 

The results of buckling loads for the femur bones with different types of defects for both isotropic 

and non-homogeneous models are tabulated in Table 4 and the modes of buckling are shown in Fig. 

9 for the first 6 modes of buckling. One key result from this table is that types of femoral defects 

and the non-homogeneous behaviors of femur bones play an important role in the stability of them. 

From this table, it is seen that for both isotropic and non-homogeneous models, the Model V of 

femoral defects has the lowest critical buckling load as it is expected from its geometrical shape. It 

is important to mention that our engineering sense tells us that the Model I of defects should have 
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the highest critical buckling load but it does not occur. This may be because of the meshing process 

for bones because of their complicated shapes. According to the above note, it worth noting that in 

some steps in our modeling, we even reach the negative buckling loads. All in all, it seems that 

strange behaviors of buckling loads can raise some questions for future works. At the end of this 

section, it is recommended for other researchers to study the stresses in femur bones with cortical 

defects which can be useful for predicting or preventing accidental fracture of femur bone. 

Moreover, the fracture location can also be predicted from the stress contours (Bhardwaj et al. 2014). 

 

 
5. Conclusions 
 

In this article, 3D modeling of femur bones with femoral defects was presented using Materialise 

Mimics software, SOLIDWORKS software and ABAQUS software. A major strength of this study 

was the modeling of defects in femur bones. For different types of femoral defects, the natural 

frequencies and buckling loads were calculated and the modes of vibration and buckling were 

proposed. From our results, it may be found that in some cases, the femoral defect plays an important 

role in the vibration and stability of femur bone and their effects should be considered. Moreover, a 

non-homogeneous model for the material properties of femur bones were presented. The idea was 

that, unlike some papers that attribute one type of material property to all parts of bone, the bone 

divided into two parts. The two ends have the cancellous properties and the shaft considers cortical 

bone. This non-homogeneous model seemed to have more accuracy in comparison with the isotropic 

model although there are some drawbacks to our proposed model. For example, according to figure 

5, it looks like it was better that we finished the cancellous part at the neck of bone. 

 

 

References 
 
Amanatullah, D.F., Williams, J.C., Fyhrie, D.P. and Tamurian, R.M. (2014), “Torsional properties of distal 

femoral cortical defects”, Orthopedics., 37(3), 158-162. https://doi.org/10.3928/01477447-20140225-51. 

Anderson, D.E. and Madigan, M.L. (2013), “Effects of age-related differences in femoral loading and bone 

mineral density on strains in the proximal femur during controlled walking”, J. Appl. Biomech., 29(5), 505-

516. https://doi.org/10.1123/jab.29.5.505. 

Belaid, D., Germaneau, A., Bouchoucha, A., Brémand, F., Brèque, C., Rigoard, P. and Vendeuvre, T. (2017), 

“Finite element analysis of mechanical behavior of stabilization techniques for tibial plateau fractures”, 

Comput. Meth. Biomech. Biomed. Eng., 20(S1), 13-14. http://dx.doi.org/10.1080/10255842.2017.1382837. 

Bhardwaj, A., Gupta, A. and Tse, K.M. (2014’), “Mechanical response of femur bone to bending load using 

finite element method”, 2014 Recent Advances in Engineering and Computational Sciences (RAECS), 1-4. 

Campion, D., Dakhil, N., Llari, M., Evin, M., Mo, F., Thefenne, L. and Behr, M. (2017), “Finite element model 

of a below-knee amputation: a feasibility study”, Comput. Meth. Biomech. Biomed. Eng., 20(S1), 35-36. 

http://dx.doi.org/10.1080/10255842.2017.1382848. 

Coquim, J., Clemenzi, J., Salahi, M., Sherif, A., Tavakkoli Avval, P., Shah, S., Schemitsch, E.H., Bagheri, Z.S., 

Bougherara, H. and Zdero, R. (2018), “Biomechanical analysis using FEA and experiments of metal plate 

and bone strut repair of a femur midshaft segmental defect”, BioMed Res. Int., 2018, Article ID 4650308, 

11. https://doi.org/10.1155/2018/4650308. 

El Sallah, Z.M., Smail, B., Abderahmane, S., Bouiadjra, B.B. and Boualem, S. (2016), “Numerical simulation 

of the femur fracture under static loading”, Struct. Eng. Mech., 60(3), 405-412. 

http://dx.doi.org/10.12989/sem.2016.60.3.405. 

Geraldes, D.M. and Phillips, A.T. (2014), “A comparative study of orthotropic and isotropic bone adaptation 

34



 

 

 

 

 

 

Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone… 

in the femur”, Int. J. Numer. Meth. Biomed. Eng., 30(9), 873-889. https://doi.org/10.1002/cnm.2633. 

