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Abstract.    Study results in the last decades show that amount and quality of physical exercises, then 
the active participation, and now the cognitive involvement of patient in rehabilitation training are 
known of crux to enhance recovery outcome of motor dysfunction patients after stroke. Rehabilitation 
robots mainly have been developing along this direction to satisfy requirements of recovery therapy, or 
focusing on one or more of the above three points. Therefore, neuro-machine interaction based active 
rehabilitation robot has been proposed for assisting paralyzed limb performing designed tasks, which 
utilizes motor related EEG, UCSDI (Ultrasound Current Source Density Imaging), EMG for 
rehabilitation robot control and feeds back the multi-sensory interaction information such as visual, 
auditory, force, haptic sensation to the patient simultaneously. This neuro-controlled and perceptual 
rehabilitation robot will bring great benefits to post-stroke patients. In order to develop such kind of 
robot, some key technologies such as noninvasive precise detection of neural signal and realistic 
sensation feedback need to be solved. There are still some grand challenges in solving the fundamental 
questions to develop and optimize such kind of neuro-machine interaction based active rehabilitation 
robot. 
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1. Introduction 
 

Cerebrovascular accidents severely impair motor functions. Although the optimal therapy for 
patients who suffer from cerebrovascular accidents is still a point of discussion, one theory is that 
patients will recover better and faster if having intensive physiotherapy directly after the accident. 
Undamaged brain tissue will then take over the functionality of the damaged tissue and the lost 
functionality caused by those severe physical traumas will be regained (Michel et al. 2005). In 
order to assist the stroke patients during rehabilitation therapy, some researchers have developed 
several robot-assisted rehabilitation therapy systems, such as MIME (Burgar et al. 2000), ARM 
Guide (Reinkensmeyer et al. 2000), MIT-MANUS (Krebs et al. 2000), UECM (Zhang et al. 2005). 
Robotic aids can provide programmable levels of assistance, and automatically modify their output 
based on sensor data using control frame works (Krebs et al. 1998, Lum et al. 1997). 
Rehabilitation robot usually works on two modes, one is passive recovery training mode another is  
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active recovery training mode. Owing to the patients exhibit a wide range of arm dysfunction 

levels, it is important to provide optimal assistance in robot-assisted rehabilitation therapy, which 

has been demonstrated by Kahn et al. (2004). Passive recovery training as the initial stage of 

rehabilitation therapy, its aim is to reduce the muscle tone and spasticity of the impaired limb, and 

increase its movable region (Lindberg et al. 2004). The main objective in this stage is to control 

the robot stably and smoothly to stretch the patient paralyzed limb moving along a predefined 

trajectory with the position controller. Thus, in passive recovery training mode, providing a desired 

movement trajectory with appropriate velocity to the patient is a key issue for rehabilitation robot 

control. Lots of studies focused on how to control robot to move along the desired trajectory in 

passive rehabilitation mode (Duygun et al. 2005, Xu et al. 2011a, 2011b). During recent years the 

field of robot-assisted rehabilitation has been inspired by new available technologies. One example 

is Neuro-Machine Interface (NMI) including Brain-Computer Interface (BCI), EEG and EMG 

based Human-Robot Interface (HRI) (Huang et al. 2011, Lenzi et al. 2012, Yang et al. 2010), 

another example is Virtual Reality (VR), which gives the patients multi-sensation information such 

as audiovisual display and haptic feedback during physical therapy (Saposnik and Levin 2011). Xu 

et al. (2011) developed a novel robot-assisted rehabilitation system based on motor imagery EEG 

for paralyzed arm training of post-stroke patients, and the experimental results demonstrate the 

feasibility of the system. A clinically proven MANUS robot is integrated with the BCI to 

complement the robot control mechanism by the motor imagery of the patient (Wang et al. 2009). 

Mauro et al. (2012) developed an integrated hybrid neuro-rehabilitation systems combined with 

virtual reality, brain neuro-machine interface, and exoskeleton robots in order to overcome the 

major limitations regarding the current available robot-based rehabilitation therapies. 

In this paper, we review the development of the Neuron-Machine Interaction (NMI) based 

active rehabilitation robot systems and discuss the key technologies of the NMI based 

rehabilitation robot. At last, the grand challenges in NMI based rehabilitation robot systems are 

addressed. 

