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Abstract.    Distributed planning and decision making can be beneficial from the robustness, 
adaptability and fault tolerance in multi-robot systems. Distributed mechanisms have not been 
employed in three dimensional transportation systems namely aerial and underwater environments. 
This paper presents a distributed cooperation mechanism on multi robot transportation problem in three 
dimensional environments. The cooperation mechanism is based on artificial capital market, a newly 
introduced market based negotiation protocol. In the proposed mechanism contributing in 
transportation task is defined as asset. Each robot is considered as an investor who decides if he is 
going to invest on some assets. The decision is made based on environmental constraint including fuel 
limitation and distances those are modeled as capital and cost. Simulations show effectiveness of the 
algorithm in terms of robustness, speed and adaptability. 
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1. Introduction 
 

Distributed planning, control and decision making in multi-robot systems have attracted much 
attention in recent years. One of the motivations in this field is limitations of single robot systems 
in performing some complicated tasks. Another motivation is more efficient performance of 
distributed multi-robot systems in comparison with systems with centralized control. Reusability  
Iñigo-Blasco 2012), scalability (Cunningham and Wurm 2012), reliability and fault tolerance 
(Parker 2012, Pereverzeva et al. 2012) are among advantages of distributed multi-robot systems 
that have encouraged researchers to design new systems and develop new ideas in this area. 
Despite above advantages, some new challenges are encountered in multi-robot systems.   

Cooperation and cooperation of robots   (Lau et al. 2011), communication among robots (Hoog 
et al. 2011) and task allocation (Gerkey 2003, Lee et al. 2010) are among these challenges. In 
addition, structure of robots in a multi-robot system is different from that of single robot systems. 

One of the interesting frameworks in multi-robot systems is transportation problem where  
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So far transportation problem has been defined with different assumptions over articles, robots and 

environment. The articles can be static or dynamic, small or big, homogenous or heterogeneous, 

etc. The robots can be homogenous or heterogeneous, limited or unlimited in resources, with or 

without communication etc. Finally the environment can be dynamic or static, stochastic or 

deterministic, discrete or continuous, etc.  

Despite many different studies with different assumptions in transportation problem, three 

dimensional environments have attracted less attention. Three dimensional environments are 

interesting in underwater and aerial robotics. Although being different in dynamics and control, 

aerial and underwater robots are similar from the planning and decision making point of view as 3-

dimensinal planning is required in both. In the last decade, researchers have significantly studied 

underwater and aerial robots (see for example Barrett et al. 1999, Terada 2000, Kim 2003, Yu et al. 

2005, Yu and Wang 2005, Vandapel et al. 2006, Bachmanna et al. 2009, Zarafshan et al. 2010, 

Bernard et al. 2011, Dimg and Yu 2013).  

Most of existing researches in the field of aerial and underwater robots have focused on 

dynamic and kinematic modeling and control of aerial and underwater robots; however a few 

works in cooperative planning in multi-robot environments can be found in the literature. Shao et 

al. (2006) investigated multiple robotic fish coordination problem in context of a disk-pushing task. 

Sang et al. (2005) studied the system of the patrol control mechanism and algorithm of multiple 

robot fish. Fink et al. (2011) studied three-dimensional planning and control of multiple aerial 

robots while manipulating a payload using a cable mechanism. In their work, individual robot 

control laws and motion plans as well as desired trajectory were devised.  

In the fo krow  Shao et al. (2006), Sang et al. (2005) and Fink et al. (2011) distributed planning 

and decision making were not applied, hence aforementioned advantages of distributed multi-robot 

systems were not anticipated. Work of Acevedo et al. (2013) proposed a distributed approach to 

coordinate unmanned aerial robots in patrolling task where low communication ranges and 

memory storage were available. Carlési et al. (2011) employed an organizational model to 

facilitate and regulate interactions between heterogeneous autonomous underwater vehicles for 

limiting communication. Transportation issues were not taken into consideration in rworks of 

Acevedo et al. (2013) and Carlési et al. (2011).  