Gupta, A. and Tse, K. (2014), “Vibration analysis of femur bone using Elmer”, J. Eng. Sci. Technol, Speial 

Issue on ICMTEA Conference, December. 

Haider, I.T., Speirs, A.D. and Frei, H. (2013), “Effect of boundary conditions, impact loading and hydraulic 

stiffening on femoral fracture strength”, J. Biomech., 46(13), 2115-2121. 

https://doi.org/10.1016/j.jbiomech.2013.07.004. 

Hambli, R. (2014), “3D finite element simulation of human proximal femoral fracture under quasi-static load”, 

Adv Bioeng Appl., 1(1), 1-14. https://doi.org/10.12989/aba.2013.1.1.001. 

Hodgskinson, R. and Currey, J. (1992), “Young’s modulus, density and material properties in cancellous bone 

over a large density range”, J. Mater. Sci.: Mater. Medicine., 3(5), 377-381. 

https://doi.org/10.1007/BF00705371. 

Huang, B., Chang, C., Wang, F., Lin, A., Tsai, Y., Huang, M. and Tseng, J. (2012), “Dynamic characteristics 

of a hollow femur”, Life Sci. J., 9(1), 723-726. 

Jade, S. (2012), “Finite element analysis of a femur to deconstruct the design paradox of bone curvature”, 

Masters Theses, University of Massachusetts Amherst. 

Kumar, A., Garg, T. and Patil, P.P. (2014), “Free vibration modes analysis of femur bone fracture using varying 

boundary conditions based on FEA”, Procedia Mater. Sci., 6, 1593-1599. 

https://doi.org/10.1016/j.mspro.2014.07.142. 

Ma, L., Zhou, Y., Zhang, Y., Zhou, X., Yao, Z., Huang, W., Qiao, G. and Xia, H. (2014), “Biomechanical 

evaluation with finite element analysis of the reconstruction of femoral tumor defects by using a double-

barrel free vascularized fibular graft combined with a locking plate”, Int. J. Clinic. Exper. Medicine., 7(9), 

2425. 

Mahmoud, S.R., Tounsi, A., Ali, A.T. and Al-Basyouni, K.S. (2014), “The effect of initial stress and magnetic 

field on wave propagation in human dry bones”, Bound. Value Prob., 2014(1), 135. 

https://doi.org/10.1186/1687-2770-2014-135. 

Mow, V.C., Ateshian, G.A. and Spilker, R.L. (1993), “Biomechanics of diarthrodial joints: a review of twenty 

years of progress”, J. Biomech. Eng., 115(4B), 460-467. https://doi.org/10.1115/1.2895525. 

Nishiyama, K.K., Gilchrist, S., Guy, P., Cripton, P. and Boyd, S.K. (2013), “Proximal femur bone strength 

estimated by a computationally fast finite element analysis in a sideways fall configuration”, J. Biomech., 

46(7), 1231-1236. https://doi.org/10.1016/j.jbiomech.2013.02.025. 

Sadeghi, R., Bakhtiari-Nejad, F. and Goudarzi, T. (2018’), “Vibrational analysis of human femur bone”, ASME 

2018 International Design Engineering Technical Conferences and Computers and Information in 

Engineering Conference. 

San Antonio, T., Ciaccia, M., Müller-Karger, C. and Casanova, E. (2012), “Orientation of orthotropic material 

properties in a femur FE model: A method based on the principal stresses directions”, Med. Eng. Phys., 

34(7), 914-919. https://doi.org/10.1016/j.medengphy.2011.10.008. 

Sivakumar, V. (2013), “Non-linear 3D finite element analysis of the femur bone”. 

Taylor, W., Roland, E., Ploeg, H., Hertig, D., Klabunde, R., Warner, M., Hobatho, M., Rakotomanana, L. and 

Clift, S. (2002), “Determination of orthotropic bone elastic constants using FEA and modal analysis”, J. 

Biomech., 35(6), 767-773. https://doi.org/10.1016/S0021-9290(02)00022-2. 

Tse, K.M., Tan, L.B., Lim, S.P. and Lee, H.P. (2015), “Conventional and complex modal analyses of a finite 

element model of human head and neck”, Comput. Meth. Biomech. Biomed. Eng., 18(9), 961-973. 

https://doi.org/10.1080/10255842.2013.864641. 

Voo, L., Armand, M. and Kleinberger, M. (2004), “Stress fracture risk analysis of the human femur based on 

computational biomechanics”, Johns Hopkins APL Tech Dig., 25(3), 223-230. 

Yosibash, Z., Mayo, R.P. and Milgrom, C. (2014), “Atypical viscous fracture of human femurs”, Adv. Biomech. 

Appl., 1(2), 77-83. 

 

 
CC 

35