 

 

2. Neuro-machine interaction based active rehabilitation robot systems 
 

In recent years, there is a rapid growth in Neuro-Machine Interface technologies such as BCI 

which assist paralyzed or locked-in patients communicate with the outside world, control devices 

such as television and motorized wheelchair. In particular, some studies have shown the potential 

ability of using BCI to control Functional Electric Stimulation (FES) system for assistive hand 

movements. Tan et al. (2008) proposes a BCI-FES system for stroke patients’ arm flexion and 

extension exercises. Both systems employ the motor imagery technologies. Wang et al. (2009) 

explores the possibilities of using noninvasive BCI and mechanical robotic-aided rehabilitation for 

paralyzed upper limb rehabilitation of post-stroke patients. The BCI based rehabilitation robot 

guides the post-stroke patients to perform rehabilitation exercises effectively, which motivates the 

post-stroke patients towards faster recovery. 

Most of the recent researches on Neuro-Machine Interface based active rehabilitation robot 

systems utilize movement related EEG or EMG signal acquisition and processing methods for 

robot control. Fig. 1 illustrates the architecture of motor imagery EEG based rehabilitation robot 

system. This system is composed of three core modules, EEG signal acquisition and processing 

module, rehabilitation robot with controller module, visual display module. The system translates 

the mental imagination of movements acquired by analyzing EEG signal from a post-stroke patient  
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Fig. 1 Motor imagery EEG based rehabilitation robot system 

 

 

into commands to control a robotic arm to manipulate the patient impaired arm during a physical 

therapy exercise. According to the current neuro-plasticity research results, existing findings 

suggest that extrinsic visual, auditory and haptic feedback may improve motor and functional 

performance, and the perception feedback stimulation is vital for effective rehabilitation of post-

stroke patients (Ferilli et al. 2012, Johansson et al. 2012, Parker et al. 2011). The Neuro-Machine 

Interaction (NMI) based rehabilitation robot system with perception feedback is shown in Fig. 2. 

 

 

 

Fig. 2 Neuro-Machine Interaction based active rehabilitation robot system 
 

 

The NMI based rehabilitation robot system consists of four core modules: non-invasion neural 

signal acquisition and processing module, rehabilitation robot with controller, interactive virtual 
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reality/virtual game module, and multisensory stimulation module. As comparison to the existing 

BCI based rehabilitation robot shown in Fig.1, the NMI based active rehabilitation robot system 

emphasizes the precise neural signal detection as well as multi-sensation feedback. 

The noninvasive neural signal acquisition and processing module, including EEG, EMG and 

UCSDI (Ultrasound Current Source Density Imaging, which detects neuro-signal of functional 

part) and some new tools for neural signal detection, measures the electrophysiological activities 

of the neuron systems and extracts features from raw signal data. In rehabilitation robot module, 

the controller unit converts the neural signal processing results into control commands for robot 

control. The interactive virtual reality/virtual game module such as virtual walk, virtual daily tasks, 

virtual car racing, haptic space exploring, etc., provides interesting interactive environments to 

patient. The multisensory stimulation module provides audiovisual display as well as force 

stimulation and haptic display, etc., to the post-stroke patient. The NMI based active rehabilitation 

robot system will bring great benefits to rehabilitation therapy and motor function recovery. 

However, such kind of rehabilitation robot system depends on the advancements of two 

fundamental technologies, one is noninvasive precise detection of neural signal technology another 

is realistic sensation feedback technology. On the one hand, conventional noninvasive 

electrophysiological detection methods such as EEG, EMG are compromised with limited spatial 

resolution; on the other hand, how the sensation feedback inputs into the brain and how it 

promotes neuromuscular function recovery remains an open question. Therefore, there are still 

some grand challenges in developing such kind of rehabilitation robot system. 