Coordination, cooperation, competition and communication are requirements in multi-robot 

systems that make them similar to human societies from some aspects. Therefore some ideas are 

borrowed from human societies to develop planning and decision making algorithms in multi-

agent systems. Artificial market mechanisms are among these algorithms. Work of Smith (1980) is 

known as the earliest market-based multi-robot mechanism. So far plenty of papers have been 

published in the frame work of using market mechanisms in multi-robot systems. An excellent 

review can be found in Dias et al. 2006r. However, all of these works can be categorized in two 

general paradigms including auction mechanisms and contract nets. Works of Dias et al. (2011) 

and Loue et al. (2012) are examples of recent research published in the field of auction 

mechanisms and works of Sun and Wu (2009) and Lili and Huizhen (2012) are examples of recent 

research published in the field of contract nets.  

Artificial capital market as a new paradigm in market mechanisms was introduced in our 

previous work (Simzan et al. 2011). In that work a centralized method for cooperation of robots 

was proposed.  

This paper is an extension of Simzan et al. (2011) from centralized mechanism to a distributed 

one and from 2-dimensional environment to 3-dimensinal one. More detailed evaluations and 

discussions are also provided in this study. In this paper, three-dimensional multi-robot 
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transportation problem is studied and cooperative planning algorithm based on artificial capital 

market is proposed.    

In the next section the problem is defined and corresponding assumptions are devised. In 

section 3 the proposed distributed cooperation algorithm is proposed. In the froth section 

simulation results are illustrated and the last section includes conclusions.    

 

 

2. Problem description  

 
Assume that R robots are located in different positions of a three-dimensional environment as it 

is shown in Fig. 1. We denote the position of i
th
 robot by Pi = (Xi,Yi,Zi). It is desired that the robots 

transport an object from its initial position PO = (XO,YO,ZO) to a goal position PG=(XG,YG,ZG). The 

object can be carried by a single robot or by a team of robots. The robots initially have limited fuel  

and Fi stands for amount of initial fuel of i
th
 robot. Fuel consumption rate of robots, while carrying 

no object, is Ef unit per meter. If a single robot carries the object it will consume Ec unit of fuel per 

meter and if n robots cooperate in carrying a single object, rate of fuel consumption will be 

decreased to Ec/n unit per meter for each robot. There is a fuel station located at PF = (XF,YF,ZF). 

Each robot knows its own position and the positions of the object, the fuel station and the goal. It 

does not know the positions of the other robots. 

The main question is: “Which robots should contribute in carrying the object toward the goal?”. 

Answering this question is not straightforward. The complexities are originated from the following 

facts: 

1. It is obvious that only the robots those have enough fuel can contribute in carrying the 

object. Nevertheless decision of a robot in contributing or not contributing in task will 

affect fuel consumption rate of other participant robots as it was explained above. Then it 

is not easy to find out which robots have enough fuel for doing the task. 

2. Decision making in the society is made in a distributed manner i.e. each robot make its 

own decision. However, the robots are considered as self-interested agents and their 

decisions are not necessarily beneficial for the society. Here we need a mechanism to 

force self-interested robots to make decisions those are good for the society.  

3. A criterion is needed to evaluate "beneficial decisions for the society". In this paper we 

define total fuel consumption of the society as the decision criterion. However, in a 

distributed decision making mechanisms (like our system), there is no central planning 

unit with full information of whole system. Then global optimization methods are not 

applicable. 

4. The robots need to communicate in order to make a collective decision. Amount of 

transmitted data will affect decision speed. Therefore, the decision making protocol 

should not require high data transmission.           

 

In this paper we answer abovementioned main question with the aim of reducing total fuel 

consumption in the presence of the fuel constraints and with no central decision making unit. We 

introduce a distributed mechanism that is able to address the issue. We will propose a negotiation 

mechanism in the form of an artificial capital market by which the agents can come to agreement 

about the combination of the robots contributing in transportation of the object. The mechanism is 

designed such that the final solution is as beneficial as possible for whole society. In the proposed 

mechanism amount of transmitted data among the robots is reduced as well.       
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Fig. 1 A 3D multi-robot transportation system with an object, a goal and a fuel station 

 

 

3. Distributed decision making mechanism 
 

3.1 Artificial capital market 
 

We model our transportation problem as a simple artificial capital market. Artificial capital 

market, introduced by Simzan et al. (2011) is a new paradigm in market based distribution 

artificial intelligence. Components of the artificial capital market are defined as the following: 

Investors: The robots are considered as investors in artificial market.  

Assets: Covered distances by the robots − carrying or not carrying the object − is considered as 

assets.  

Cost of assets: Fuel consumption in a distance is considered as price to be paid for an asset. If a 

robot covers a distance it has to pay the corresponding cost. The costs are function of three factors: 

covered distance, carrying or not carrying the object and the number of robots contributing in task.  

Asset Bundles: “Participation in transportation” is assumed as an asset bundle. A participant tobot 

should cover three distances: achieving from initial location to the object, carrying the object to 

goal and returning from the goal to fuel station. Hence, each bundle is composed of tree probable 

assets: Achieving the object, Carrying it to the goal and Returning to the fuel station. If we show 

the cost of these assets as CA, CC and CR, then the cost of bundle will be C= CA+CC +CR.   

Initial capital: Initial fuel of i
th
 robot is considered as its initial capital and is shown by Fi.  

Outcomes: After carrying out the transportation task, the contributing robots would be allowed to 

fuel. A limited amount of fuel S is available at the station that would be shared among n 

participant robots. Then outcome of each agent would be S/n .    

Payoffs: Payoff of agent i is defined as difference between its outcome and its costs: 
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where Pi and Ci stand for payoff and costs of robot i. 

 

3.2 Negotiation mechanism  
 

In the transportation problem, described in section 2, it should be decided which robots are 

contributing in transportation task. The decisions are made in a distributed manner and there is not 

a central processing in the society. Each robot individually decides if it is interested in contributing 

in transportation or not. This issue can be interpreted that in artificial capital market each investor 

individually decides if it is interested to investment on asset bundle or not.      

Decision making of each robot is done based upon some information. The robot can obtain 

local information including its distances from the object, the goal and the fuel station. Obviously 

the agent cannot make efficient decision with only local information and it needs to obtain some 

information about other robots in the environment. From the viewpoint of distributed decision 

making it is desired that amount of information transmitted among the robots be as small as 

possible. In our proposed mechanism, the only information that each robot gets from the other 

robots is their “decisions”. On the other words each robot only knows which robots are interested 

on contributing is task. Before we devise our negotiation mechanism, we explain how the agents 

share this information. We encode decisions of the society by a binary string ....21 RbbbD    

 

 

 
Fig. 2 Knowledge base of robots. Decision of each robot is made based on local and common knowledge 

 

 

where ib represents decision of i
th
 robot. If i

th
 robot decides to contribute in carrying the object we 

have 1ib , otherwise 0ib . For example in a five robot system D = 10010 means that agents 

1 and 4 have decided to participate in the manipulation task. This decision string is common 

knowledge for robots. 
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In summary each investor agent (robot) has local and common knowledge about the 

environment (see Fig. 2). Local knowledge of agent includes its fuel constraint and its position. 

Common knowledge includes abovementioned decision string as well as positions of the object, 

fuel station and goal. Based on this knowledge base, decision making process of an agent is very 

simple. Investor agent i takes following steps to make decisions (see Fig. 3): 

1. Calculates the cost of asset bundle if it invests (contributes in transportation task). The cost 

is equivalent to fuel consumption and is given as Ci = CA,I + CC,i + CR,i which is the 

aggregation of Achieving, Carrying and Returning costs as it was explained earlier. In 

order to find these costs the agent i needs to have its own position Pi, position of object PO, 

position of goal PG, fuel consumption rates Ef and Ec and the number of robots contributing 

in transportation (denoted by n). All of these values are available in knowledge base of the 

object. 

2. Obtains its payoff ( iC
n

S
 )if it participates in task. 

3. If the agent does not have enough capital ( ii FC  ) or the investment is not beneficial       

( 0 iC
n

S
) then it declines the investment and sets corresponding bit in decision string to 

zero (bi = 1). 

4. If the agent has enough capital and the investment is beneficial then it accepts the 

investment and sets corresponding bit in decision string to one (bi = 1). 
 

 

 

Fig. 3 Decision making algorithm of robot i 
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This decision making process is illustrated in Fig. 3. It should be noted that the decisions of 

agents are made in a distributed manner; that is each agent individually executes algorithm of Fig. 

3 in a loop. There is no specific order or priority among the agents. An agent, at each iteration of 

its loop, reads and employs current decision string D to make decision. The market is initiated with 

a random decision string D
0
 and the computations are continued until decision sting converges to a 

fixed string.       

 

 
4. Simulations and discussions 
 

We considered a 222m
3
 area with 10 robots as test environments. Initial locations of robots 

are shown in Table 1. The rate of fuel consumptions with and without carrying the object is 

assumed Ef = 0.07 and Ec= 0.7 respectively. 