 

 

3. Bilateral interaction between human neuron systems and machine 
 

The bilateral interaction rehabilitation exercises are intended to simultaneously activate the 

efferent (motor control) and afferent (sensory perception) pathways, by providing the necessary 

assistance as needed and causes-effects based inspiration feelings during the execution of the 

therapy training. Such kind of bilateral interaction has been proven to favor cortical reorganization 

and neural path recovery (Mauro et al. 2012). The rehabilitation therapy studies in the last decade 

show that the outcome of the rehabilitation therapy mainly depends on three aspects: 1) the active 

participation of the patient; 2) the quality and amount of physical activity; 3) the cognitive 

involvement of the patient. Therefore, advanced technologies supported bilateral interactions 

between human neural systems and machine (environment) are designed to optimize rehabilitation 

therapy, as illustrated in Fig. 2. In the proposed NMI based active rehabilitation therapy system, 

EEG/UCSDI/EMG based active rehabilitation robot is used for inspiring the active participation of 

the patients. Virtual Reality based game with visual/auditory /force/haptic feedback is used to 

enhance cognitive involvement, motivation and immersion of post-stroke patients during the 

process of rehabilitation exercise. 

1) For the output (motor control) pathway: The electrophysiological signal generated by motor 

imagery of human brain is detected as EEG signal for reading patient’s “motor-mind”. The 

“motor-mind” is then recognized by analyzing and decoding the motor related EEG signals. 

Finally, the motor command is sent to control the rehabilitation robot and virtual environment for 

impaired limb rehabilitation training of the patient. Unfortunately, due to the partly shielding 

effect of the skull and low spatial resolution of EEG, it becomes a grand challenge to precisely 

measure and decode the movement-related EEG signals caused by motor imagery (He et al. 2011, 

Yang et al. 2011). One possible solution is utilizing USCDI technology (Olafsson et al. 2008, 
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Yang et al. 2011, Yang et al. 2012a), which can detect neuro-signals of functional part on lesion, 

and EMG together with EEG to recognize complex motor commands of human brain. For the 

post-stroke patients with limb seriously paralyzed, i.e. can hardly move autonomously, the motor 

and neural function will degenerate if do nothing in a long time according to the theory of 

neurological rehabilitation. In this case, rehabilitation exercises based on EEG/USCDI/EMG is 

especially suitable for activating the muscles and nerves of the paralyzed limbs and reconstructing 

the motor control function in cortex. For the paralyzed limb can partly autonomously move case, 

the interaction with robot based on EEG/USCDI/EMG can inspire the active participation, 

motivation and immersion of the patient, which are crucial for recovery outcome. So the post-

stroke patient can input motor commands to the robot for assisting desired exercises such as 

flexion-extension of elbow, stepping, performing haptic manipulations, i.e. space exploring, 

grabbing an egg, holding a cup of water, etc. 

2) For the input (sensory perception) pathway of human nervous system: Re-learning of the 

nervous system is one of basic mechanisms for motor function recover after stroke, by that 

undamaged neurons will then take over the functionality of the damaged neurons (Michel et al. 

2005). The effect feedback of the interaction with environment is very important for the re-

learning of the nervous system to regain coordinated motor control function just like the error back 

propagation for adjusting the weights of the artificial neural networks (ANN). The motor function 

recover is not only attributed to the physical intervention in training process but also to the 

stimulation of mental activity of the patient (Mauro et al. 2012). Patient’s motivation and 

immersion in the rehabilitation training can be achieved by means of multi-sensation information 

feedback such as visual/auditory/force/haptic/vibrant stimulation, which are crucial for optimizing 

recovery outcome. Visual/auditory/force/haptic/vibrant sensations generated during the process of 

interaction with virtual environment of post-stroke patient through rehabilitation robot are 

presented to the patient. The force/haptic sensations of interaction with VR can be reconstructed 

by back-drivable robot and force/haptic devices such as force feedback data glove. Vibrant feeling 

in playing virtual game can be presented by a vibratile motor array device. The patient’s 

motivation is fundamental and can be improved by assigning a video feedback game to the therapy 

that will make the rehabilitation training become more attractive and interesting (Holden 2005, 

Weiss et al. 2006). It is important to note that efferent process (motor control) and afferent process 

(sensory perception) are not independent. On the one hand, an efferent action (motor control) in 

the human neuron system can be triggered by an afferent event (sensory perception) during 

process of interaction with the robot (environment). On the other hand, the afferent activity 

(sensory perception) can be used to modify the efferent action (motor control) to interact with the 

robot (environment), i.e. to alter the velocity of limb motor. 