 

4.1 Simulations with static object  
 

In the first stage of simulations it is assumed that the object is stationary and the robots have the 

same amount of initial fuel. (Fi = 5 I =1,...,10). Available fuel at fuel station is set to S = 4. To 

verify performance of the algorithm, it should be tested in different conditions. We applied the 

proposed algorithm for two problem cases with different locations for object, goal and fuel station 

shown in Table 2. The results of applying the proposed algorithm for different choices of initial 

decision string D
0
 are shown in Tables 3 and 4. In these tables the final decisions are denoted by 

D
f
. The final solutions are also graphically illustrated in Figs. 4 and 5. From Tables 3 and 4 it is 

obvious that the final solution is not sensitive to initial string which shows the robustness of 

algorithm to the initial guess. 

Number of changes in decision string to reach from D
0
 to D

f
 are also provided is Tables 3 and 

4. Among six runs shown in Tables 3 and 4, the maximum changes in decision string are 10 which 

corresponds to Run 1 in Table 4. For other runs changes of decision string are less than 10. This 

implies on fast convergence of the decision making process. 

We can compare fuel consumption of society corresponding to obtained solutions with the 

optimal solution. To do this, in each case we found the optimal decision using a brute force search, 

i.e. calculating the fuel consumption in all possible decisions: 
 

 

Table 1 Initial position of robots. Pi = (Xi,Yi, ,Zi) is position of i
th

 robot in meters 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Xi 0.2 1.8 0.6 1.9 1.9 0.1 1.6 0.4 1.6 0.3 

Yi 0.3 1.9 0.2 0.1 1.9 1.9 0.1 0.1 1.9 1.9 

Zi 0.1 1.5 0.5 1.4 0.6 0.7 0.1 0.2 1.7 1.5 

 
Table 2 Positions of goal, object and fuel station (in meters) in two problem cases studied in simulations 

CASE 
Goal position 

PG = (XG,YG,ZG) 

Object position 

PO = (XO,YO,ZO) 

Fuel station position 

PF = (XF,YF,ZF) 

1 (0.2,0.7,1.2) (1,1,1) (1.6,1.4,0.3) 

2 (1.7,0.5,0.8) (0.8,1.4,1.6) (1.2,1.5,0.5) 
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• In problem case 1, optimal decision is obtained as D
opt 

= 0010000011 and corresponding 

optimal fuel consumption of society is 1.24248. In this case the proposed algorithm has 

converged to D
f 
= 0010000101 with fuel consumption of 12.5079. It can be seen that the 

value is very close to optimal solution. 

• In problem case 2, optimal decision is obtained as D
opt 

= 010010011 and corresponding 

optimal fuel consumption of society is 1.65858. This is exactly equal to the solution found 

by the proposed algorithm.  

In order to verify reliability of the algorithm, we performed an statistical analysis by running 

the algorithm for 1000 problem cases with random selection of goal, object and fuel station 

positions and fixed values for initial positions of robots (given in Table 1) and fuels (Fi = 5 and S = 

4). In each case the results are compared with optimal solutions (obtained by brute force search).  

Number of problem cases converged to the optimal value, average deviation from optimal 

value and average number of changes in decision string are illustrated in Table 5. One can see that 

in 58.2 percent of cases optimal value is achieved by the proposed procedure and deviation from  

 

 
Table 3 Results of the proposed decision making process for problem case 1 in three different runs 

 Run 1 Run 2 Run 3 

D
0
 1010010011 1110111000 1000011010 

D
f
 0010001001 0010001001 0010001001 

Number of changes in D 5 6 9 

 
Table 4 Results of the proposed decision making process for problem case 2 in three different runs 

 Run 1 Run 2 Run 3 

D
0
 1001001001 0011011001 1111100000 

D
f
 0100010011 0100010011 0100010011 

Number of changes in D 8 7 10 

 

 
Fig. 4 Final solution of problem case 1. X, Y and Z axis are in mm 

178



 

 

 

 

 

 

Distributed artificial capital market based planning in 3D multi-robot transportation 

 
Fig. 5 Final solution of problem case 2. X, Y and Z axis are in mm 

 
Table 5 Results of statistical analysis of proposed decision making process by running 1000 times with 

different goal, object and fuel station positions 

Number of optimal solutions 

achieved 

Average deviation from optimal 

value 

Average number of changes in 

decision string 

582 % 1.91 7.2 

 

 

optimal value in other cases is less than 2 percents. Moreover average change in decision string 

during decision making process is 7.2.          