 

 

4. Grand challenging problems 
 

4.1 Detection of bilateral electroneurographic signals for robot coordinative control 
 

Unlocking how the “motor commands” through neural system (paths) to control limb motor, 

how the multi-sensation information caused by limb interacting with environment is back-

propagated through the neural system and perceived by human brain, and how the perception 

stimulation activates the neuron system, will be of great benefit to optimizing robot-assisted 

rehabilitation therapy. Generally, the motor mind generates electrophysiological signal in the 
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motor cortical neurons. This signal then propagates through the spinal cord and peripheral nerve to 

control musculoskeletal activity performing an action (He 2005). Although there are some 

anatomical and electrophysiological knowledge about the working process, imaging or detecting 

the electrophysiological process noninvasively still remains a grand challenge because of volume 

conduction effect (He 2005). Electrophysiological signals in high spatial and temporal resolution 

are needed to image the working process. Conventional electrophysiological recordings of 

neurocord activity, single or multi neuron unit activity, local field potential, and 

electrocorticography (ECoG) by implanted electrodes have high temporal/spatial resolution, but 

limited coverage, and unfortunately are invasive techniques. It is impossible and unsuitable for 

patients only having motor disorder to accept this kind of invasive techniques (He et al. 2011). The 

noninvasive electrophysiological detecting modalities such as EEG and EMG, which share the 

superior temporal resolution of the invasive recordings, have been attractive for studying brain 

states and assessing motor control functions. However, EEG and MEG are compromised with 

limited spatial resolution owing to the fact that a single electrode records a weighted average of 

neuron activity from a large number of neurons and thus it is difficult to directly relate the 

measurements to a defined anatomical neural substrate (He 2004, He et al. 2011). High spatial 

resolution images, on the other hand, can be obtained by functional magnetic resonance image 

(fMRI) which based on the blood-oxygen-level-dependent contrast. However, its information 

about functional activities of neural system is limited because fMRI does not directly measure the 

neural signal. It has therefore been a major challenge to enhance the spatial precision of 

noninvasive electrophysiological detection to achieve high spatiotemporal mapping of the 

electrophysiological signals of neuron system to image the working process of how the neuron 

system control limbs’ motors. Integration of EEG/MEG with fMRI combining EEG/MEG’s 

temporal resolution and fMRI’s spatial resolution based on neurovascular coupling relationship 

was proposed to delineate complex neuron system activities with high resolution in both space and 

time domains (He et al. 2011). However, challenges may be further appreciated by considering the 

highly different temporal/spatial scales of the hemodynamic and electrophysiological responses. 

Recently hybrid imaging modalities combing ultrasound scanning and electrical current density 

imaging through the acousto-electric (AE) effect to achieve high resolution in both space and time 

domains, namely acoustoelectric tomography (AET) and ultrasound current source density 

imaging (UCSDI), have attracted considerable attentions (Olafsson et al. 2006, Olafsson et al.  

2008, Olafsson et al. 2009, Sumi 2009, Witte et al. 2007, Witte et al. 2006, Yang et al. 2011, 

Yang et al. 2012b, Zhang and Wang 2004). Those noninvasive imaging modalities have the 

potential to provide electrophysiological functional maps with ultrasonic resolution. Initial 

experiments under controlled conditions indicate that UCSDI has potential of achieving sub-

millimeter spatial resolution and decent sensitivity of measuring current densities (2–4 mA/cm
2
) 

(Olafsson et al. 2006, Sumi 2009, Witte et al. 2006). Such kind of hybrid imaging modalities can 

be used to image current flowing in lobster nerve cord with physiologically realistic current 

densities (Witte et al. 2006), electrocardio-pulse propagation process, cardiac activation of a rabbit 

heart (Olafsson et al. 2009), the local potential field and weak current flowing in volume 

conductor (Wang et al. 2011). This kind of noninvasive nature imaging measures the 

neurophysiological signal directly and has high resolution in both space and time domains 

(millimeter-microsecond scale even better) (Yang et al. 2012a) so it is desirable for detecting the 

electrophysiological signals for rehabilitation robot control, and is suitable for imaging the 

neurophysiological processes how the neuron system control musculoskeletal motor performing an 

action as well as how the multi-sensorial signals are back-propagated through neural paths to the  
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Fig. 3 Measure electroneurographic signal in high spatial and temporal resolution by ultrasound current 

source density imaging (UCSDI) 
 

 

brain. As illustrated in Figs. 2 and 3, the limb motor related electrophysiological signals in the 

peripheral nerve is detected using this UCSDI and then sent to a signal processing unit which 

convert motor related neural signals into commands of robot to control the robot performing 

rehabilitation therapy. One major challenge for using UCSDI to imaging electrophysiological 

activity of the brain and detect the neurophysiological signal in the motor cortex is that the skull 

which envelops the encephalon fully will block the ultrasound conducting into the cortex, so the 

AE signal in UCSDI can’t gain for detecting motor cortex electrophysiological signal. Fortunately, 

the motor related electrophysiological signal in peripheral nerve can be detected by using UCSDI. 

Similar to the skull, the bone will block the propagation of ultrasound, generating echo in the 

interface between muscle and bone that will also be a challenge for detecting the 

electrophysiological signal in peripheral nerve. Possible solution is that scan from one side and 

then from the opposite side or arrange two phased ultrasound arrays in the two opposite sides to 

improve frame speed. The influence of echo can be comparatively easily eliminated because the 

echo generates after the AE signal so they can be separated in time domain (Zhang and Wang 

2004). Further researches will be needed for fitting UCSDI to detect motor related 

electrophysiological signal for rehabilitation robot control and image the neurophysiological 

process how the neuron system control musculoskeletal motor. 

Although the same as imaging outputted neural signal in technology, imaging/detecting how 

the sensorial electrophysiological signals of limb are activated, back-propagated and then 

perceived by the brain is more important for robot-assisted active rehabilitation due to activation 

of neural pathway and re-learning of neuron system by sensorial feedback are essential for 

regaining coordinated motor control function of patient. This will be discussed in the following 

section. 

 

4.2 How the interaction affect the neuromuscular rehabilitation 
 

Although robot-assisted rehabilitation training has established itself an important rehabilitation 
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therapy method for patients suffering motor dysfunction following stroke (Lum et al. 2002, Riener 

et al. 2005), how the mechanical and multi-sensation feedback affect the neuromuscular recovery 

is still an important and interesting question need to be solved in neuroengineering. A variety of 

therapeutic approaches are used in rehabilitation of post-stroke patients, however, the evidence 

basis of these interventions is weak and a physiological model of their effect is often lacking 

(Kwakkel et al. 1999). The recent advancements show that rehabilitation training mainly take 

effect in three aspects: 

1) Stimulates and exercises the neuromuscular, for keeping the function, preventing a 

complication of the neuromuscular characterized by tremor. Repetitive, passive-active movement 

training can improve limb motor function by preventing neuromuscular atrophy, spasm, quivering 

(Kwakkel et al. 1999, Platz et al. 2001). Positive effects in the post-acute phase have been reported 

with functional exercises for the arm (Kwakkel et al. 1999) and training of movement components 

(Platz et al. 2001). Thus, there exists a rationale for the use of passive movements, not only to 

prevent local tissue complications but also to improve motor function after stroke for those 

patients who cannot actively achieve functional movements of the paretic limb. This problem 

seems straightforward due to “exercise makes body stronger” has propagandized deep into people. 

However, by what neurobiological mechanism the mechanical stimulation promotes the 

neuromuscular recovery, how the training changes the anisotropic muscle motor into regular motor 

are remain open questions. Optimizing the training according to neurobiological mechanism to 

promote recovery of neuromuscular system is still a challenge in rehabilitation engineering.  

2) Activates the neural pathway by motor control output and sensorial feedback input. The 

number of neurons and the strength of the neural networks involved in a task are directly related to 

intensity and frequency of the task (Nudo et al. 2001). Sensory information feedback is regarded 

as crucial in motor learning and recovery post-stroke and regained sensory function is considered a 

positive prognostic indicator of therapy outcome (Weiller 1998). This neural pathway activation 

by “use-dependent plasticity” is an important factor to highlight in the rehabilitation therapy (Taub 

et al. 2002). Conflicting results exist with regards to the effects of superficial sensory stimulation 

in the rehabilitation of post-stroke patients (Johansson et al. 2001, Sonde et al. 2000). However, 

studies in healthy subjects and post-stroke patients have suggested that proprioceptive inflow can 

lead to improvements in limb motor control function (Carel et al. 2000, Glanz et al. 1996, Ridding 

et al. 2000, Lang et al. 2002). However, the evidence basis of these activations is weak and a 

physiological process of their effect is often lacking. An invivo imaging of the electrophysiology 

signal propagation in neural system may shed light on unlocking the activation physiological 

process.  