From above analysis it can be concluded that the proposed algorithm converges to near optimal 

decisions (sometimes optimal decisions) which is acceptable for a distributed algorithm wherein 

the agents do not have access to full information of the environment. It can also be concluded that 

the decision process is very fast and the solution is found in less than 10 changes in decision string.    

 

4.2 Real time implementation of decision making process 
 

To evaluate real time speed and performance of the decision making process, we set up a real 

time test where ten PIC18F6520 microcontroller systems are considered as ten agents. The agents 

were physically located in a 2×2×2m room. Their locations are selected according to values of 

Table 1. Other parameters of the system are considered as abovementioned problem case 1. For 

each agent, its position, its initial fuel, available fuel at fuel station and positions of goal, object 

and fuel station are loaded in agent’s memory as its database. Decision string is saved in a ground 

server and each agent can communicate with the ground server via a Bluetooth Class II device that 

has a range of over 100 m. The devices operate in the 2.4 GHz frequency range and include band 

hopping and error correction. They also have automatic retransmission at a maximum rate of 115.2 kbps. 

Agents use this communication channel to read decision string from the ground server and change it if 

required. Each agent executes independently algorithm of Fig. 2. With different initial values of decision 

string the real time system generated final decision as D
f 
= 0010001001 which is the same as simulations 

results given in Table 3. The average decision making time with this system is about 8ms which is 
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appropriate for real time applications.            

 
4.3 Simulations with moving object  

 

To investigate how the proposed mechanism would act in transportation of a moving object, we 

apply the algorithm for an environment with a moving object. It is assumed that the object moves 

according to the following equation: 


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We run two simulations where in the first one the initial position of the object is PG = 

(0.2,0.7,1.2) and in the second one initial position of the object initial position of the object is PG = 

(1.7,0.5,0.8). These initial positions are selected equal to object positions of two problem cases of 

Table 2. The object moves according to (2) and stops when it is caught by one of the robots. The 

robots run the proposed negotiation algorithm every T = 3 time steps. Then the winning robots 

move toward the object for 3 time steps until the next decision is made. Parameter T can be 

different according to dynamics of the object. More fast objects would require smaller valued for 

T. 

For problem cases 1 and 2, the progress of the algorithm and corresponding motions of the 

robots and the object are depicted in Figs. 6 and 7. In Fig. 6, robots R3, R7, R10 start moving 

toward the object in earlier steps of simulation. However after some time steps (by moving the 

object away from R10 and close to R1, R8), R10 gives up chasing the object and R1, R8 start 

moving toward object. In Fig. 7 robots R2, R6, R9, R10 start moving toward the object and R3 

joins them afterwards. These two examples show that the decision made by the proposed algorithm 

can be adapted according to changes of the environment.  

 

 

 
Fig. 6 The robots, starting from locations of problem case 1, chase a moving object using the proposed 

algorithm. X, Y and Z axis are in mm 
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Fig. 7 The robots, starting from locations of problem case 2, chase a moving object using the proposed 

algorithm. X, Y and Z axis are in mm 

 
 
5. Conclusions  

 

A capital market based cooperative planning and decision making algorithm was introduced for 

multi-robot transportation task in three-dimensional environments. In our transportation problem, 

some robots with limited fuel negotiate to come to an agreement about carrying an object to its 

goal. The robots who contribute in the transportation task are rewarded by predefined value of fuel. 

The problem was modeled as an artificial capital market wherein the robots were modeled as 

investors with limited capital. A negotiation protocol was proposed to support the society to come 

to agreement. In the negotiation algorithm only small piece of information is exchanged among the 

robots. Simulations were performed with static and dynamic objects. Statistical simulations were 

also performed. A real time implementation was provided to test speed of the decision making 

process. From the simulations and implementations it can be concluded that the: 

1. The mechanism is robust to initial decision of the robots. 

2. The solutions are close to optimal solution in terms of fuel consumption of the society. 

3. The convergence of the algorithm is fast. Decision is made in less than 10 steps in 

simulations and less than 8ms in real time for a 10 robot system.  

4. The algorithm can be easily extended to dynamic environments and shows good 

adaptability to environment changes.  
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