3) Inspires the re-learning of neuron system through neural plasticity by the execution of 

coordinated movements and effect perception feedback. The adult brain is capable of reorganizing 

itself after suffering a stroke because the healthy parts of the brain learn and take over the 

functions previously carried out by the damaged regions of the brain (Wang et al. 2009). Increased 

activity in primary motor cortex imaged by fMRI has been found during recovery from stroke 

(Carey et al. 2002, Marshall et al. 2000). The brain’s reorganizing capability is commonly known 

as neuro-plasticity (Frackowiak 2002), which can be seen as the moving of the position of a given 

function from one location to another in the brain through repeated learning. Generally, the motor 

disorder following stroke mainly caused by lesions in nervous system, therefore, the essential 

effect of neurorehabilitation training is to inspire the re-learning of the nervous system through 

neural plasticity by the execution of motor tasks and effect feedback by perception. Just like 

training an artificial neural network (ANN), the motor control output (training data set in ANN) 

162



 

 

 

 

 

 

Challenges in neuro-machine interaction based active robotic rehabilitation of stroke patients 

and perception feedback of the effect (error feedback in ANN) take key roles in re-learning of the 

nervous system. The re-learning of the nervous system for motor function recovery is just a 

training process that the nervous system according to the effect feedbacks to adjust and reorganize 

the neuro-networks physiologically and functionally by neuro-plasticity for correcting the motor 

control output to finish a desired movement, action, or manipulation. Clinical experimental studies 

during the last decade show that the outcome of rehabilitation training fluctuates greatly depending 

on subjects (Lindberg et al. 2004). A fundamental question rises naturally: how and by what 

neurobiological mechanism the perception feedback of motor control effect (that like error back 

propagation algorithm for adjusting the weights of ANN) affects the re-learning of the neuron 

system? Conflicting opinions exist due to lack of sufficient evidences. Some researchers persist 

assisting strategies, conversely, some agree to challenge strategies for providing mechanical and 

sensorial feedback to patient for promoting motor control function recovery (Crespo and 

Reinkensmeyer 2000, Wang et al. 2009). Therefore, it is still a grand challenge to provide 

effective and optimized perception feedback to promote the re-learning of the neuron system for 

motor control function recovery. 

 

4.3 Coordination control for rehabilitation robot 
 

As mention above, the quality and amount of exercises are key important for motor function 

recovery. Although the optimal rehabilitation training is still an open question, stable and smooth 

control method is needed for robot assisting post-stroke patient in doing designed exercise rightly 

and successfully. Trajectory control, kinetics based control including impedance control, force-

position hybrid control, EEG/EMG-based autonomous control, performance-based control, safety 

strategies, etc., have been proposed and applied in all kinds of rehabilitation robot (Blaya and Herr 

2004, Cai et al. 2006, Crespo and Reinkensmeyer 2000, Eilenberg et al. 2010, Frackowiak 2002, 

Guadagnoli and Lee 2004, Li et al. 2011, Metrailler et al. 2007, Riener et al. 2005, Sugarman et al. 

2008). However, the essential mechanism of neurorehabilitation training is to favor the re-learning 

of the central nervous system of patient through neural plasticity by the execution of coordinated 

movements and effect feedback by perception. Unfortunately, the control methods discussed above 

focused on exercising the paralyzed limb, rather than training the central nervous system, that 

limits the outcome of rehabilitation training. 

As illustrated in Fig. 4, the proposed Neuro-Machine Interaction based active rehabilitation 

robot system utilizes motor related EEG, UCSDI, EMG to control robot assisting paralyzed limb 

in performing designed task, and provides visual, auditory, force, haptic information to the patient, 

in such way to promote the re-learning of the nervous system to regain motor control function. A 

coordination control method is needed for this Neuro-Machine Interaction based active 

rehabilitation robot providing safe, smooth, predesigned exercises such as moments, actions, and 

manipulations with realistic feeling feedbacks to the patient for motor control function 

reconstruction. To provide flexible, versatile manipulation assistance, not only sophisticated, 

multiple degrees of freedom robotic mechanisms are needed, but also miniature measure devices, 

which measure angle, velocity, force/torque, etc. of each actuator for state feedback control (Li et 

al. 2011, Xiong et al. 2012). Although the posture trackers, data glove and force/torque sensors are 

available, it is still a challenge to integrate the distributed measure devices to the robotic 

mechanisms (Ma and Song 2011, Qian et al. 2011, Pennycott et al. 2009). Implementation of 

visual, auditory feedbacks are easy to complete, but high spatial resolution force feedback and 

realistic haptic sensation are still difficult to reconstruct and input into person. Patient’s active  
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Fig. 4 Scheme of coordination control for rehabilitation robot 

 

 

force/torque can be estimated through musculoskeletal model using video information of limb 

movement, but it is very difficult to measure the active force/torque directly and accurately, this 

bring uncertainty for coordination control of the rehabilitation robot. The development of neuro-

machine interface technology in the recent years make it possible to recognize 15-20 actions of up-

limb and hand using EEG together with EMG, but the decoding rate is limited to 4 actions per 

second (Lunenburger et al. 2007). Assuming the idea decoding output is a continuous signal, this 

low frequency decoding is equivalent to low frequency sampling for the continuous signal. 

Commonly, human’s electrophysiological signals are in the range of 3-200Hz, so this low 

frequency decoding will result in serious frequency overlapping, which imposes great difficulty to 

the robot control. In addition, there is sill no ideal recognition algorithm at present, which is able 

to recognize all kinetics information for all possible interactions with a limited training set of EEG 

and EMG signals (Wang and Buchanan 2002). The nonlinearity of the kinetics of human limb 

especially paralyzed limb is another important problem need to be considered for rehabilitation 

robot control (Shaw et al. 2005). Current studies indicate that there are several large nonlinearities 

exist in the relationship between neural activity and joint torque. These nonlinearities include the 

nonlinear transformation from joint angles to muscle lengths, the transformation from forces to 

torques, and the nonlinearities in the generation of muscle force (Pan et al. 2011, Xu et al. 2012, 

Zajac 1989).  

Owing to the difficulties of kinetics state measurement, multi-sensation feedback, patient’s 

active kinetics measurement, low decoding rate for neural control information, safety guarantee, 

together with the multiple DOFs, strong coupling, nonlinearity nature of limb’s kinetics, it is a 

grand challenge to coordinately control such kind of Neuro-Machine Interaction based active 

rehabilitation robot for providing safe, smooth, pre-designed exercises, which let patient actively 

interact with virtual environment related to walk, hand actions, daily tasks, playing games and 

haptic exploring. Fully overcoming this difficulty may depends on the solving of the fundamental 

problems in neuroengineering such as how the mind control limb motor through the neuro-

musculo-skeletal system, how the perception is inputted as electroneurographic signals and 

perceived by the human brain through the neural system, and how the active rehabilitation training 
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promote the motor function recovery of post-stroke patient in neurophysiology. On the other hand, 

the advancements of neuro-machine bilateral interaction technology will be able to solve some 

fundamental problems. 

 

 

5. Conclusions  
 

The study results in rehabilitation therapy of post-stroke patients show that the outcome of the 

rehabilitation training mainly depends on three aspects: 1) the active participation of the patient; 2) 

the amount and quality of physical activity; 3) the cognitive involvement of the patient. The 

Neuro-Machine Interaction based active rehabilitation robot has been currently proposed, which 

measures neural signals to control robot assisting paralyzed limb in performing designed tasks and 

provides realistic sensation feedback of the interaction effects to the patient simultaneously. It will 

greatly enhance post-stroke patient recovery from motor dysfunction. Noninvasive precise 

detection of neural signal and realistic sensation feedback are crucial for development of such kind 

of rehabilitation robot. There are still some grand challenges in developing the Neuro-Machine 

Interaction based active rehabilitation robot as following: how to precisely detect neural signal 

noninvasively, how the bilateral interaction especially perception feedback affects the 

neuromuscular rehabilitation, and how to optimize the coordination control of rehabilitation robot. 
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